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Abstract 

A Corrected Incompressible SPH (CISPH) method is proposed for accurate tracking of water surface in 

breaking waves. Corrective terms are derived based on a variational approach to ensure the angular 

momentum preservation of Incompressible SPH (ISPH) formulations. The proposed CISPH model is 

applied to solve the Navier-Stokes equation for simulating the breaking and post-breaking of solitary 

waves on a plane slope. The high precision of the CISPH model is confirmed through both qualitative and 

quantitative comparisons with experimental data. The introduction of corrective terms significantly 

improves the capability and the accuracy of the ISPH model in the simulation of wave breaking and 

post-breaking. 

 

Keywords: CISPH model, ISPH model, SPH method, particle method, wave breaking, angular 
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1. Introduction 

Tracking the movement of interface boundaries such as the free surfaces is of crucial importance in 

many numerical hydrodynamic calculations. Despite the recent advances in the introduction of high-order 

grid-based water-surface-tracking techniques, still there are difficulties to accurately analyze problems in 

which the free surface undergoes abrupt and large deformations (such as the case of breaking waves) and 

especially when fragmentation and coalescence of water exist (such as the process of splash up in the 

post-breaking stage). 
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Recently, Particle Methods which are among the meshfree or gridless methods have been used in many 

engineering applications as well as the simulation of hydrodynamic flows. In the Particle Methods, the 

state of a system is represented by a set of discrete particles, without a fixed connectivity, followed in a 

Lagrangian manner. Hence, moving interfaces and free surfaces can be more easily analyzed and tracked 

by the Particle Methods than by the conventional grid-based methods. Moreover, fully Lagrangian 

treatment of particles, allows the convection terms to be calculated without numerical diffusion which is 

an inherent problem in grid-based calculations. 

As one of the earliest Particle Methods, the Smoothed Particle Hydrodynamics (SPH) method was 

proposed for astrophysical applications (Lucy, 1977; Gingold and Monaghan, 1977) but has since been 

extended to model a wide range of engineering applications including elasticity (Libersky and Petschek, 

1991), multiphase-flows (Monaghan and Kocharyan, 1995) and blood simulation for virtual surgery 

(Muller et al., 2004). The SPH method has also been extended and applied to simulate the incompressible 

flows by treating the flow as slightly (or weakly) compressible with an appropriate equation of state 

(Monaghan, 1994; Morris et al., 1997). The Weakly Compressible SPH (WCSPH) model has been 

utilized for many applications such as runup and rundown of waves on beaches (Monaghan and Kos, 

1999), wave breaking on arbitrary structures (Colagrossi and Landrini, 2003; Monaghan et al., 2004) and 

wave breaking and post-breaking on beaches (Dalrymple and Rogers, 2005). 

An alternative and favored approach to enforce the incompressibility in the SPH method is to apply a 

two-step projection method similar to that in the Moving Particle Semi-Implicit (MPS) method 

(Koshizuka and Oka, 1996). Based on this approach, Cummins and Rudman (1999) proposed an 

Incompressible SPH (ISPH) method in which an intermediate velocity field is projected onto a divergence 

free space by solving a Pressure Poisson Equation derived from an approximate projection. Analogous to 

this SPH projection method, Shao and Lo (2003) developed a strictly ISPH method for the simulation of 

free surface hydrodynamic flows and successfully simulated numerous free surface flow problems such as 

wave overtopping (Shao et al., 2006), wave-structure interaction (Gotoh et al., 2004; Shao and Gotoh, 

2004) and wave breaking (Shao, 2006). 

While the ISPH formulations enforce the incompressibility of flow and preserve the linear momentum, 

they do not generally preserve angular momentum. The angular momentum conservation properties of a 

SPH formulation strongly influence its performance especially when the model is applied in the 
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simulation of violent free surface flows (such as the wave breaking and post-breaking) where 

considerable rigid body motions and rotations with relatively large fluid velocity take place. Bonet and 

Lok (1999) set forth a discrete variational SPH formulation which ensures the balance of linear and 

angular momentum. In this paper, analogous to the CSPH formulations proposed in (Bonet and Lok, 

1999), new corrective formulations are derived for the ISPH method (Shao and Lo, 2003) to ensure the 

preservation of angular momentum and thus, to correctly represent the rigid body motions and accurately 

track the free surface profile. The proposed Corrected ISPH (CISPH) method is applied to the breaking 

and post-breaking of solitary waves on a plane slope. The high precision of CISPH method, as well as its 

enhanced performance (compared to ISPH method) in the accurate water-surface tracking and simulation 

of violent free-surface flows are shown through both quantitative and qualitative comparisons with 

experimental data. 

 

2. Governing Equations 

The Lagrangian form of the Navier-Stokes equation is written as follows: 

0
D
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=⋅∇+ u
t
ρ

ρ
                                              (1) 

gTu
+⋅∇+∇−=

ρρ
11

D
D P

t
                                           (2) 

where ρ = fluid particle density; t = time; u = particle velocity; p = particle pressure; T = viscous stress 

tensor; and g = gravitational acceleration. It should be noted that Eq. (1) is written in the form of a 

compressible flow. Incompressibility is enforced by way of setting Dρ/Dt = 0 at each particle in the SPH 

computation. 

 

3. Corrected Incompressible SPH (CISPH), Basics and Formulations 

3.1 Basic SPH theory 

The term “smoothed” in Smoothed Particle Hydrodynamics refers to the procedure for calculating state 

variables, such as density, in which the function value at a point is determined as a weighted average of 

values in a local region. In other words, the SPH method is founded on interpolation theory. The 

conservation laws of continuum dynamics that are in form of Partial Differential Equations (PDE) are 
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transformed into integral equations through the use of an interpolation function which gives the kernel 

estimate of the field variables at a point. Computationally, information is known only at discrete points; 

hence, integrals are evaluated as sums over neighboring particles. For a detailed review of SPH theory, 

see (Monaghan, 1992). In SPH, the summation interpolant of any function A(r), and its gradient are 

written as: 

∑ −=
j
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j

j
j hW
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where the subscript j denotes the physical quantity corresponding to the particle j, m is the mass of 

particle, W is an interpolation weighting function and h is the smoothing length taken as 1.2 times of 

initial particle spacing in this study. The density of particle i is obtained by summing over the 

contributions of the neighboring particles: 
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There are various ways in which the Navier-Stokes equation is represented in SPH (Monaghan, 1992). 

The most commonly used form is: 
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In the above equations, ijiW∇ = gradient of the kernel with respect to the position of particle i. The 

pressure gradient term in the Navier-Stokes equations has a symmetric form and it conserves both linear 

and angular momentum (as shown in Appendix A). 
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The term ijΠ  is the so-called artificial viscosity which is supposed to represent the effect of viscosity. 

The most frequently used artificial viscosity in SPH research is the one proposed by Monaghan (1992): 
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where α and β are empirical coefficients, 2/)( jiij ccc +=  is the mean sound speed, 2/)( jiij ρρρ +=  

and )01.0/().( 22 hh ijijijij += rruµ , with uij=ui-uj and rij=ri-rj. There are few advantages and disadvantages 

associated with the artificial viscosity term. In addition to being a Galilean invariant, such kind of 

viscosity term conserves both linear and angular momentum and vanishes for rigid body rotations 

(Monaghan, 1992). However, it is a scalar viscosity which cannot take the flow directionality into account. 

In addition, it leads to strong dissipation in some cases of flow simulation (Dalrymple and Rogers, 2005) 

like the case of complex shearing flows where a too large vorticity decay and unphysical momentum 

transfer are present (Ellero et al., 2002). Hence, it is preferable to model the viscosity in a realistic manner, 

while, preserving the advantages of the artificial viscosity term. 

A few expressions for treatment of realistic viscosity in the SPH calculations exist, among which are 

the realistic viscosity expressions of Watkins et al. (1996) and Takeda et al. (1994). The former includes 

nested summations over the particles (which significantly increases the computational effort), while the 

latter involves second derivatives of the kernel. The disadvantage of employing second order derivatives 

is the increase in susceptibility of interpolation to error (Morris et al., 1997). Another approach lies in the 

introduction of a hybrid term that combines a standard SPH first derivative with a finite difference 

approximation of the first derivative (Morris et al., 1997; Cummins and Rudman, 1999; Lo and Shao, 

2002). The only main shortcoming corresponding to this approach is that, although such hybrid 

expressions exactly preserve linear momentum, they do not guarantee the conservation of angular 

momentum (as discussed in Appendix A). In this paper, based on the variational approach proposed by 

Bonet and Lok (1999), corrective terms are developed to locally modify the hybrid viscosity expression 

(Shao and Lo, 2003), so that it exactly preserves angular momentum. 

 

3.2 CISPH: equation solution process 

The important feature which makes the ISPH method distinctive from the original SPH and the 

WCSPH is that in ISPH method the pressure is determined implicitly through solving a Poisson pressure 

equation rather than an equation of state. This algorithm was originally proposed by Koshizuka and Oka 
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(1996), who enforced the incompressibility of flow in their MPS-based calculations. In the ISPH method 

similar to the MPS method, the governing equations are solved through a two-step prediction-correction 

process as stipulated by Shao and Lo (2003). The first prediction step is an explicit integration in time 

without enforcing incompressibility, while, the second correction step is an implicit computation of a 

divergence free velocity field. In the first process, intermediate temporal particle velocities and positions 

are obtained without considering the pressure term. In this process the mass conservation or the 

incompressibility of fluid is not satisfied, in other words, instantaneous particle densities deviate from the 

initial density. Hence, a second corrective process is required to adjust fluid densities at the particles to 

the initial constant values prior to the time step. In the correction process, the pressure term is used to 

update the particle intermediate velocities. The pressure is implicitly calculated from a Poisson pressure 

equation formulated by combining the mass and momentum equations (1) and (2). The semi-implicit 

approach employed in MPS, ISPH and CISPH methods is very similar to that utilized in a typical grid 

method (Chorin, 1967). 

 

3.3 CISPH: formulations 

From equation (4), the velocity divergence of particle i can be formulated as: 
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However, higher accuracy will be obtained if the above equation is rewritten with the density placed 

inside operators (Monaghan, 1992): 
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where uj:i is the relative velocity of neighboring particles j with respect to particle i. In a similar manner: 
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Therefore, the viscous stress term in the Navier-Stokes equation can be formulated as: 
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Since in case of the free surface simulations, large variations in particle density exist near the free surface, 

the particle densities are replaced by the arithmetic average of particle densities of particle i and j, i.e.: 

2/)( jii ρρρ +→  ; 2/)( jij ρρρ +→                                         (15) 
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By relating the stress tensor to the rate of strain of flow, the strain-based viscosity would be: 
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where ν0 = the laminar kinematic viscosity and  S = strain rate tensor. In two dimensions, the rate of strain 

for neighboring particles j with respect to particle i can be written as: 
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Employing the chain rule of differentiation and applying the finite difference approximations of the first 

derivative, the velocity gradients for each particle can be obtained as: 
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By defining a non-dimensional parameter as the relative distance between two particles, hQ /r= , the 

total derivative of the kernel would be: 
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in which: 



 8

jiij yyy −=               (24) 

Therefore, the SPH formulation of viscosity simplifies to: 
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The above formulation is the one applied in ISPH method of Shao (2006). In CISPH, this formulation of 

viscosity is modified so that it conserves angular momentum exactly. The modification of the viscosity 

term is performed by applying some corrective terms which will be discussed in 3.4. 

In ISPH and CISPH, the Laplacian for pressure is formulated in a similar way to the formulation of 

viscosity, i.e. as a hybrid of a standard SPH first derivative with a finite difference approximation for the 

first derivative, and represented also in a symmetrical form by applying the arithmetic averaging for 

particle densities (Shao, 2006): 
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The formulation of pressure gradient in both ISPH and CISPH methods is the same as that of the 

original SPH, i.e. equation (8). 

 

3.4 CISPH: corrective terms 

In the absence of external forces, the motion of a continuum or particles representing a continuum must 

be such that the total linear and angular momentum is preserved. In the ISPH model, although the 

pressure gradient term (equation 8) preserves both linear and angular momentum, the hybrid viscosity 

expression does not conserve the angular momentum. Preservation of angular momentum can be 

guaranteed by enforcing the invariance of potential energy with respect to the rigid body motions, as 

demonstrated by Bonet and Lok (1999). For a general three-dimensional domain by considering an 

angular velocity vector, T
zyx www ],,[ , the velocity vector at any given point can be written as: 

rwru ×=)(               (27) 

The true gradient of this velocity field can be found by: 
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Considering the skew nature of W, the rate of deformation tensor 2/)( Tuud ∇+∇=  and its trace divu 

obviously vanish. Consequently, in the absence of approximations resulted by the discretization, the total 

potential energy would be independent of rigid body translations. Meanwhile, in the SPH method the 

velocity gradient has the following form: 
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in which Vj is the volume associated with particle j. Therefore, the correct skew tensor would be obtained 

only if the following matrix condition is satisfied by the gradient of kernel function (Bonet and Lok, 

1999). 
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As an alternative to ensure that equation (31) is satisfied, kernel gradients can be modified by applying a 

corrective matrix L:  
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The velocity gradient is therefore computed as: 
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The correction matrix L is obtained at each particle by enforcing that equation (31) is satisfied by the 

corrected gradient: 
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The employment of this correction guarantees that the gradient of any linear velocity field is exactly 

evaluated. Moreover, angular momentum will be preserved since the internal forces are derived from a 

variational principle. In view of the fact that the pressure gradient terms in the ISPH calculations preserve 
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both linear and angular momentum, the above corrective term is only applied during the calculation of 

viscous accelerations. By enforcing the preservation of angular momentum for viscous internal forces, the 

new CISPH method exactly preserves both linear and angular momentum.  

In two dimensions the corrective matrix for particle i would have the following form: 
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By defining the following terms: 
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Therefore, the kernel gradient matrix in equation (25) is replaced by the following corrected kernel 

gradient matrix: 
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3.5 CISPH: treatment of boundary conditions and free surfaces 

The treatment of boundary conditions and free surfaces in the CISPH is similar to that in the ISPH 

method, which has already been discussed in details by Gotoh et al. (2004) and Shao and Gotoh (2005). A 

brief summary is given as follows. 
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Fixed solid boundaries are treated by fixed wall particles, which balance the pressure of inner fluid 

particles and prevent them from penetrating the wall. The pressure Poisson equation is also solved on 

these wall particles analogous to the treatment of wall particles in a grid-based method. In order to impose 

the homogenous Neumann boundary condition of wall particles, several lines of dummy particles are 

introduced on the outer side of the wall. The pressure of these dummy particles is set to be equal to the 

pressure of neighboring wall particles. The incident wave is generated by means of an offshore moving 

wall, the velocity of which is adjusted according to the analytical solution of solitary waves with desired 

heights. The free surface can be easily and accurately tracked since the particle density on the free surface 

drops abruptly due to lack of particles in the outer region of the free surface. The following criterion is 

considered for the detection of free surface particles: 

0
* 99.0 ρρ <

i
                (41) 

in which ρ∗ and ρ0 are the intermediate and initial particle density, respectively. 

 

3.6 CISPH: interpolation kernel 

The interpolation kernel applied in CISPH is the same kernel applied in the ISPH, namely the cubic 

B-Spline kernel proposed by Monaghan (1992).  
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This kernel has a compact support, its second derivative is continuous, and the dominant error term in the 

integral interpolant is O(h2) (Monaghan, 1992). Other kernels such as higher-order Spline [e.g. 

Quintic-Spline (e.g. Morris et al., 1997)], the modified Gaussian (e.g. Colagrossi and Landrini, 2003) or 

Quadratic kernels (e.g. Dalrymple and Rogers, 2005) have been used in the SPH research. 

 

3.7 CISPH: determination of calculation time-step 

In the CISPH, the time increment of calculation is set according to Courant stability condition and a 

time resolution chosen as 4100.5 −× seconds: 
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)100.5,/min( 4
max0dt

−×=∆ udt α             (43) 

in which αdt = ratio of the time step to Courant number (=0.1), umax= instantaneous maximum velocity of 

particles; d0 = particle diameter or the particle spacing. 

 

4. Numerical simulations of solitary wave breaking and post-breaking on a slope  

As highly non-linear physical processes, the wave breaking and post-breaking are of significant 

engineering importance. However, the complexities of fluid motions associated with such processes bring 

about many mathematical difficulties which eliminate the chance of a fully theoretical description. 

Experimental techniques and grid-based numerical methods suffer from certain limitations and difficulties 

when they are employed in the study of such violent free surface flows (see Gotoh et al., 2005 or Shao, 

2006 for more details). On the other hand, particle methods (such as the SPH method) have the potential 

to provide a comprehensive description of the full processes associated with wave breaking, whilst, they 

can accurately track the water surface profile during such processes. 

In this section, the developed CISPH method is applied to the simulation of solitary wave breaking and 

post-breaking on a uniform slope. At first, the performance of the present model in the simulation of 

different types of wave breaking is demonstrated. Afterwards, the capability of the CISPH in the 

simulation of plunging breaking waves and the resulting post-breaking processes such as the complex 

process of splash-up is shown through the qualitative comparisons with still photographs taken during the 

laboratory experiments (Li, 2000; Li and Raichlen, 2003). Followed by the qualitative comparison, the 

high accuracy of the developed model is verified through the quantitative comparisons of both the CISPH 

and the ISPH simulation results with those obtained from the laboratory experiment of Li (2000), also 

those from the VOF and the BEM models. 

 

4.1 Different types of wave breaking on a uniform slope 

The forms of the wave at breaking, or the breaking types are classified by the so-called self similarity 

parameter (Battjes, 1974), which is a function of the slope, s, the deep-water wave height, H0, and the 

deep-water wavelength, L0. Since the wave length and wave period of a solitary wave are theoretically 

infinite, various approaches have been utilized to define a surf similarity-type parameter for solitary 

waves, by use of which the breaking types and breaking wave characteristics can be computed. By 
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considering a horizontal length scale for L0, Grilli et al. (1997) introduced the following dimensionless 

slope parameter for solitary waves: 

00

0
0 521.1

H
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h
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==                  (44) 

in which, h0 is the offshore water-depth and 0H ′ =H0/h0 is the dimensionless incident solitary wave height. 

The above parameter can be used to determine whether or not a solitary wave breaks on a given slope and 

what type of breaking occurs. Solitary breaking type criterions defined in terms of S0 are introduced by: 

(i) 0.3 < S0 < 0.37 then surging breaking; (ii) 0.025 < S0 < 0.3 then plunging breaking and (iii) S0 < 0.025 

then spilling breaking (Grilli et al., 1997). 

A total number of five cases of solitary wave breaking are simulated in the present study. Among which 

are three cases of plunging breaking and one case of surging and one case of spilling breaking. The 

simulation conditions of the plunging breaking cases correspond to those of the experimental study of Li 

(2000). In addition to the developed CISPH model, the ISPH model of Shao and Lo (2003) is also applied 

in the simulation of the plunging breaking cases. The physical conditions of all the five cases and the 

resulting breaking type are summarized in Table 1. 

A schematic view of the computation domain for the first three plunging breaking cases (Cases II, III 

and IV) is depicted in Fig. 1. The initial constant water depth in all three cases is 0.200 m. The particles 

are 0.005 m in diameter and about 20000 particles are employed in the domain. Since the waves are 

generated by a moving wall (which initially moves backward) and a constant number of particles are 

employed, by the time when the desired wave is generated, the offshore water depth is less than that of 

the initial one. In order to achieve the desired relative wave heights, the corresponding solitary wave 

heights are obtained based on a process of trial and error and through numerous simulations. 

The profile of a solitary wave as a function of distance x and time t is defined as: 

)]([),( 0 CtxnsechHtx 2 −=η                   (45) 

in which C is the celerity of the wave and n is given by: 
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n =               (46) 

Fig. 2 shows the comparison between the analytical and the simulated wave profile for the simulation 

case II. It can be seen that the numerical wave profile agrees well with the analytical one. 
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Fig. 3 is depicted based on equation (44). The conditions of the five cases of wave breaking are shown 

on this figure. Typical CISPH snapshots of three types of wave breaking, namely spilling (Case V), 

plunging (Case III) and surging (Case I) breaking are shown in Fig. 4. 

Another classification of wave breaking types has been introduced based on the amount and variation 

of the angular momentum at the wave front (Koshizuka et al., 1998). In plunging breaking waves, angular 

momentum at the wave front abruptly changes from a small positive value to a relatively larger negative 

value. Conversely, in the spilling breaking waves, the angular momentum at the wave front slightly varies 

around 0.0. The value of the minimum angular momentum at the wave front has been considered as a 

criterion to classify the plunging and spilling breaking waves in the study of Koshizuka et al. (1998). The 

variation of angular momentum at the wave front for the simulation cases II and V is depicted in Fig. 5(a) 

and (b), respectively. The definition of angular momentum at the wave front is similar to that in 

(Koshizuka et al., 1998). Two regions with radius of interaction or re (which is 2h in this study) are 

considered, one at the top of the wave (=A1) and the other at L0/20 ahead (=A2). A practical value for the 

solitary wavelength was used here. In a solitary wave the water surface elevation decays fast with x; 

hence, an arbitrarily wavelength as L=2π /(nH1/2) can be considered for practical purposes. At a distance 

of x=L/2 from the crest, the water surface profile is calculated as )/(),( 00 HsechHtx 2 πη =  which is 

nearly zero. A schematic sketch of the definition of angular momentum at the wave front is given in Fig. 

6. The angular momentum is calculated from the following formula: 

∑
∈

×=
21 ,

1
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iiN
urω                 (47) 

where N is the number of particles in the regions A1 and A2. Vectors ri and ui are the positions and the 

velocities of particles, respectively. The origin of the position vectors is considered to be the center 

between A1 and A2. The parameter ω1 is used for normalizing the y axis in Fig. 5(a-b). This parameter is 

chosen as:  
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×=ω               (48) 

From Fig. 5(a-b) it can be seen that the variation of angular momentum agrees well with the 

statements of Koshizuka et al. (1998). In case of the plunging breaking [Fig. 5(a)], a sharp drop can be 

seen in the quantity of the angular momentum from a relatively small positive value to a relatively large 
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negative value and then it remains negative until the impact of the plunging jet. On the other hand, in case 

of the spilling breaking [Fig. 5(b)] the angular momentum slightly varies from a relatively small positive 

value to a smaller negative value, followed by that it gradually reaches a positive value which is very 

close to zero. Hence, it can be concluded that the CISPH model is capable of simulating different types of 

wave breaking. 

 

4.2 Qualitative comparison 

Fig. 7 depicts some CISPH snapshots of plunging breaking for the simulation case III. The conditions 

of the incident relative wave height of H0/h0 = 0.40 together with the slope of 1:15 result in a large-scale 

plunging breaking in which the plunging jet hits the still water ahead of the wave (and not the dry slope), 

thus a secondary shoreward directed jet is generated from the impact point. This jet impact initiates the 

splash-up process. The initiation of the splash-up can be seen at Fig. 7(b). The splash-up is a very 

complex, yet important process as it is responsible for the generation of large-scale vortices and plays a 

major roll in the dissipation of wave energy and momentum transfer. The complexities of the fluid 

behaviour such as the existence of large deformations and fragmentations have made the simulation of 

such a process very difficult. In this section, the capability of the CISPH model in the simulation of 

plunging wave breaking and the resulting splash-up process is demonstrated through the qualitative 

comparison with laboratory photographs (Li, 2000; Li and Raichlen, 2003). 

Fig. 8 illustrates the plunging breaking and the splash-up process of a solitary wave with conditions 

corresponding to simulation case III. In the middle part of the figure, the still photographs are those taken 

during laboratory experiments (Li, 2000; Li and Raichlen, 2003), while, the CISPH and ISPH results are 

shown on the right and left hand sides, respectively. The CISPH snapshots are qualitatively well 

compared to the laboratory photographs. The development and impact of the plunging jet, together with 

the resulting splash-up process are well reproduced. On the other hand, the ISPH model could only 

moderately simulate the development of the plunging jet, while the highly non-linear splash-up process 

could not be simulated at all.  

The SPH-based models are capable of simulating such non-linear processes when the 

angular-momentum-preserved artificial viscosity terms are employed (Dalrymple and Rogers, 2005; 

Colagrossi, 2004). Nevertheless, in case of the ISPH model the highly non-linear processes with 
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non-linear strain rate of flow are very hard to be simulated because of the employment of a tensor-type 

realistic viscosity which does not generally preserve angular momentum. In the CISPH model, 

introduction of correction terms guarantees the preservation of angular momentum and the exact 

calculation of the gradient of any linear velocity field; thus, the difficulty in the reproduction of complex 

non-linear processes such as the splash-up process is removed, while, the advantages of ISPH model are 

maintained.  

Fig. 9(a-c) is obtained by overlapping the CISPH snapshots on the laboratory photographs. From Fig. 

9(a-b), a good coincidence of the CISPH calculations and the photographs can be observed. The accurate 

CISPH calculations have resulted in precise reproductions of the plunging jet [Fig. 9(a)] and the highly 

fragmented reflected jet [Fig. 9(b)]. The presented figure not only underlines the high accuracy of the 

CISPH model, but demonstrates the potentials of particle methods as superior models for hydrodynamic 

calculations. 

Although the entire stages of plunging breaking and post-breaking are well simulated by the CISPH 

model, there exist some minor disagreements between the simulation snapshots and the laboratory 

photographs. The first disagreement lies in the reproduction of the aerated region underneath the plunging 

jet. Although the void region underneath the plunging jet is quite well simulated at the early stages of 

splash-up, water particles tend to occupy this void region as the post-breaking proceeds. From Fig. 8(fc) it 

can be seen that the void area underneath the plunging jet is less than that of the laboratory snapshot. A 

few probable factors might be thought in the explanation of the first disagreement. 

Firstly, the CISPH model applied in this study is a single-phase flow model; accordingly, the effect of 

strong air flow to the region beneath the plunging jet and the resulting entrapped air on water particles is 

not considered. The evolution of the aerated region beneath the plunging jet could be reproduced as a 

pure void region by the intrinsically two-phase CIP-based (Yabe et al., 1991; Yabe et al., 2001) models 

[e.g. Watanabe et al. (1998)]. Nevertheless, the single-phase SPH calculations of Colagrossi (2004) could 

also reproduce such void area during the post-breaking process. Thus, this reason does not seem to be a 

notable cause of the first disagreement.  

The second reason might be that the current CISPH model is the corrected version of the standard 

ISPH model in which no turbulence model is incorporated. Consequently, the effect of turbulent motions 

smaller than size of particles is not taken into account and only macroscopic particle-scale behaviour of 
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water is considered. Lagrangian Sub-Particle-Scale (SPS) turbulence models (Gotoh et al. 2001) which 

are similar to the Sub-Grid-Scale (SGS) turbulence models in grid-based calculations, appear to adjust the 

particle velocities based on the turbulent state of the flow, and thus, result in more realistic simulation 

results, especially in case of highly turbulent flows such as the wave breaking. However, since very fine 

particles are applied in the present study, the effect of the sub-particle-scale turbulent motions does not 

seem to be significant. Moreover, in the SPH-based calculations of Dalrymple and Rogers (2005) with a 

SPS turbulence model, the same disagreement seems to be present. Therefore, this reason does not seem 

to be the main cause of the first disagreement either and as it will be discussed later; the first 

disagreement is expected to be due to the numerical errors arising from the nature of the SPH 

interpolations. 

The second disagreement between the CISPH numerical results and the laboratory photographs is seen 

in the development of the splash-up process and the final reflected jet angel. According to the laboratory 

photographs, during the development of the splash-up process, the reflected jet curls back toward the 

incident wave and eventually becomes nearly vertical [Fig. 8(g)]; however, in the CISPH snapshots, the 

reflected jet appears to stop curling back at the final stages of the splash-up process [Fig. 8(gc)]. The 

existing disagreement is more clearly illustrated in Fig. 9(c) where the overlapping of the CISPH 

snapshot with its corresponding laboratory photograph is presented. Such disagreement is likely because 

of the numerical errors in the estimation of the highly non-linear velocity and pressure fields in the 

reflected jet itself and the area in the vicinity of its toe. The excessive particles that have occupied the area 

underneath the plunging jet, particularly those near the plunging jet impact point, interfere in the 

momentum exchange between the plunging jet and the water at the toe of the reflected jet. Such 

interference results in an artificial shoreward-directed momentum which accelerates the particles at the 

toe of the reflected jet shoreward, especially at the final stages of splash-up process when more particles 

are accumulated in the area underneath the plunging jet. The overestimation of the shoreward acceleration 

of the jet particles itself seems to intensify such disagreement. 

The most probable factor behind both the existing disagreements lies in the emergence of numerical 

errors due to a so-called completeness deficiency of SPH interpolants. This problem was first noticed by 

Liu et al. (1993) and since then has been a major issue in the SPH research [e.g. Johnson and Beissel 

(1996); Bonet and Kulasegaram (2000); Chen and Beraun (2000)]. In the development of the CISPH, the 
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main focus was on the momentum conservation properties of SPH formulations. Nevertheless, in addition 

to that, for achieving more accurate and realistic velocity and pressure fields, the completeness of SPH 

interpolants should be guaranteed as well. The completeness in meshfree methods is analogous to the 

consistency in the finite difference literature, and refers to the ability of the kernel interpolants to exactly 

reproduce a physical field, based on the nodal (particle) values. Since, the completeness of the SPH 

interpolants is not precisely guaranteed here, some numerical errors emerge when it comes to the 

reproduction of highly non-linear velocity fields during the breaking and post-breaking process. By 

enforcing the high-order completeness or reproducing conditions of SPH interpolants, the highly 

non-linear velocity fields (and the abrupt irregular strain rates) can be better reproduced and hence, 

enhanced simulation results might be obtained. Meanwhile, as the main aim of the present study is the 

accurate tracking of the free surface and since such numerical errors do not appear to considerably affect 

the water surface profile, in the current version of CISPH the high-order reproducing conditions of the 

kernel interpolants are not enforced. However, for future work, implementation of such kind of 

corrections should be considered, especially when the CISPH is supposed to model the details of the 

highly nonlinear physical processes. 

Another interesting issue regarding the CISPH model is the thickness of the free surface boundary. 

Except for the breaking and post-breaking regions, in other parts of the computational domain, a very thin 

layer of particles, mainly a one-particle-thick layer is detected as the free surface. Hence, the free surface 

boundary condition is correctly applied to a very thin free surface boundary layer. Fig. 10 shows the 

snapshots of water surface profile for the simulation case IV at 0.1 seconds before breaking. On the upper 

part the presented snapshot is obtained from the CISPH calculations. In this case the presence of a thin 

free surface boundary is clear. On the other hand, in case of ISPH, the free surface boundary varies in 

length across the domain. The thickness of the free surface boundary is about 3 or 4 times larger than that 

in the CISPH. 

 

4.3 Quantitative comparison 

In order to further evaluate the accuracy of the proposed CISPH model, the simulation results of Cases 

II and IV are quantitatively compared to their corresponding experimental results (Li, 2000). 

Comparisons are made in terms of wave breaking characteristics such as variation in wave-height, 
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geometrical properties of plunging jet and horizontal velocity of the tip of the plunging jet. 

Fig. 11 demonstrates the nearly symmetrical solitary wave shape at the very early stages of shoaling 

for the simulation case II. The wave shape agrees well with the analytical solution shown by the larger 

circles on the free surface. From this region shoreward, the wave front becomes continuously steeper until 

the wave breaks. The breaking point is defined as the point where the front face of the wave crest 

becomes nearly vertical. The formation of the plunging jet is initiated nearly at the breaking point. 

Some snapshots of water particles together with the horizontal velocity field are shown in Fig. 12 

(simulation case IV). On the left hand side, the snapshots are those obtained from the CISPH model, 

while, the ISPH snapshots are demonstrated on the right hand side. 

Fig. 13(a) shows a comparison of the variation in wave height H /H0 for the simulation case II, among 

the BEM (Grilli et al., 1997), coupled VOF/BEM (Lachaume et al., 2003), ISPH and CISPH models and 

experimental data (Li and Raichlen, 1998; Li, 2000). In the figure, xs is the location at which the slope 

starts. As it is evident from the figure, the BEM and coupled VOF/BEM models provide good predictions 

of wave height in the vicinity of breaking point. However, some overestimations of wave height are seen 

after the breaking. The BEM model fails to calculate the post-breaking stage as it breaks down in the 

computation of highly rotational flows. The ISPH prediction of wave height is quite well prior to the 

impact of the plunging jet. However, near the impact point, an abrupt change is seen in the trend of the 

wave height variation; hence, the ISPH estimations of wave height come out with considerable errors 

during the post-breaking stage. The abrupt and large deformations of water accompanied by highly 

non-linear velocity fields bring about considerable numerical errors in the ISPH post-breaking 

calculations of a strong or large scale plunging breaking. As a consequence, the water particles become 

dispersed and an unrealistic wave height is recorded. On the other hand, the exact preservation of angular 

momentum and more accurate calculation of velocity field allow the CISPH to accurately track the water 

surface all through the stages of breaking and post-breaking. The best prediction of CIPSH is during the 

post-breaking stage where it gives the best results among all the numerical models. Before the 

post-breaking, however, the CISPH has slightly underestimated the wave height. This might be because of 

the excessive dissipation due to the corrective terms. 

The variation of wave height H /H0 for the simulation case IV is plotted in Fig. 13(b), this time as a 

function of the ratio of the offshore water-depth to the local depth, h0/ h1. Similar to the simulation case II, 
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the ISPH gives good results prior to the impact of the plunging jet. The same false trend in the variation 

of wave height is observed again in the vicinity of the plunging jet impact. However, this time the amount 

of relative error is less than that of simulation case II. The CISPH predictions well agree with the 

experiment and the BEM model, although a little amount of underestimation exists. 

Another comparison which can further reveal the accuracy of CISPH model in the accurate tracking of 

the water surface, is the one made in the geometrical properties of the plunging jet. The geometry of the 

plunging jet was measured in the experimental study of Li (2000) for the same conditions of simulation 

case IV. Three characteristics were utilized to describe the plunging jet: (i) trajectory of the tip of the 

plunging jet (ii) the length and thickness of the jet before impingement (iii) the horizontal velocity of the 

tip of the plunging jet. Fig. 14 illustrates the CISPH and ISPH predictions of the trajectory of the 

plunging jet tip, while, the experimental data (Li, 2000) are plotted for comparison. On the contrary to the 

ISPH model, the CISPH model has given a very accurate prediction of the motion and location of the 

plunging jet tip.  

The length and thickness of the jet were defined by use of three geometrical parameters. The length of 

the jet L1 was defined as the horizontal distance from the tip of the jet to the nearest location of the wave 

surface which was vertical, as shown in Fig. 15. Two other parameters were used to define the thickness 

of the jet; one is the thickness of the jet at the wave vertical plane (=L2), and the other one (=L3) is the 

thickness of the jet at half length of the jet or L1/2. These three parameters do not only describe the 

geometrical properties of the jet, but also portray an image of the time and spatial evolution of the wave 

shape during the development of the plunging jet.  

Fig. 16(a) depicts the changes in L1, the plunging jet length, during its development. Compared to the 

ISPH, the CISPH trend line of plunging jet size is in better agreement to that of the experimental data. 

Although the size of the jet is underestimated at the breaking point and the early stages of the plunging jet 

formation, a very good agreement exist between the CISPH results and the experimental data during the 

second-half trajectory of the jet. The variations of L2 and L3 are shown in Fig. 16(b). The CISPH results 

closely match with the experimental measurements, in case of L3. For the predictions of L2; however, both 

models have slightly overestimated this length. The ISPH model has also underestimated the length L3. It 

can be seen from the figure that while the lengths L2 and L3 remain nearly constant during the 

development of the jet, the thickness of the jet at the middle (=L3), is about half of that at the base of the 
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jet (=L2). 

The variation of the normalized horizontal velocity of the plunging jet tip is shown in Fig. 17. The 

experimental data are obtained from the high-speed video images by dividing the x coordinate of the tip in 

consecutive images by the time interval between frames (Li, 2000). A relatively large variation can be 

seen in the plotted experimental data, which is thought to be due to the accuracy limitation of the 

high-speed video (Li, 2000). Nevertheless, the experimental data indicate that the horizontal velocity of 

the plunging jet tip is nearly constant over most of the jet trajectory, and, as it has been pointed out by 

other researchers, for example, Skjelbreia (1987), the wave velocity at breaking is of the same order as 

the wave celerity in constant depth region. The CISPH results agree very well with the experimental data 

and the wave breaking concepts, while, they do not contain large variations like those seen in the 

experimental data. According to the CISPH results, at the breaking point, the horizontal velocity of the 

plunging jet tip is about 85% of the wave celerity. Then, gradually it reaches the wave celerity and 

remains nearly constant until the impingement of the plunging jet. At the impact point, the horizontal 

velocity of the plunging jet tip is about 4% higher than the wave celerity. The results obtained from the 

ISPH, has considerably overestimated the horizontal velocity of the plunging jet tip. The source of 

discrepancy is expected to be the emergence of numerical errors from the unphysical transport of angular 

momentum when significant rigid body motions and rotations are about to occur. As a consequence of 

such unphysical transport, a large number of particles become scattered and attain unrealistic particle 

accelerations and velocity. On the other hand, the CISPH model is capable of calculating the wave 

breaking and post-breaking very accurately because of the exact preservation of angular momentum. 

 

5. Conclusive Remarks 

The paper presents a Corrected Incompressible SPH (CISPH) method for the accurate tracking of the 

water surface during wave breaking and post-breaking. Based on the variational implications introduced 

by Bonet and Lok (1999), new corrective terms are derived and employed with the ISPH formulations of 

Shao and Lo (2003) and Shao (2006). Introduction of corrective terms guarantees the exact calculation of 

linear velocity fields and ensures the preservation of angular momentum. The CISPH model is applied to 

the study of breaking and post-breaking of solitary waves on a plane slope. Three different types of wave 

breaking, namely, spilling, plunging and surging breaking are successfully simulated. The conditions of 



 22

breaking types agree well with the breaking criterions of Grilli et al. (1997) and the concept of angular 

momentum variation at the wave front introduced by Koshizuka et al. (1998). Qualitative comparisons 

between both CISPH and ISPH results with the laboratory photographs (Li, 2000; Li and Raichlen, 2003) 

demonstrate the capability of the CISPH model in the simulation of plunging breaking waves and the 

resulting post-breaking processes such as the process of splash-up. The high accuracy of the CISPH 

model is confirmed through quantitative comparisons of CISPH results with experimental data and the 

results obtained from ISPH model and some grid-based numerical models. 

The proposed CISPH model is a 2D single-phase flow model in which the effect of motions smaller 

than size of particles or the Sub-Particle-Scale (SPS) turbulence is not taken into account. However, in the 

present study the main focus was on the angular momentum preservation properties of Incompressible 

SPH formulations, so that the developed model can accurately reproduce the water surface profile during 

the breaking and post-breaking of waves on a plane slope. Since the effect of SPS turbulence in the 

macroscopic behaviour of hydrodynamic flows (such as the water surface profile) does not seem to be 

significant (Gotoh et al. 2005), no SPS turbulence model is incorporated in this study. However, when the 

CISPH model is supposed to simulate a realistic 3D problem, larger computational domain and much 

more particles are needed. Considering the computational limitations, in such a case large particles with 

low spatial resolution must be introduced. Therefore, the influence of SPS turbulence becomes significant 

and turbulence modeling should be considered. Another issue is the parallel computation especially for 

case of 3D calculations where the computational load will significantly increase. In case of simulation of 

multi-phase problems such as the wave breaking or surf zone/swash zone sediment transport, introduction 

of two-phase or multi-phase flows are expected to enhance the simulation results. The key issues for 

enhanced and practical particle-based calculations of wave breaking are reviewed by Gotoh and Sakai 

(2006). 

In the view point of the particle-based calculations, in addition to the angular momentum preservation 

aspects, the completeness of interpolants or their ability in exact reproduction of a physical field should 

be considered. The completeness deficiency of SPH interpolants are expected to result in considerable 

numerical errors when a highly non-linear process is about to be simulated. Therefore, introduction of 

other corrective terms for ensuring the completeness of SPH interpolants will help the CISPH model to 

more precisely reproduce the details of the highly non-linear physical processes. 
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Appendix A 

Momentum conservation properties of formulations 

Conservation of linear momentum 

The total linear momentum of a system of particles is given by: 
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The motion of each particle is governed by the Newton’s second law: 
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where F and A denote the external and internal forces acting on particle i and a is the instantaneous 

particle acceleration. In the absence of external forces, the rate of change of total linear momentum is: 
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Thus the condition for preservation of linear momentum can simply be written as: 
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In general the internal force on particle i can be expressed as the sum of interaction forces between pairs 

of particles:  
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in which M is the total number of neighboring particles. A pair of particles, particle i and its neighboring 

particle j is depicted in Fig. A-1. It can be shown that both pressure gradient term (equation 8) and 

viscosity term (equation 25) conserve linear momentum exactly. Writing the kernel gradient as a function 

of the position vector of particles i and j: 

ijijiji ZW r=∇              (A.6) 

where Zij is a scalar function of ij rr − . Considering the pressure gradient term (equation 8), the force on 

particle i owing to j is then: 
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Given that ijjijjiijijiji WZZW −∇=−==∇ rr , the above force is exactly equal and opposite to the force on 

particle j owing to i. Consequently, the total sum of all interaction pairs between particles due to pressure 

gradient will vanish and total linear momentum of the system will be preserved. The same is true for the 

viscosity term. The x-direction viscous force on particle i owing to j can be written as: 
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which is exactly equal and opposite to the viscous force on particle j owing to i. Note that: 
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and: 

jixjixijx xuxuxu
jijiij

=−−= ))((            (A.10) 

The same explanation can be given for the y-direction viscous forces. Therefore, for each pair of particles 

the viscous interacting forces also vanish. Consequently, the total linear momentum of the system of 

particles will be exactly conserved in a CISPH (or ISPH) calculation. 

 

Conservation of angular momentum 

The total angular momentum of the system of particles with respect to the origin is given as: 

∑
=

×=
N

i
iii m

1
urH             (A.11) 

By time differentiating and considering the law of motion in the absence of external forces, the rate of 

change of angular momentum of the system will be: 

∑∑
==

×−=×=
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i
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i
iii m

11
ArarH&                      (A.12) 

Hence, conservation of angular momentum will be guaranteed if the total moment of the internal forces 

about the origin vanishes, that is: 

0
1

=×∑
=

N

i
ii Ar                  (A.13) 

Considering again the two neighboring particles shown in Fig. A-1, the angular moment of the two 

interacting forces about the origin can be written as: 
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jijiji ArAr ×+×             (A.14) 

If Aij=-Aji, then: 

ijijjijiji ArArAr ×−=×+×                (A.15) 

The above will vanish whenever the interaction force Aij is co-linear with the vector rij. Recalling from 

equation that ijiW∇  is a function of vector rij and a scalar Zij, it can be concluded that the angular 

moment of the two interacting forces between a pair of particles will vanish only if the internal stress 

tensor is isotropic. In CISPH as well as ISPH calculations the internal stress tensor is composed of 

pressure and viscous stresses as follows: 

TI += pσ             (A.16) 

in which I is a unit tensor. The first stress tensor, i.e. the internal pressure tensor, is isotropic. Hence, the 

interacting forces resulting from the internal pressure lie on the same line with the vector rij [Fig. A-2(a)]. 

As a result, there will be no moment by one pair of interacting pressure forces and the total moment of 

internal pressure forces will be exactly equal to zero. For the viscous forces, however, this is not the case. 

Due to the anisotropic nature of the viscous stresses in a realistic viscosity calculation such as in CISPH 

and ISPH calculations, the resulting viscous forces do not lie on the same line with the position vector rij 

[Fig. A-2(b)] and produce a moment. The summation of all the moments between each pair of particles 

will not necessarily vanish and therefore, angular momentum will not be preserved. In the CISPH 

calculations corrective terms ensure the correct calculation of viscous accelerations and the preservation 

of angular momentum. 
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Fig. 1. Computational domain for simulation Cases II,III and IV 
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Fig. 2. Comparison between the simulated and analytical wave profile – simulation case II 

 

 

 

 

 

 

 

 

Fig. 3. Breaking types and the conditions of the simulation cases 
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Fig. 4. Typical CISPH snapshots of three types of wave breaking, (a) Spilling, (b) Plunging, (c) Surging 
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Fig. 5. Variation of angular momentum at the wave front (a) in a plunging breaking (simulation case II) - 

(b) in a spilling breaking (simulation case V) 

 

 

 

 

 

 

Fig. 6. Definition of angular momentum at the wave front 
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Fig. 7. Snapshots of water particles – simulation case III 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Strong plunging breaking and resulting splash-up – qualitative comparison of laboratory 

photographs (center) with ISPH (left) and CISPH (right) snapshots 
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Fig. 9. (a) Impact of plunging jet (b) splash-up process (c) final stages of splash-up - overlapping of the 

CISPH snapshot with laboratory photograph 

 

 

 

 

 

 
 

Fig. 10. Thickness of free surface boundary in CISPH and ISPH snapshots – simulation case IV 
 

 
Fig. 11. CISPH snapshot of water particles at the very early stages of shoaling – simulation case II 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. CISPH (left) and ISPH (right) snapshots of water particles and horizontal velocity field – 

simulation case IV 
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Fig. 13. Comparison of variation in wave height during breaking and post-breaking (a) simulation case II 

(b) simulation case IV 

 

1.0

1.1

1.2

1.3

-0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

(x-xB)/h0

y/h0

Experimental Data (Li, 2000)

CISPH Results

ISPH Results

Trendline - CISPH Results

Trendline - Experimental Data (Li, 2000)

Trendline - ISPH Results

 

Fig. 14. CISPH and ISPH predictions of the trajectory of the plunging jet tip - simulation case IV 
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Fig. 15. Definition sketch of the geometrical parameters for describing the plunging jet 
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Fig. 16. Comparison between the CISPH and ISPH calculations and experimental data (a) Horizontal 

length (L1) of the plunging jet (b) thicknesses (L2 and L3) of the plunging jet 
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Fig. 17. Variation of the horizontal velocity of the plunging jet tip - comparison between the CISPH and 

ISPH calculations and experimental data 

 

 

 

 

 

Fig. A-1. Internal interaction forces between two neighboring particles 

 

 

 

 

 

 

 

 

Fig. A-2. Decomposition of internal interaction forces between two neighboring particles – (a) internal 

forces due to pressure (b) internal forces due to viscosity 
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Table 1 

Summary of simulation cases – physical conditions and the resulting breaking types 

Simulation 
Case Wave Height 

Offshore 
Water 
Depth 

Relative 
Wave 

Height 
Slope S0 

Breaking 
Type 

Case I 0.066 0.189 0.35 1:7 0.368 Surging 

Case II 0.084 0.186 0.45 1:15 0.152 Plunging

Case III 0.075 0.187 0.40 1:15 0.160 Plunging

Case IV 0.057 0.189 0.30 1:15 0.185 Plunging

Case V 0.053 0.098 0.54 1:85 0.024 Spilling 
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