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Preface

Learning by machine. It has been a great dream of the human race, but has been a chal-
lenging issue at the same time. Among the mathematical learning problems studied so far,
classification is one of the most fundamental but significant problems and has its application
in many fields.

Classification is such a problem to find a function that is (approximately) equivalent with
the hidden oracle function, by utilizing the given data set as a clue to the oracle. The problem
was pointed out by Fisher from statistics in 1930’s, and this research field was established by
Rosenblatt’s perceptron in 1960’s.

A general approach to classification requires such a representation model that embodies
a function by representing it as a logically structured object on computers, which is called
a classifier . For this, there have been developed various representation models under their
own assumption or concept on learning; e.g., linear discriminants, neural networks, decision
trees, and support vector machines. A classifier is represented by mathematical expression or
terminology. In some application, to extract new knowledge from the data set, it is important
that its decision making process is understandable to people other than the resulting output
(i.e., the decision made by a classifier).

In this thesis, we propose a new representation model called iteratively composed features
(ICF). ICF models construction of classifiers as a process of iterative composition of meta-
attributes, which we call features, based on subsets of the attributes (or dimensions, items,
variables) that describe the considered data space. Starting with classification on binary
data sets, we propose a construction algorithm of ICF classifiers through detailed analyses on
features. We then extend the algorithm to more general data sets described with numerical
and/or categorical attributes. The proposed algorithm is experimentally shown to have better
performance than other previous algorithms on different representation models.

Not only does ICF provide a good classifier but also does it describe a hierarchy of concepts
since it illustrates a decision process on how an abstract concept is formed by other concrete
concepts or phenomena observed in the real world. The hierarchy of concepts is a different
presentation of knowledge from typical decision trees. Hence, ICF suggests possibility of new
methodologies in such fields as artificial intelligence, data mining, decision support systems,
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knowledge discovery, machine learning, and so forth. The author hopes that the research in
this thesis will be helpful to advance the study in these significant and interesting fields.

March, 2007

Kazuya Haraguchi
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Chapter 1

Introduction

1.1 Learning from examples

We consider the learning problem of acquiring knowledge on the underlying structure of

a phenomenon as some representation form from a given set of its examples, samples or

observations. A general approach to this problem consists of the following steps.

(L–1) Collection of examples. We choose the attributes, dimensions or items of the phe-

nomenon to be investigated. We should select essential ones carefully in order to obtain

meaningful knowledge after the learning step (L–3).

(L–2) Preprocess. We transform the examples into such a format (e.g., matrix) that is

allowed as an input of the learning methodology specified in the next step (L–3).

(L–3) Learning. We select a learning methodology (e.g., classification problem, clustering,

association rules, statistical analysis) and execute it on the preprocessed examples so as

to acquire knowledge. The methodology should be selected by taking the application

into account.

(L–4) Evaluation. The acquired knowledge is evaluated by some criteria. The evaluation

may give feedback to the previous steps.

In this thesis, we mainly consider classification problem, which is a methodology in step

(L–3). Classification problem is a typical learning issue and has its application in many fields

such as statistics, artificial intelligence, machine learning, expert systems, cognitive science,

pattern recognition, logical analysis of data (LAD), data mining, bio-informatics, and so on.

To this significant learning problem, we propose a new approach based on iteratively composed

features (ICF).

1



2 CHAPTER 1 INTRODUCTION

Note that the above steps (L–1) and (L–2) may have a great influence on the quality of

the acquired knowledge regardless of the learning methodology. For example, as to (L–1), the

amount of examples may be a crucial factor in improving the acquired knowledge; we would

(resp., would not) achieve good knowledge with a large (resp., small) amount of examples.

We also discuss this matter in this thesis.

1.1.1 Classification problem

Now we describe a mathematical framework of classification problem. In classification prob-

lem, we are given a data space S, a set C of classes, an oracle y, and a data set Ω. For example,

the data space S may be taken as the N -dimensional real space R
N , the N -dimensional hy-

percube B
N = {0, 1}N , or the set of direct products of N different sets. A member ω ∈ S

is called a data element . Each class in C is used to evaluate the quality or tendency of a

data element ω. The oracle y is a function y : S → C. The exact form of the oracle is not

presented to us, but for some data elements in S, their classes are available. An example ω

is a data element such that the value y(ω) ∈ C is available. The data set Ω is the set of

such examples. Then classification problem asks us to find a function c : S → C that is an

(approximately) equivalent function to y by utilizing the data set. In other words, we are

required to find a function that predicts the class of a future example with a high accuracy.

Note that there are two types of classification problem in the literature: supervised clas-

sification and unsupervised classification [7, 81]. The problem described above corresponds

to the supervised classification, in the sense that the oracle gives the classes of some data

elements as a supervisor. On the other hand, the oracle is not assumed in the unsupervised

classification, and the problem asks to partition the data set into subsets of “similar” exam-

ples. (The definition of similarity may differ in applications; e.g., Euclidean distance between

examples in the real space.) The unsupervised classification problem is sometimes referred

to as clustering .

In this thesis, we pay our attention to the two-class supervised classification problem,

which forms a basis to a multi-class version of the problem. By taking C = B, we decompose

the data set Ω into:

Ω = Ω1 ∪ Ω0,

where Ω1 = {ω ∈ Ω | y(ω) = 1} and Ω0 = {ω ∈ Ω | y(ω) = 0}. We call an example ω ∈ Ω1

(resp., ω ∈ Ω0) a true example (resp., a false example). We call the error rate of a function
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c on the data set Ω the empirical error rate of c, which is computed as follows;

e(c,Ω) =
1
|Ω|(|{ω ∈ Ω1 | c(ω) = 0}| + |{ω ∈ Ω0 | c(ω) = 1}|). (1.1)

If e(c,Ω) = 0, then we say that c is consistent with Ω. We call the expected error rate of a

function c on future examples the true error rate. (The true error rate is often referred to

as generalization error in the literature.) Our purpose in the classification problem is to find

such c that minimizes the true error rate.

We exploit the conventional approach to classification problem, where a function c is

embodied by representing it as a logically structured object, called a classifier , which is

easily implemented on computers. We say that a classifier overfits (resp., underfit) to the

data set if the empirical error rate is too small (resp., large) and the true error rate is large

(resp., still large). Overfitting (resp., underfitting) often occurs if the size of a classifier is too

large (resp., small). The approach consists of three steps as follows.

(C–1) Selection of a representation model . A representation model gives the direction

to represent c as a classifier. It consists of a formulation framework and a classifying

procedure: The former gives how to formulate a logical structure of a classifier by math-

ematical terminologies. Then the latter is a procedure by which a classifier classifies an

input data element based on its structure.

For example, let us take a representation model with hyperplanes, where we assume the

data space to be S = R
N . In this case, a classifier is formulated by N + 1 coefficients

w0, w1, . . . , wN . A classifying procedure may assign the class 1 or 0 to an input data

element ω ∈ S according to whether
∑N

q=1 wqωq − w0 ≥ 0 or not.

(C–2) Design of a construction algorithm . For the selected representation model, a con-

struction algorithm is designed. A construction algorithm outputs a classifier by utiliz-

ing information of the data set. The aim of this step is to design construction algorithms

that can produce classifiers attaining small true error rates.

For example, a construction algorithm to hyperplane classifiers is to determine N + 1

coefficients based on the data set. Fisher’s linear discriminant and perceptron are well-

known classical construction algorithms of hyperplane classifier [67, 69, 81, 84].

(C–3) Construction of a classifier. We then construct a classifier by applying the de-

signed construction algorithm to the data set. The constructed classifier should be

evaluated by true error rate. However, we do not usually know the oracle and thus can-

not compute the true error rate exactly. Hence a classifier is evaluated by an estimate
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of the true error rate, which is obtained by a resampling method such as hold-out, cross

validation, and bootstrapping [29, 81].

Among the above steps, selection of a representation model (C–1) is most important.

Under an inappropriate representation model to the considered data space and oracle, any

classifier does not achieve a small true error rate. For example, let us assume the data space

to be S = R
2, the data set to be X ⊆ S, and the oracle y to be a function as follows:

y(ω) =

{
1 if ω1ω2 ≤ 0,
0 otherwise,

i.e., y is an XOR (exclusive-or) function. One can observe that any hyperplane classifier does

not attain a small true error rate even if it is consistent with the data set X [56, 81]. Thus

hyperplane is not appropriate to this case. We should select the representation model carefully

so that a good classifier will be delivered. Prior knowledge or experts of the considered data

may help this task [33].

Also, it is important that the meaning of its decision making process (i.e., how a data

element is classified by the classifying procedure) is understandable to people in some appli-

cation area (e.g., automated diagnosis system in medical situation) [33]. In other words, the

decision making process should be interpretable by means of natural language, propositional

logic or pictorial representation. In some representation models, the decision making process

is too mathematical for us to understand, and we do not gain any information from a classifier

other than the output class. Neural networks (NN) or support vector machines (SVM) are ex-

amples of such representation models. For these models, a number of theoretical studies have

been made since 1980’s (including back-propagation [70], a construction algorithm for NN)

[26, 45, 52], and their high performance (in terms of true error rate) in practical situations

has also been observed [54, 59, 62]. However, due to the complicated decision making process,

they should be applied to situations where the decision making process is not focused; e.g.,

pattern recognition.

On the other hand, decision trees (DT) is a representation model such that the meaning

of the decision making process is rather easy to understand. Developed in 1970’s, DT has

been applied to such fields as artificial intelligence, data mining, expert systems, knowledge

discovery, and so on [33]. In this thesis, we propose a new understandable representation

model, called iteratively composed features (ICF). We will describe the overview of DT and

ICF in the next Section 1.2.
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1.1.2 Data size in learning

Intuitively, if a given data set is sufficiently large (compared with the entire data space), we

expect that it contains enough information that enables us to acquire meaningful knowledge.

For classification problem, if the data set is large, our task may be reduced to minimize the

empirical error rate. Indeed, it is known that, for any representation model, if the data set has

examples more than the threshold which is determined by the VC dimension (standing for

Vapnik-Chervonenkis dimension) of the model, then the difference between the empirical error

rate and the true error rate of a classifier becomes sufficiently small with a high probability

[14, 22, 78].

VC dimension was proposed by Vapnik and Chervonenkis [80] at the end of 1960’s1 and

has formed one of the central topics in the field of statistical learning theory [78]. However,

it must be difficult to compute the VC dimension exactly for many practical representation

models. From viewpoint of computational complexity, Papadimitriou and Yannakakis [63]

introduced the problem of computing the VC dimension of a given model as the first LOGNP-

complete problem (where LOGNP-complete is a weaker class of NP-complete). Besides, there

are several studies to point out the complexity of this problem [57, 71, 74]. There are some

attempts to derive upper or lower bounds on the VC dimension for some representation

models; e.g., Bartlett [11], Baum et al. [12] and Maass [53] investigated such bounds for NN,

where the details are summarized in the monograph by Anthony [6].

Researchers in such fields as PAC (Probably Approximately Correct) learning consider the

classification problem under a particular condition (e.g., the class y(ω) of an example ω is

flipped with a certain probability [5]) or even other learning problems (e.g., recognition of

rectangles in the two dimensional plane [9]). They try to derive a necessary and sufficient size

of the data set for the “success” of learning of their own definition [4, 10, 77]. Note that some

of their analyses do not necessarily utilize VC dimension but is based on the fundamental

probability theory. We will study the related problem later in Chapter 5.

1.2 Representation models for classification problem

Let us focus on the two-class classification problem on the data space S = B
n. In this section,

we introduce two representation models ICF and DT.

1The original paper was written in Russian in 1968 [79].
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a1 a2 a3 a4

f1 f2
f3

f4

Figure 1.1: An ICF classifier

1.2.1 Iteratively composed features (ICF)

Here we introduce the representation model ICF which is our proposal in this thesis. Let us

call a classifier by the representation model ICF an ICF classifier . An ICF classifier is based

on a Boolean function which we call a feature. As a special case of feature, we introduce an

initial feature aj : B
n → B for each attribute j = 1, 2, . . . , n, which is defined as aj(x) = xj

for ∀x ∈ B
n.

Formulation framework.

The structure of an ICF classifier with the final feature f is formulated by a directed acyclic

graph (DAG), denoted by Gf = (Vf , Ef ), where Vf and Ef denote the sets of nodes and

edges, respectively. Each node corresponds to one feature fS, which is a Boolean function

fS : B
S → B of the set S of its fan-in features (i.e., S is the set of features connected

to the node by the incoming edges). Among the nodes, there is only one node having no

outgoing edges, which corresponds to final feature f . Also, the nodes having no incoming

edges correspond to initial features.

In the rest of the thesis, we signify an ICF classifier by its final feature for convenience.

Figure 1.1 shows an ICF classifier f4 = f{a1,f3,f2}, where f3 = f{a2,a3,f1}, f2 = f{a3,a4} and

f1 = f{a4}. The height of an ICF classifier is defined as the length of the longest path from

an initial feature to the final feature (e.g., in Figure 1.1, the height is 3).

For a set S of features and x ∈ B
n, let us denote by x|S the projection of x onto S (e.g.,

if we take S = {a3, a4}, then x1|S = (a3(x1), a4(x1)) = (1, 1) for the example x1 in Table

1.1). For convenience, we write fS(x|S) by fS(x). If fS(x) = y(x) holds, then we say that fS

covers x.
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Table 1.1: A data set X = X1 ∪ X0

x1 x2 x3 x4

X1 x1 1 1 1 1
x2 0 1 1 0

X0 x3 1 0 1 0
x4 0 0 0 0
x5 0 0 0 0

01
a4

0

0

1
1

a3

a4

0

0

0

1 1

1

a2

a3

f1

0

0

0

1
1

1a1

f2
f3

f1 = ā4 f2 = a3 ∨ a4 f3 = ā2a3 ∨ a2f
1 f4 = ā1f

3 ∨ a1f
2

Figure 1.2: Construction of features f1, . . . , f4 in the data space B
4

Classifying procedure.

An ICF classifier f classifies a data element x ∈ B
n into f(x) ∈ B by the following procedure:

Classifying Procedure of ICF

Input: An ICF classifier f with a DAG Gf = (Vf , Ef ) and a data element x ∈ B
n.

Output: The class of x evaluated by f .

Step 1: For each initial feature aj ∈ A∩Vf , determine the output value aj(x) by aj(x) = xj.

Let V ′
f := A ∩ Vf .

Step 2: Select a feature fS ∈ Vf \ V ′
f such that S ⊆ V ′

f holds.

Step 3: Determine fS(x) based on the value of g(x) for each g ∈ S.

Step 4: If fS is the final feature, then output fS(x) and halt. Otherwise, let V ′
f := V ′

f ∪{fS}
and return to Step 2.

In the above procedure, V ′
f represents the set of features whose output values to x are deter-

mined. Let us show an example. Assume that f1, . . . , f4 in Figure 1.1 are defined as such
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Job application

Education Experience Skills

type results years occupation expertise degree

Figure 1.3: A concept hierarchy

Boolean functions as:

f1 = ā4,

f2 = a3 ∨ a4,

f3 = ā2a3 ∨ a2f
1,

f4 = ā1f
3 ∨ a1f

2,

respectively. Then the ICF classifier classifies the false example x3 = (1, 0, 1, 0) in Table 1.1

as follows: In Step 1, we determine a1(x3) = 1, a2(x3) = 0, a3(x3) = 1 and a4(x3) = 0

and have V ′
f = {a1, a2, a3, a4}. In Step 2, we select f1 = f{a4} since {a4} ⊆ V ′

f holds (i.e.,

a4(x3) is already determined). Then in Step 3, we determine f1(x3) = ā4 = 1. In Step 4,

since f1 �= f4, we update V ′
f = V ′

f ∪ {f1} and return to Step 2. In this way, we determine

f2(x3) = 1, f3(x3) = 1 and finally f4(x3) = 1. By checking all examples in this way, one can

see e(f4,X) = 1/5. Figure 1.2 illustrates how the final feature f4 in Figure 1.1 is constructed

in the data space B
n based on other features. Those subspaces labeled as 1 are depicted by

shaded areas.

Proposition 1.1 The computation time of Classifying Procedure of ICF is evaluated as

O(|Vf | + |Ef |).

We may regard the decision making process of an ICF classifier as a phenomenon such

that the conclusion of an abstract concept (or idea, knowledge) is determined based on other

concrete concepts. Let us show Figure 1.3 as an example of such concept hierarchy . In

the hierarchy, the conclusion of the final concept Job application is determined by three

intermediate concepts: Education, Experience and Skills, which are also based on six

attributes described at the bottom of the hierarchy.
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Construction algorithm of an ICF classifier.

We wish to design such a construction algorithm that finds an ICF classifier attaining a small

true error rate. Our strategy is to generate promising features iteratively based on the set

A of initial features, and to obtain an ICF classifier by regarding one of them as the final

feature. Let us define the operation of “composition” as follows.

Definition 1.1 We say that a feature fS is composed if (1) a set S of other features is

selected and (2) the function fS : B
S → B is determined.

Then our strategy is summarized as follows. In the following, F denotes a set of the features

available to composition, and is initialized as F := A.

Scheme for Constructing an ICF Classifier

Input: A data set X with n attributes (and thus A = {a1, a2, . . . , an}).

Output: An ICF classifier f .

Step 1: Let F := A.

Step 2: Iterate the following until some specified conditions are satisfied: Compose a feature

fS for an arbitrary S ⊆ F , and let F := F ∪ {fS}.

Step 3: Output some f ∈ F and halt.

In order to design a “good” ICF construction algorithm, we have to resolve several problems.

For example:

• In the composition of a feature, how do we select a feature set S from F? As to the

size of S, too large S may cause overfitting, and thus a reasonable sized S should be

selected.

• For the selected S, how do we determine the Boolean function fS : B
S → B? There are

22|S|
possible functions as fS .

• When should we stop iterating Step 2? An ICF classifier of too complex structure may

overfit to the data set, and we may not need to examine ICF classifiers of too many

nodes or too large heights.

Later in Chapter 3, we will discuss two construction algorithms of ICF classifiers based on

the above scheme.
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Related works with ICF.

Bohanec and Zupan [16] and Zupan et al. [85] proposed heuristic algorithms to construct a

concept hierarchy from a discrete data set (i.e., an attribute can take only a discrete value).

They aimed at constructing a hierarchy consistent with the data set, and have not taken true

error rate into account. Also, their approach is based on recursive decomposition of the set

A of initial features, while ours is on iterative composition of features.

An ICF classifier is also referred to as a decomposable Boolean function or a modular

function in the field of LAD [19, 27]. In the literature, Boros et al. [17] considered the

following problem.

Problem k-CONSISTENCY

Given: A data set X = X1∪X0 with n attributes and k+1 subsets S0, S1, . . . , Sk ⊆ A

of initial features.

Question: Can we compose a feature f = fS0∪{fS1
,...,fSk

} consistent with X?

Note that Sκ and Sκ′ are not necessarily disjoint (κ, κ′ = 0, 1, . . . , k). They showed that

k-CONSISTENCY is NP-complete for k ≥ 2 and that one can solve the problem in O(n|X|)
time for k = 1.

Concentrating on the case of k = 1, Ono et al. [60, 61] considered the existence of a

nontrivial partition (S0, S1) of the initial features (i.e., S0 ∪ S1 = A, S0 ∩ S1 = ∅, |S1| > 1)

such that fS0∪{fS1
} is consistent; i.e., the solution to 1-CONSISTENCY(X, {S0, S1}) is YES.

The problem is summarized as follows.

Problem DECOMPOSABILITY

Given: A data set X = X1 ∪ X0 with n attributes.

Question: Is there a nontrivial partition (S0, S1) of A such that the solution to 1-
CONSISTENCY(X, {S0, S1}) is YES?

They showed that, unfortunately, the problem DECOMPOSABILITY is NP-complete. It

means that it is NP-hard to find a nontrivial partition (S0, S1) that minimizes the empirical

error rate e(fS0∪{fS1
},X). These results suggest the difficulty of constructing an ICF classifier

performing well on future examples.
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Figure 1.4: A decision tree

Bioch [13] studied the problem 1-CONSISTENCY when the input is given as X = B
n (i.e.,

we take the entire data space for X, and thus |X| = 2n) and a nontrivial partition (S0, S1)

of initial features. In this case, under a weak assumption on (S0, S1), it was shown that the

problem becomes coNP-complete. While the above problems are defined on features, i.e.,

Boolean functions, Popova and Bioch [64] discussed the similar problems on general discrete

data sets and discrete functions.

1.2.2 Decision trees (DT)

Formulation framework.

Let us denote by t a decision tree, a classifier t : B
n → B. The structure of t is formulated by

a rooted binary tree Gt = (Vt, Et) and a label �t : Vt → {0, 1, . . . , n}, where Vt and Et denote

the sets of nodes and edges, respectively. We denote by V inner
t and V leaf

t (= Vt \ V inner
t ) the

sets of inner nodes and leaves in Vt, respectively. Each inner node v ∈ V inner
t is associated

with attribute �t(v) ∈ {1, 2, . . . , n}, and each leaf v′ ∈ V leaf
t is labeled as �t(v′) ∈ {0, 1} = B.

The depth of a node v is defined as the number of edges in the path between v and the root

of the tree. The height of Gt is defined as the length of the longest path from the root to a

leaf and is denoted by h(Gt). Let V h
t denote the set of nodes with depth h, and let V inner,h

t

(resp., V leaf,h
t ) denote the set of inner nodes (resp., leaves) with depth h. Figure 1.4 shows

an example of decision trees.
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0 1x1

0 0
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1
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Figure 1.5: Construction of a decision tree in the data space B
4

Classifying procedure.

For an inner node v of a rooted binary tree, let us denote by vright (resp., vleft) the right

(resp., left) child of v. A decision tree t classifies a data element x ∈ B
n into t(x) ∈ B as

follows.

Classifying Procedure of DT

Input: A decision tree t with a graph Gt = (Vt, Et) and a label �t and a data element x ∈ B
n.

Output: The class of x evaluated by t.

Step 1: Let v be the root of Gt.

Step 2: If v is a leaf, then output �t(v) and halt.

Step 3: Let j := �t(v). If xj = 1, then let v := vright. Otherwise, let v := vleft.

Step 4: Return to Step 2.

For example, the empirical error rate of the decision tree t in Figure 1.4 on the data set X

in Table 1.1 is e(t,X) = 1/5.

Note that a node v in a decision tree corresponds to a subspace of B
n. Let us denote

by B
n(v) the subspace. In particular, the root v corresponds to the entire data space, i.e.,

B
n(v) = B

n. The children of an inner node v correspond to its disjoint subspaces, that is,

B
n(vleft) = {x ∈ B

n(v) | xj = 0},
B

n(vright) = {x ∈ B
n(v) | xj = 1},

where j = �t(v) ∈ {1, 2, . . . , n}. Then the subspaces of leaves are labeled as either 0 or 1.

For the decision tree in Figure 1.4, how the data space is divided and how the subspaces



1.2 Representation models for classification problem 13

are labeled are illustrated in Figure 1.5, where those subspaces labeled as 1 are depicted by

shaded areas.

Proposition 1.2 The computation time of Classifying Procedure of DT is evaluated as

O(|Vt|).

We mention how the decision making process of DT is interpreted. For DT, we see that

a decision tree t classifies a data element x ∈ B
n according to propositional rules as follows:

Assume that x visits the nodes v0, v1, . . . , vh in the classifying procedure, where vh′ ∈ V h′
t

(h′ = 0, 1, . . . , h), v0 denotes the root, and vh denotes a leaf. Let us take b0, b1, . . . , bh−1 ∈ B

as follows; if vh′+1 is the left (resp., right) child of vh′
, then we set bh′ = 0 (resp., 1) for

h′ = 0, 1, . . . , h − 1. Then the decision making process is interpreted by a propositional rule

such that: “If xj0 = b0, xj1 = b1, . . . , and xjh−1
= bh−1 hold, then x should belong to the

class �t(vh),” where jh′ = �t(vh′
) for h′ = 0, 1, . . . , h − 1.

Construction algorithm of a decision tree.

A typical algorithm for constructing a decision tree is described as follows.

Typical Algorithm for Constructing a Decision Tree

Input: A data set X with n attributes.

Output: A rooted binary tree Gt = (Vt, Et) and a label � : Vt → {0, 1, . . . , n}.

Step 1: Let Vt := {v} and Et := ∅. Determine �t(v) ∈ B.

Step 2 (Branching):

Step 2-1: Choose a leaf v of the current tree Gt = (Vt, Et).

Step 2-2: Add a pair of new nodes vleft and vright to Gt as the children of v (i.e.,

Vt := Vt ∪ {vleft, vright} and Et := Et ∪ {(v, vleft), (v, vright)}). Determine the labels

�t(v) ∈ {1, 2, . . . , n} and �t(vleft), �t(vright) ∈ B. (v now becomes an inner node.)

Step 2-3: If Gt = (Vt, Et) does not satisfy specified conditions, then return to Step

2-1.

Step 3 (Pruning):

Step 3-1: Choose two leaves vleft, vright having the same parent v and prune them; i.e.,

let Vt := Vt \ {vleft, vright}, Et := Et \ {(v, vleft), (v, vright)} and determine the label

�t(v) ∈ B. (v now becomes a leaf.)
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Step 3-2: If Gt = (Vt, Et) does not satisfy specified conditions, then return to Step

3-1.

Step 4: Output Gt and �t and halt.

The operation of branching in Step 2 enlarges the size of the decision tree by adding a pair

of nodes as leaves of the current tree. On the other hand, the operation of pruning in Step 3

makes the decision tree smaller, and it is usually used to avoid the overfitting of the resulting

decision tree.

Related works with DT.

For a given data set X, the problem of constructing a minimum height decision tree consistent

with X is known to be NP-hard [39, 49]. A polynomial time ln |X|-approximation algorithm

was proposed by Arkin et al. [8], and Laber and Nogueira [50] showed that there is no

o(log |X|)-approximation algorithm unless P=NP.

As to decision tree construction, there have been proposed many construction algorithms

such as C4.5 [65], SPRINT [73], and so on [36, 40, 82], where different methods of branching or

pruning are used. Among these algorithms, we exploit C4.5 as a competitor of the proposed

ICF classifier construction algorithms.

1.3 Overview of the thesis

In this thesis, we propose a new representation model ICF for the two-class supervised clas-

sification problem and establish a construction algorithm of ICF classifiers.

Before designing a concrete construction algorithm, we first examine whether ICF is

a potential representation model or not in order to confirm that ICF can be adopted as a

promising model. In (C–1) of Section 1.1.1, as observed in the example of hyperplane classifier

and the XOR function, we need to select an appropriate representation model by taking the

considered oracle (or even the underlying distribution of examples) into account. In other

words, it is desirable for a representation model to realize a good classifier for many cases.

In Chapter 2, we discuss the potential performance of ICF as a representation model

in comparison with DT. We conduct both theoretical and experimental analyses. For the

theoretical analysis, we show the superiority of ICF to DT in view of Occam’s Razor [15].

Occam’s Razor asserts that not only should a classifier attain a small empirical error rate

but also should it be represented in a compact form. Based on this assertion, we show that

if DT has such a classifier for given data set X with an oracle y, then ICF also has such one,
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and that the converse does not hold. For the experimental analysis, we investigate whether

a good ICF classifier (in the sense of true error rate) can be constructed for a given data

set. In the composition of a feature fS, as defined in Definition 1.1, we have to (1) select a

subset S ⊆ F and to (2) determine the Boolean function for fS. We introduce two function

determination schemes for the task (2), named majorization and extended majorization. We

compare the entire sets of features composed by these schemes with that of decision trees,

and show that the sets of features have a better classifier than that of decision trees in many

cases.

Based on these results, following (C–2) of Section 1.1.1, we design construction algorithms

of ICF classifiers. In Chapter 3, we propose two construction algorithms of ICF classifiers

ALG-ICF and ALG-ICF∗, which are based on majorization and extended majorization, re-

spectively. We show that ALG-ICF∗ can construct a better classifier than C4.5 of DT or

BSVM of SVM under properly tuned parameter values.

However, as is often the case with typical construction algorithms, determining appropri-

ate parameter values is usually a difficult and time-consuming task. Furthermore, ALG-ICF∗

is a construction algorithm which works only on an M-valued data set (i.e., S = M
n), where

M = B ∪ {∗} and ∗ denotes a missing bit . Hence the applicable situations of ALG-ICF∗ are

rather limited.

To overcome these shortcomings, in Chapter 4, we extend ALG-ICF∗ to real world data

sets consisting of numerical and/or categorical attributes. For this purpose, we incorporate

a discretization scheme into ALG-ICF∗ as its preprocessor, by which an input real world

data set is transformed into M-valued one. We examine three discretization schemes, domain

based construction (DC), space based construction (SC) and integrated construction (IC). Let

us denote by ALG-ICF∗
DC (resp., ALG-ICF∗

SC and ALG-ICF∗
IC) the construction algorithm

ALG-ICF∗ equipped with DC (resp., SC and IC) as the preprocessor. We observe that

ALG-ICF∗
IC constructs a better classifier than C4.5 on real world data sets without finely

tuning parameter values. By this, we assert that ALG-ICF∗
IC is a new classifier construction

algorithm displaying a concept hierarchy on real world data sets, and hope that it serves as

an excellent knowledge discovery tool to practitioners.

In Chapter 5, we analyze the size of a data set used for learning. We treat a tractable

structure of knowledge, called a pattern. For given data set X = X1 ∪ X0 and constants

θ1, θ0 ∈ [0, 1], a (θ1, θ0)-pattern is defined as a combination of attribute values which appears

in X1 at least in proportion of θ1 and in X0 at most in proportion of θ0. If θ1 is “large

enough” and θ0 is “small enough,” a (θ1, θ0)-pattern represents a trend of attribute values

toward X1 rather than X0, and thus might be utilized as meaningful information of data.
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One can enumerate all (θ1, θ0)-patterns in X in incrementally polynomial time [1]. If the

data set is small, however, then some of the enumerated (θ1, θ0)-patterns may be deceptive;

i.e., they do not reflect the underlying structure of data, and exist as (θ1, θ0)-patterns in X

only by chance, due to its small size.

We observe necessary and sufficient sizes of a data set with which it contains such de-

ceptive (θ1, θ0)-patterns with a low probability. A sufficient data size can be derived easily

by utilizing classical technique of probability theory. On the other hand, the derivation of a

good necessary size may be rather difficult. For this question, we propose a necessary data

size by utilizing the idea arising from randomness: If the size is small, even a data set which

is generated at random should contain (θ1, θ0)-patterns. Then we claim that a data set of

such size should contain deceptive (θ1, θ0)-patterns. We justify our claim by computational

experiments. We also derive an upper bound on the proposed necessary data size as its

estimator.

Finally, in Chapter 6, we summarize our study in this thesis.



Chapter 2

Comparison of Potential

Performance between ICF and

Decision Trees

2.1 Introduction

In this chapter, we compare the potential performance between two representation models,

ICF and DT. We conduct both theoretical and experimental analyses in Sections 2.2 and 2.3,

respectively. We observe the superiority of ICF to DT through the analyses.

2.2 Theoretical analysis based on Occam’s Razor

Assume that we are given a data set X labeled by the oracle Boolean function y : B
n → B.

The principle of Occam’s Razor [15], serving as an important dialectics in many research

fields, states that entities should not be multiplied beyond necessity. It suggests that the

truth should be represented in a compact form. Following Occam’s Razor, we make the next

assumption on y.

Assumption 2.1 We assume that the oracle y is a Boolean function that can be represented

in a compact form by using terminologies of natural languages and/or mathematical expres-

sions.

E.g., if y is the parity function, then we may represent y by a brief English sentence as follows;

“if a Boolean vector x ∈ B
n contains an odd number of 1, then y(x) is 1, and otherwise, it

is 0.” Thus the parity function can be introduced as an oracle. On the other hand, if y is

a function such that y(x) is determined at random for all x ∈ B
n, then there may be no

17
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way to represent y other than the näıve way to store y(x) for all x ∈ B
n. It requires the

space complexity O(2n), which becomes exponentially large with the increase of n. We do

not assume such a function to be the oracle.

Let us denote by R a representation model (which may indicate either ICF or DT) and by

r a classifier of R (which may indicate either an ICF classifier f or a decision tree t). Based

on this assumption on the oracle y, we consider that it is desirable for r not only to attain

a small empirical error rate but also to be represented in a compact form; i.e., the space

complexity needed to represent the structure of r is small. In order to treat this complexity,

we introduce the representation complexity of r, denoted by γR(r), which is defined as the

length of the bit string needed to encode the structure of r by an encoding scheme. An

encoding scheme is designed for each representation model R, and it encodes a classifier into

a bit string. If γR(r) = O(poly(n)) holds (i.e., representation complexity is small), then we

say that r is a compact classifier.

Let us say that r is an ε-classifier if e(r,X) ≤ ε holds for a constant ε ∈ [0, 1]. Then

using these terminologies, we assert that r is desirable to be a compact ε-classifier for a

small constant ε. This assertion is supported by the well-known principles of AIC (An

Information Criterion) [2, 67] and MDL (Minimum Description Length) [41, 66, 68] from

statistics, which state that, roughly speaking, a good classifier (in the sense of true error

rate) is achieved by a moderate empirical error rate and representation complexity. In fact,

it is intuitively understood that a classifier with a small (resp., large) empirical error rate

and a large (resp., small) representation complexity may overfit (resp., underfit) to the data

set X; both empirical error rate and representation complexity should be reasonably small.

The above assertion leads to the following statement: To be an appropriate representation

model to a given tuple (ε,X, y), it is necessary that R has a compact ε-classifier. Thus R

may serve as a general representation model if it can realize a compact ε-classifier for many

tuples of (ε,X, y). From this point of view, we show that ICF is a superior representation

model to DT, as summarized in the following theorem.

Theorem 2.1 Assume that we are given a constant ε ∈ [0, 1/2), a data set X labeled by an

oracle y. If there exists a compact ε-decision tree, then there also exists a compact ε-feature.

Note that the converse does not hold (i.e., even if there exists a compact ε-feature, there does

not necessarily exist a compact ε-decision tree).

The rest of this section is contributed to the proof of the above theorem. We define the

representation complexity of ICF and DT by using the encoding schemes, which is described

in Section 2.2.1. Then in Section 2.2.2, we give the entire proof of Theorem 2.1.
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2.2.1 Representation complexity

ICF.

The representation complexity γICF(f) of an ICF classifier f with Gf = (Vf , Ef ) is defined

by using the following encoding scheme: Let kmax denote the maximum number of fan-ins

allowed for all features in Vf . (E.g., we may take kmax = n.) For each feature fS ∈ Vf \A, we

need log2 kmax bits to identify the number of fan-ins |S|, and 2|S| bits to identify the output

values of fS(s), where s ∈ B
S. Moreover, in order to identify the fan-ins S of fS, a trivial way

requires additional |Vf | bits: if g ∈ S for a feature g ∈ Vf , the corresponding bit is set to 1,

and otherwise, it is set to 0. In this trivial way, |S| out of |Vf | bits are set to 1, and the other

bits are set to 0. Assuming that we have a corresponding table of combinations, we consider

that log2

(|Vf |
|S|

)
bits are enough to identify the fan-in S of fS . Finally, the complexity γICF(f)

for representing f is determined as follows:

γICF(f) =
∑

fS∈Vf\A

(
log2 kmax + 2|S| + log2

(|Vf |
|S|

))
. (2.1)

DT.

The representation complexity γDT(t) for a decision tree t with Gt = (Vt, Et) and �t : Vt →
{0, 1, . . . , n} is defined by using the following encoding scheme: For each node v ∈ Vt, 1 bit is

required to identify whether v is an inner node or a leaf. Then if v ∈ V inner
t , additional log2 n

bits are required to identify the branching attribute �t(v) ∈ {1, 2, . . . , n}; otherwise (i.e., if

v ∈ V leaf
t ), additional 1 bit is required to identify the label �t(v) ∈ B. Since Gt is a binary

rooted tree, |Et| = 2|V inner
t | and |Et| = |Vt| − 1. Thus |V leaf

t | = |V inner
t | + 1 holds, and we

have |V leaf
t | = (|Vt| + 1)/2 and |V inner

t | = (|Vt| − 1)/2. Finally, the representation complexity

γDT(t) is determined as follows.

γDT(t) = |Vt| + |V inner
t | log2 n + |V leaf

t | =
3
2
|Vt| + (

|Vt| − 1
2

) log2 n +
1
2
. (2.2)

Before closing this subsection, we introduce some terminology on DT for the proof in the

next subsection. Let Xv denote the set of examples in X that visit a node v ∈ Vt, and let

Xv,1 = {x ∈ Xv | y(x) = 1} and Xv,0 = {x ∈ Xv | y(x) = 0}. Consider two examples

x, x′ ∈ Xv for an inner node v. We say that x and x′ are separated at v if x and x′ visit

different children of v. Clearly, if a decision tree is a consistent classifier, any two examples

x1 ∈ X1 and x0 ∈ X0 reach different leaves, and thus are separated at some inner node.

We assume that the index of an attribute j ∈ {1, 2, . . . , n} appears at most once in the

path from the root to any leaf, since all data elements x ∈ B
n encountering the second test
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a1 a2 a3 an

f̃ = fA x1

x2x2

xnxn

2n leaves

(a) (b)

Figure 2.1: Structures of (a) f̃ = fA and (b) t̃

of the same attribute in a path exactly move to the same child; the unvisited child and its

descendants are redundant. It follows that h(Gt) ≤ n holds for any decision tree t.

2.2.2 Proof of Theorem 2.1

Let us introduce some notations. For any Boolean function c : B
n → B, we write by SR(c)

the set of classifiers of R representing c.

Note that SICF(c) �= ∅ and SDT(c) �= ∅ hold for any Boolean function c : B
n → B.

As a classifier representing c, we may compose a feature f̃ by taking f̃ = fA and setting

fA(x) to c(x) for each x ∈ B
n (see Figure 2.1 (a)). Also, we may construct a decision

tree t̃ representing c as follows: We take a binary rooted tree Gt̃ = (Vt̃, Et̃) such that the

height is n and that all the inner nodes with height h are associated with attribute (h + 1).

(See Figure 2.1 (b).) Then Gt̃ has 2n leaves and each leaf v corresponds to a binary vector

x ∈ {0, 1}n. For each leaf v ∈ V leaf
t̃

, set �t̃(v) to c(x) for the corresponding vector x. (Note

that γICF(f̃) = γDT(t̃) = Ω(2n). Thus even if f̃ and t̃ are consistent classifiers, they are not

classifiers of our interest.)

For the proof of the former part of Theorem 2.1 (i.e., “if there exists a compact ε-decision

tree, then there also exists a compact ε-feature”), we show that, for any Boolean function c

and any decision tree t ∈ SDT(c), there exists a feature f ∈ SICF(c) such that γICF(f) =

O(γDT(t)). It is described as Lemma 2.1 and Corollary 2.1.

Lemma 2.1 For any Boolean function c : B
n → B and any decision tree t ∈ SDT(c), there

exists a feature f ∈ SICF(c) such that γICF(f) = O(γDT(t)).
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Proof: Let tv denote the subtree of Gt = (Vt, Et) which has node v ∈ Vt as its root node,

and let cv denote a Boolean function represented by tv (i.e., tv ∈ SDT(cv)). For any node

v ∈ Vt, we show that there exists a feature f v ∈ SICF(cv) such that γICF(f v) ≤ CγDT(tv) for

some constant C > 0. In this proof, we use kmax = 3 for (2.1).

We prove this by an induction on the height h of node v. Assume h = h(Gt). Then,

v is a leaf and subtree tv consists of one node v, which represents a constant function cv

that outputs �t(v) for any input. Then we compose the feature f v ∈ SICF(cv) that has one

fan-in (e.g., f v = f{aj}, ∀aj ∈ A) and that outputs f v(s) = �t(v) for any input s ∈ B. Then,

γICF(f v) ≤ C ≤ CγDT(tv) for some constant C > 0.

Assume that the above statement holds for h = h(Gt), h(Gt)−1, . . . , h′, and let v ∈ V h′−1
t .

If v is a leaf, we obtain f v ∈ SICF(cv) such that γICF(f v) ≤ CγDT(tv) in the same way as

above. Otherwise (i.e., if v is an inner node), subtree tv represents a Boolean function

cv = x̄jc
vleft ∨ xjc

vright , where j = �t(v) ∈ {1, 2, . . . , n} is the index of an attribute. Then,

we compose the feature f v = f{aj ,fvleft ,f
vright} = ājf

vleft ∨ ajf
vright . Since f vleft ∈ SICF(cvleft)

and f vright ∈ SICF(cvright) hold from the assumption of the induction, and aj(x) = xj , f v ∈
SICF(cv) holds.

Let us denote by V ′
fv = Vfv \A the set of features which are not initial ones in Vfv . From

the above composition of f v, |V ′
fv | = |Vtv | holds. We have

γICF(f v) ≤ γICF(f vleft) + γICF(f vright) + log2 kmax + 23 + log2

(|Vfv |
3

)

+ |V ′
fv |(log2

(|Vfv |
3

)
− log2

(|Vfv | − 1
3

)
)

≤ γICF(f vleft) + γICF(f vright) + log2 3 + 23 + C log2(|Vtv | + n)

+ |Vtv | log2(1 +
3

|Vfv | − 3
)

≤ C ′γDT(tvleft) + C ′γDT(tvright)

≤ C ′′γDT(tv)

for some constants C,C ′, C ′′ > 0, which completes the induction. �

Let c(x) = x̄1x̄2x3 ∨ x̄1x2x̄4 ∨ x1x̄3x4 ∨ x1x3. Then the feature f4 ∈ SICF(c) in Figures

1.1 and 1.2 is composed by the above way from the decision tree t ∈ SDT(c) in Figures 1.4

and 1.5. E.g., for four nodes v1 to v4 of t, f v1 = f4, f v2 = f3, f v3 = f2 and f v4 = f1 are

composed respectively. (Note that features for constant functions are omitted in Figure 1.1.)

From the above lemma, the following corollary is immediate.



22 CHAPTER 2 COMPARISON BETWEEN ICF AND DECISION TREES

Corollary 2.1 Assume that there exists a Boolean function c such that e(c,X) ≤ ε holds.

Then if there exists a compact ε-decision tree t ∈ SDT(c), there also exists a compact ε-feature

f ∈ SICF(c).

Now let us go on to the proof of the latter part of Theorem 2.1 (i.e., “the converse does

not hold”). We show that there exists a tuple (ε,X, y) such that there is a compact ε-feature

but is no compact ε-decision tree. We observe four cases of (ε,X, y) (i.e., whether X = B
n

or X ⊂ B
n and whether ε = 0 or ε > 0), each of which corresponds to one of the following

lemmas.

Lemma 2.2 Assume that we are given a set of data elements X = B
n. Then there exists an

oracle y on B
n such that there is a compact composed feature f consistent with X = B

n but

there is no compact decision tree t consistent with X = B
n.

Proof: Let oracle y be a parity function such that

y(x) =

{
1 if

∑n
j=1 xj is odd,

0 otherwise.
(2.3)

We can compose a required feature f as follows: For each attribute j ∈ {1, 2, . . . , n − 1}, we

compose feature f j as follows:

f j =

{
f{aj ,aj+1} = ājaj+1 ∨ aj āj+1 if j = 1,
f{fj−1,aj+1} = f̄ j−1aj+1 ∨ f j−1āj+1 otherwise.

(2.4)

Clearly, f j(x) = 1 if and only if
∑j+1

j′=1 xj′ is odd; it follows that e(fn−1,X) = 0. For

f = fn−1, the representation complexity γICF(f) is determined as follows: Let us denote by

Gf = (Vf , Ef ) the DAG embodying feature f . For each feature fS ∈ Vf \A, since the number

of its fan-ins is 2, we use kmax = 2 and |S| = 2 in (2.1). Then since |Vf | = n+(n−1) = 2n−1,

we observe γICF(f) = O(n log n).

We show that any consistent decision tree t requires γDT(t) = Ω(2n) for the representation

complexity. For this, we show the following two propositions.

Proposition 2.1 For any J ⊂ {1, 2, . . . , n} and any true example x1 ∈ X1, there exists a

false example x0 ∈ X0 such that x1|J = x0|J .

Proof: It is sufficient to show that such an x0 exists for any J = {1, 2, . . . , n} \ {j},
j = 1, 2, . . . , n, and any x1 ∈ X1. Since we have all the n-dimensional vectors as X =

X1 ∪ X0, we find exactly one example x0 ∈ X0 satisfying x1|J = x0|J , by taking x0 =

(x1
1, x

1
2, . . . , x

1
j−1, x̄

1
j , x

1
j+1, . . . , x

1
n). �
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Proposition 2.2 For any J = {1, 2, . . . , n} \ {j}, j = 1, 2, . . . , n, and any true example

x1 ∈ X1, there exists no true example x ∈ X1 (x1 �= x) such that x1|J = x|J holds.

Proof: Assume that there exist two examples x1, x ∈ X1 such that x1|J = x|J for some

J = {1, 2, . . . , n} \ {j}. Since x1 �= x, x1
j �= xj holds; it follows that either x1 ∈ X0 or x ∈ X0

holds as y is a parity function, which contradicts the assumption. �

Let us denote by Gt = (Vt, Et) the binary rooted tree of t. From Proposition 2.1, for each

x1 ∈ X1, there exists an example x0 ∈ X0 which visits the same nodes as x1 visits, in the

depth of less than n − 1. Since t is consistent and h(Gt) ≤ n, x1 and x0 are separated at an

inner node v ∈ V inner,n−1
t in the depth of n − 1. From Proposition 2.2, there is no x ∈ X1

(x1 �= x) that visits v, and thus there is no example x′ ∈ X0 that visits v. Since there are

|X1| = 2n/2 = 2n−1 examples for x1, |V inner,n−1
t | = 2n−1 holds. Then the number of leaves

|V leaf
t | equals 2 · 2n−1 = 2n. Hence we have γDT(t) = Ω(2n).

This proves Lemma 2.2. �

Lemma 2.3 Assume that we are given a constant k ∈ {1, 2, . . . , n}. Then there exist a set

of 2n′
data elements X and an oracle y on B

n, where we denote n′ = �n/k�, such that there

is a compact composed feature f consistent with X ⊆ B
n but there is no compact decision

tree t consistent with X ⊆ B
n.

Proof: For the data set X, we associate each n′-dimensional vector z in B
n′

with an example

xz ∈ X as follows: we set xz
j = zj for the first n′ attribute values (i.e., j = 1, 2, . . . , n′) and

set xz
j = zj−n′�j/n′� for the rest n−n′ attribute values (i.e., j = n′ + 1, n′ + 2, . . . , n). For the

oracle y, we take the parity function of the first n′ attributes, as given in (2.3).

Clearly, we can compose the feature f from the first n′ attributes such that e(f,X) = 0

and γICF(f) = O(n log n) as in the proof for Lemma 2.2. On the other hand, for any Boolean

function c : B
n → B with e(c,X) = 0, we see that there is no consistent decision tree t with

γDT(t) = o(2n), since otherwise we would have obtained a decision tree t with γDT(t) = o(2n)

in Lemma 2.2. �

Lemma 2.4 Assume that we are given a set of data elements X = B
n and a constant

ε ∈ [0, 1/2). Then there exists an oracle y on B
n such that there is a compact composed

ε-feature f but there is no compact ε-decision tree t.

Proof: Let oracle y be the parity function as given in (2.3). From the proof for Lemma 2.2,

there is a feature f such that e(f,X) = 0 ≤ ε and γICF(f) = O(n log n).
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For any ε-decision tree t, let us denote by Gt = (Vt, Et) the binary rooted tree of t and

by �t : Vt → {1, 2, . . . , n} ∪ B the label of t. We show that Gt contains at least (1 − 2ε)|X| =

(1 − 2ε)2n leaves, by which γDT(t) = Ω((1 − 2ε)2n) follows. The error rate of t is given by

e(t,X) =
1
|X| (

∑
v∈V leaf

t : �t(v)=1

|Xv,0| +
∑

v∈V leaf
t : �t(v)=0

|Xv,1|)

≥ 1
|X| (

∑
v∈V leaf

t \V leaf,n
t : �t(v)=1

|Xv,0| +
∑

v∈V leaf
t \V leaf,n

t : �t(v)=0

|Xv,1|). (2.5)

Proposition 2.3 For each leaf v ∈ V leaf
t \ V leaf,n

t , it holds |Xv,0| = |Xv,1|.

Proof: Let v ∈ V leaf,h
t be a leaf whose depth is h(< n), and Jw ⊆ {1, 2, . . . , n} denote the set

of the indices of attributes used in the path between v and the root. Suppose that we repeat

branching at v and its resulting children recursively, by the attributes J = {1, 2, . . . , n} \ Jw

until each of the resulting leaves has depth n. the parent v′ of each of these leaves has depth

n− 1, we see that |Xv′,1| = |Xv′,0| = 1 holds from the proof of Lemma 2.2. This means that

|Xv,1| = |Xv,0| holds. �

By this proposition, we see that (2.5) can be written as follows.

e(t,X) ≥ 1
|X|

∑
v∈V leaf

t \V leaf,n
t

|Xv|
2

=
1

2|X| (|X| − |V leaf,n
t |) =

1
2n+1

(2n − |V leaf,n
t |).

Then since e(t,X) ≤ ε, we have |V leaf,n
t | ≥ 2n − ε2n+1, as required. �

Lemma 2.5 Assume that we are given constants k ∈ {1, 2, . . . , n} and ε ∈ [0, 1/2). Then

there exist a set of 2n′
data elements X and an oracle y on B

n, where we denote n′ = �n/k�,
such that there is a compact composed ε-feature f but there is no compact ε-decision tree t.

Proof: Let X be the set of examples given in Lemma 2.3, and oracle y be the parity function

of the first n′ attributes as given in (2.3). Clearly we can compose a consistent feature f from

the first n′ attributes such that e(f,X) = 0 ≤ ε and γICF(f) = O(n log n) as in the proof for

Lemma 2.3.

Since xj = xj+n′ = xj+2n′ = · · · = xj+(k−1)n′ (j = 1, 2, . . . , n′) for all examples x ∈ X, for

any Boolean function c : B
n → B, there exists an equivalent Boolean function c′ : B

n′ → B

of the first n′ attributes. Then it is sufficient to consider the training set X ′ = {0, 1}n′
of 2n′

examples. From Lemma 2.4, any ε-decision tree t requires γDT(t) = Ω((1 − 2ε)2n) for the

representation complexity. �
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Note that, in real situations, a feature f does not necessarily attain a small true error rate

since f is a compact ε-feature. Also, it may be a hard problem to find a compact ε-feature

for a given tuple (ε,X, y).

2.3 Experimental analysis on feature determination

In this section, we investigate whether we can construct good ICF classifiers in the sense of

true error rate. The composition of a feature fS, as defined in Definition 1.1, consists of two

tasks: (1) to select a feature set S, and (2) to determine its Boolean function fS : B
S → B.

The task (1) should be carried out with a greater care due to the largeness of the degree

of freedom, while the function determination of the task (2) can be established naturally in

view of learning from a data set. We introduce two schemes for function determination in

Section 2.3.1: majorization and extended majorization.

Then we show how to examine the true error rates of features determined by the in-

troduced schemes. We computationally generate a large amount of DAGs at random and

determining the Boolean function of each node (i.e., a feature) by the schemes. A set of such

generated features in this way may be an approximation to the entire set of features composed

by the schemes. The minimum true error rate in the set suggests the potential performance

of features composed by the schemes, in the sense that we can achieve that true error rate.

Then we compare such potential performance of ICF with that of DT by experiments. (A

set of many decision trees are generated in the similar way as features.)

The generation procedures for ICF and DT are described in Section 2.3.2, and we conduct

the experimental studies on these procedures in Section 2.3.3. The computational results

reveal that features composed by the introduced schemes have better potential than decision

trees, and that extended majorization is better than majorization.

2.3.1 Feature determination schemes

Majorization.

Let us take a nonempty set S of features. For an |S|-dimensional vector s ∈ B
S, let us

define XS,s = {x ∈ X | x|S = s}, X1
S,s = X1 ∩ XS,s and X0

S,s = X0 ∩ XS,s. For exam-

ple, if we take S = {a3, a4} and s = (1, 0) in Table 1.1, then we have XS,s = {x2, x3} =

{(0, 1, 1, 0), (1, 0, 1, 0)}, X1
S,s = {x2} = {(0, 1, 1, 0)} and X0

S,s = {x3} = {(1, 0, 1, 0)}. In
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majorization, we determine fS(s) by the distribution of classes in XS,s as follows:

fS(s) =

⎧⎪⎨
⎪⎩

1 if |X1
S,s| > |X0

S,s|,
0 if |X1

S,s| < |X0
S,s|,

b otherwise,

(2.6)

where b ∈ B is a prescribed constant. E.g., for S = {a3, a4} in Table 1.1 and b = 0,

majorization sets fS(00) = fS(01) = fS(10) = 0 and fS(11) = 1. Thus fS is a Boolean

function fS(x) = x3x4. Note that, if S is a singleton S = {g}, then fS becomes equivalent

with g (i.e., fS(x) = g(x) holds for all x ∈ B
n).

For a given set S = {f1, f2, . . . , fd} of d features, it takes O(d|X| + 2d) time to compose

the feature fS by majorization: In order to count the numbers |X1
S,s| and |X0

S,s| for each

s ∈ B
S, we need to enumerate x|S = (f1(x), f2(x), . . . , fd(x)) for each x ∈ X, which requires

O(d|X|) time. (Here we assume that f j(x) for j = 1, 2, . . . , d is computed in constant time.)

In addition, we need to determine fS(s) ∈ B for each s ∈ B
S, which requires O(2d) time.

As to the empirical error rate of a feature composed by majorization, we derive the

following proposition.

Proposition 2.4 Assume that we are given a data set X labeled by the oracle y. Let us

denote by S and S+ sets of features such that S ⊆ S+. Then two features fS and fS+

composed by majorization (2.6) satisfy e(fS+ ,X) ≤ e(fS ,X).

Proof:

e(fS ,X) =
1
|X|

∑
s∈BS

min{|X1
S,s|, |X0

S,s|}

=
1
|X|

∑
s∈BS

min{
∑

s+∈BS+ :s+|S=s

|X1
S+,s+|,

∑
s+∈BS+ :s+|S=s

|X0
S+,s+|}

≥ 1
|X|

∑
s∈BS

∑
s+∈BS+ :s+|S=s

min{|X1
S+,s+|, |X0

S+,s+|}

=
1
|X|

∑
s+∈BS+

min{|X1
S+,s+|, |X0

S+,s+ |}

= e(fS+,X).

�

Note that the feature fS composed by majorization attains the smallest empirical error

rate among all possible functions from B
S to B. (Note that 22|S|

functions are possible.) Then

the following corollaries are immediate.
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Corollary 2.2 Let feature fS be composed by majorization. Then e(fS ,X) ≤ e(f ′,X) holds

for any f ′ ∈ S.

Corollary 2.3 Let feature f with DAG Gf = (Vf , Ef ) be composed by majorization. Then

it holds e(f,X) ≤ e(f ′,X) for any f ′ ∈ Vf .

From these corollaries, we may obtain features with small empirical error rates by iterative

composition.

Now let us consider which feature set S results in a small empirical error rate e(fS ,X).

For two features f1 and f2, let us define the difference between f1 and f2 on X, denoted by

ediff(f1, f2,X), as follows:

ediff(f1, f2,X) =
1
|X| |{x ∈ X | f1(x) �= f2(x)}|.

Then the following proposition gives us a suggestion on the selection of S.

Proposition 2.5 Assume that we are given a data set X and two features f1 and f2 com-

posed by majorization (2.6) on X. Then the feature fS with S = {f1, f2} composed by

majorization satisfies:

ediff(f1, f2,X) ≥ max{e(f1,X), e(f2,X)} − e(fS ,X).

Proof: Without loss of generality, we assume e(f1,X) ≤ e(f2,X) and b = 0. If fS(00) = 0

and fS(11) = 1 hold (i.e., |X1
S,(00)| ≤ |X0

S,(00)| and |X1
S,(11)| > |X0

S,(11)|), then we have

ediff(f1, f2,X) =
1
|X| (|XS,(01)| + |XS,(10)|)

=
1
|X|

∑
s∈{(01),(10)}

(max{|X1
S,s|, |X0

S,s|} + min{|X1
S,s|, |X0

S,s|})

≥ 1
|X|

∑
s∈{(01),(10)}

(max{|X1
S,s|, |X0

S,s|} − min{|X1
S,s|, |X0

S,s|})

=
1
|X| [(|X

1
S,(00)| + |X0

S,(11)| +
∑

s∈{(01),(10)}
max{|X1

S,s|, |X0
S,s|})

− (|X1
S,(00)| + |X0

S,(11)| +
∑

s∈{(01),(10)}
min{|X1

S,s|, |X0
S,s|})]

≥ 1
|X| (|X

1
S,(00)| + |X0

S,(11)| + |X0
S,(01)| + |X1

S,(10)|) − e(fS ,X)

= e(f2,X) − e(fS ,X),
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and thus ediff(f1, f2,X) ≥ e(f1,X) − e(fS ,X) also holds from the assumption e(f1,X) ≤
e(f2,X).

On the other hand, assume that fS(00) = 1 or fS(11) = 0 hold (i.e., |X1
S,(00)| > |X0

S,(00)|
or |X1

S,(11)| ≤ |X0
S,(11)|). Consider the case of fS(00) = 1. Then since f1 and f2 are composed

by majorization, fS(01) = fS(10) = 0 and fS(11) = 1 hold (since if fS(01) = 1, for example,

then it contradicts that f1 is composed by majorization). Also we have

|X1
S,(00)| + |X1

S,(01)| ≤ |X0
S,(00)| + |X0

S,(01)|, |X1
S,(00)| + |X1

S,(10)| ≤ |X0
S,(00)| + |X0

S,(10)|,

and thus

|X1
S,(00)| − |X0

S,(00)| ≤ |X0
S,(01)| − |X1

S,(01)|, |X1
S,(00)| − |X0

S,(00)| ≤ |X0
S,(10)| − |X1

S,(10)|,

respectively. Thus we have |X1
S,(00)| − |X0

S,(00)| ≤ min{|XS,(01)|, |XS,(10)|}. Then

e(f2,X) − e(fS ,X) = (|X1
S,(00)| − |X0

S,(00)|) + (|X0
S,(01)| − |X1

S,(01)|)
≤ min{|XS,(01)|, |XS,(10)|} + |XS,(01)|
≤ ediff(f1, f2,X).

For the case of fS(11) = 0, the proof is analogous with the above. �

The determination of difference ediff(f1, f2,X) takes O(|X|) time, which is not much

smaller than the time for composing feature f{f1,f2} by majorization. No method for checking

whether e(fS ,X) < e(f1,X), e(f2,X) holds without composing fS itself is known.

Extended majorization.

The above majorization is regarded as an application of the concept of Bayes Rule, well-

known in statistics [67, 81]: The framework of Bayes Rule assumes that data elements are

identically and independently distributed under a certain probability distribution. For a

nonempty set S of features and a vector s ∈ B
S , we write by P 1

S,s (resp., P 0
S,s) the posterior

probability of y(x) = 1 (resp., 0) under x ∈ XS,s. (Note that P 1
S,s + P 0

S,s = 1 holds.) Bayes

Rule sets fS(s) = 1 (resp., 0) if P 1
S,s > P 0

S,s (resp., P 1
S,s < P 0

S,s) holds and fS(s) = b for a

constant b ∈ B otherwise, by which fS attains the smallest true error rate among all possible

functions from B
S to B.

However, the probabilities P 1
S,s and P 0

S,s are usually unavailable to us. Majorization is

then an approximation to Bayes Rule in the sense that, if XS,s �= ∅, it utilizes |X1
S,s|/|XS,s|

(resp., |X0
S,s|/|XS,s|) in place of P 1

S,s (resp., P 0
S,s); otherwise, it sets fS(s) = b.
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Figure 2.2: The area of (|X1
S,s|, |X0

S,s|) on which the hypothesis is rejected

We consider that the classification fS(s) ∈ B on an input s ∈ B
S is uncertain if |X1

S,s| �
|X0

S,s| holds. In order to represent the state of such uncertainty, we introduce the nominal ∗,
a missing bit.

Let us denote M = B ∪ {∗}. We extend feature fS to a function that deals with ∗. The

extended feature is denoted by a function f∗
S : M

S → M, where S denotes a set of (extended)

features.

The extended majorization is a scheme that determines the function f∗
S . In the extended

majorization, for each s ∈ M
S, the output f∗

S(s) is determined based on the following sta-

tistical test [44]: The hypothesis is that true and false examples in XS,s are generated with

the same probability (i.e., P 1
S,s = P 0

S,s = 1/2). If the hypothesis is accepted, we determine

f∗
S(s) = ∗ (i.e., we cannot see the bias of classes). Otherwise, we determine f∗

S(s) = 1 or 0

by the major class in XS,s. We use a parameter α ∈ [0, 1] to determine the rejection rate of

the statistical test; if α is large (resp., small), then f∗
S(s) is more likely to be 1 or 0 (resp.,

∗). This is summarized as follows.

f∗
S(s) =

⎧⎪⎨
⎪⎩

∗ if H(M,m) > α/2,
1 if H(M,m) ≤ α/2 and |X1

S,s| > |X0
S,s|,

0 if H(M,m) ≤ α/2 and |X1
S,s| < |X0

S,s|,
(2.7)

where M = |X1
S,s| + |X0

S,s|, m = min{|X1
S,s|, |X0

S,s|}, and

H(M,m) =
m∑

i=0

(
M

i

)
(
1
2
)i(

1
2
)M−i =

1
2M

m∑
i=0

(
M

i

)
. (2.8)

Figure 2.2 illustrates the area of (|X1
S,s|, |X0

S,s|) on which the hypothesis is rejected (i.e.,
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f∗
S(s) is either 1 or 0) for α ∈ {0.01, 0.1, 0.5, 1}. If the hypothesis on (|X1

S,s|, |X0
S,s|) is rejected

for an α0, then it is also rejected for any α ≥ α0. Note that H(M,m) > 1/2 holds if and

only if |X1
S,s| = |X0

S,s| (i.e., M = 2m), and in this case, the hypothesis is always accepted for

every value of α ∈ [0, 1]. As derived from (2.7) and (2.8), f∗
S(s) = ∗ holds for any s ∈ M

S

such that |XS,s| < 1 − log2 α holds.

Hence the value of α may be determined according to the reliability of the data set; if

the data set is not reliable due to such reasons as its smallness, noise, etc., then α should be

taken small. On the other hand, if it is reliable, then α should be taken large.

Analogously with (2.1), the representation complexity for extended feature f∗, which we

denote by γICF∗(f∗), is defined as follows:

γICF∗(f∗) =
∑

f∗
S∈Vf∗\A

(
log2 kmax + 3|S| log2 3 + log2

(|Vf∗ |
|S|

))
. (2.9)

In order to use f∗
S : M

S → M as a classifier, we compose a feature fS : M
S → B, where

fS(s) is determined by majorization (2.6) for each input s ∈ M
S . Then fS becomes a Boolean

function on B
n, although VfS

may contain some extended features.

We note that an extended feature with output ∗ represents partial knowledge, in the sense

that it tells the bias of classes not for the entire data space but only for its subspace. Use of

the uncertainty value ∗ is not new in computational learning theory (particularly in pattern

recognition). If it is necessary to avoid the classification error, we may allow a classifier to

output ∗, meaning “I cannot decide.” This classification strategy is called a reject option,

and has been studied in [25, 34, 58], for example. From a theoretical viewpoint of Boolean

functions, a function M
n → M has been studied intensively under the framework of partially

defined Boolean functions and LAD (e.g., [20, 21]).

2.3.2 Generation procedures for classifiers.

In the experiments of the next subsection, we approximate the entire set of features composed

by majorization and extended majorization, and that of decision trees by generating a large

amount of classifiers. For this, we introduce generation procedures both for ICF and for

DT. Note that we distinguish a generation procedure from a construction algorithm, which

outputs exactly one classifier.

ICF.

We introduce the following generation procedure GEN-ICF to compose many features by

majorization. In GEN-ICF, Fh denotes a set of features whose heights are h. We compose
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100 features for each Fh (h = 1, 2, . . . , 10). This number of features is considered large enough

to approximate the entire set of features from our preliminary experiments.

Procedure GEN-ICF

Input: A data set X with n attributes (and thus with the set of n initial features A =

{a1, a2, . . . , an}), an upper bound on the number of fan-ins kmax.

Output: A set F of features.

Step 1: F := F0 := A.

Step 2: For h = 1, 2, . . . , 10:

Step 2-1: Fh := ∅. Repeat the following 100 times:

Step 2-1-1: Compose a feature as follows: Select S ⊆ F at random so that

2 ≤ |S| ≤ kmax and S ∩ Fh−1 �= ∅. Determine fS by the majorization.

Step 2-1-2: Fh := Fh ∪ {fS}.
Step 2-2: F := F ∪ Fh.

Step 3: Output F and halt.

In the above procedure, the extended majorization can be used in Step 2-1-1 for feature

determination, in place of majorization. We denote by GEN-ICF∗ such modified procedure

and adopt it as the generation procedure to compose many features by extended majorization.

DT.

For DT, we utilize a construction algorithm C4.5 [65] for our generation procedure of decision

trees. C4.5 has several adjustable parameters and options, and we generate many decision

trees by determining their values at random. In the experiments, we generate 1000 decision

trees for given X, which is considered large enough from our preliminary experiments. We

show the generation procedure of decision trees as follows.

Procedure GEN-DT

Input: A data set X with n attributes.

Output: A set T of decision trees.
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Step 1: Construct 1000 decision trees by applying C4.5 on X with randomly chosen pa-

rameter values and options as follows. We denote by T the set of constructed decision

trees.

Criterion: In a decision tree t with Gt = (Vt, Et) under construction, the leaf v ∈ V leaf
t

to be branched and its labeled attribute are selected based on one of two entropy-

based criteria: gain and gain ratio. One of them are selected at random.

Weight: C4.5 does not branch a leaf v such that the number of examples visiting v

(i.e., |Xv|) is not more than the specified value. We specify the value by selecting

from {1, 2, . . . , C} at random. (Since we have observed that the result does not

change to a great extent if C ≥ �0.1|X|�, we use C = �0.1|X|�.)
CF: CF stands for confidence level , represented by percentage, at which rate pruning

is performed during construction of a decision tree. We select its value from

{1%, 2%, . . . , 100%} at random. A small (resp., large) value of CF tends to produce

a small (resp., large) decision tree.

Windowing: Windowing is such a process described as follows: Several decision trees

are generated by choosing a subset X ′ ⊆ X at random, from which a decision tree

t is constructed. The true error rate of each t is estimated by e(t,X \ X ′). Then

the one attaining the smallest estimation is adopted as the output decision tree.

Whether windowing is applied or not is selected at random. If applied, the number

of iteration is selected from {2, 3, . . . , 10} at random (10 times are large enough in

our experience), and the size of X ′ is selected from {1, 2, . . . , �0.5|X|�} at random

(no significant change has been observed in our preliminary experiments if |X ′| ≥
�0.5|X|�).

Step 2: Output T and halt.

Among the parameters and options described above, we have observed that CF has the largest

influence on the performance of resulting decision trees.

2.3.3 Experimental studies

Experimental setting.

We use benchmark data sets from UCI Repository of Machine Learning Databases [42] in

our experiments. In each data set Ω, an example ω ∈ Ω is described by numerical and/or

categorical attributes. Let Nnum (resp., Ncat) denote the number of numerical (resp., cate-

gorical) attributes of Ω and N = Nnum + Ncat. The summary of data sets is given in Table
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Table 2.1: Data sets from UCI Repository of Machine Learning

Data |Ω| (|Ω1|, |Ω0|) N (Nnum, Ncat) n

AUS (Australian credit approval) 690 (307,383) 14 (6,8) 18
BCW (Breast cancer wisconsin) 683 (239,444) 9 (9,0) 12
BUPA (BUPA liver disorders) 345 (200,145) 6 (6,0) 20
CAR (Car evaluation) 1728 (518,1210) 6 (0,6) 12
CRX (Credit approval) 653 (296,357) 15 (6,9) 15
FLAG (Flag design) 194 (100,94) 28 (10,18) 10
HABER (Haberman’s survival) 294 (75,219) 3 (3,0) 31
HEART (Heart disease) 270 (120,150) 13 (7,6) 12
IONO (Ionosphere) 351 (225,126) 34 (34,0) 11
MUSH (Mushroom) 8124 (3916,4208) 22 (0,22) 5
PIMA (Pima indian diabetes) 768 (268,500) 8 (8,0) 22
TTT (Tic-Tac-Toe endgame) 958 (626,332) 9 (0,9) 12
VOTES (1984 US congressional votes) 435 (267,168) 16 (0,16) 11

2.1, where the rightmost column for n will be described later. E.g., each example in BCW

corresponds to a patient, and its class represents whether it is malignant (true) or benign

(false) to breast cancer. Attributes describe such information as clump thickness, uniformity

of cell size, and so forth.

We make some modifications on the data sets as follows.

• Some data sets contain examples with missing attribute values (e.g., in BCW and CRX),

and we exclude such examples.

• An example of CAR has one of {unacc,acc,good,v-good} for its class. We regard the

examples with class unacc as false ones and the rest as true ones.

• FLAG has no class information, and thus we utilize an attribute “religion” as the class;

if the attribute value is Catholic, then we regard the example as false. Otherwise, it

is treated as a true example.

• Let us call examples having equivalent vectors but different classes contradicting exam-

ples. HABER contains such contradicting examples, and we exclude such examples.

The summary in Table 2.1 is based on the modified data sets as above.

Also, in order to treat a numerical and/or categorical data set Ω in our formulation, we

need to transform Ω into a binary data set X. For this, we apply a discretization scheme



34 CHAPTER 2 COMPARISON BETWEEN ICF AND DECISION TREES
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Figure 2.3: Representation complexity of generated features on BCW

named space based construction (SC) (with parameter values ΓSC = ΓSC,PAIR and V = B),

which was originally proposed by Mii [55] and will be studied in Chapter 4. This scheme

guarantees that X1∩X0 = ∅ holds for the obtained binary data set X. The rightmost column

for n of Table 2.1 shows the number of attributes of X.

We wish to estimate the true error rate of a classifier r. For this, we apply hold-out

method [81]: We divide a binary data set X into halves at random, one for the training

set Xtrain and the other for the test set Xtest. We then generate classifiers from Xtrain by a

generation procedure, where the true error rate of r is estimated by the error rate on the test

set, i.e., e(r,Xtest).

For GEN-ICF and GEN-ICF∗, we use kmax ∈ {3, 4, . . . , 8}. Note that a large (resp., small)

kmax result features with large (resp., small) representation complexity. For GEN-ICF, we

use the constant b = 0 in (2.6). For GEN-ICF∗, we use the parameter value α = 0.1 in (2.7).

Results and discussion.

Let us take a classifier r generated from a representation model R (where R denotes either

ICF or DT and r does either an ICF classifier or a decision tree, respectively). We observe the
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Figure 2.4: Representation complexity of generated decision trees on BCW

representation complexity γR(r). As seen from (2.1), (2.2) and (2.9), γR(r) is proportional

to the number of nodes in the graph representing the structure of r. We show this rela-

tionship between the number of nodes and representation complexity in Figures 2.3 and 2.4,

corresponding to ICF and DT, respectively. In these figures, the horizontal (resp., vertical)

axis is for the number of nodes (resp., representation complexity), where the vertical axis is

in the logarithmic scale. The representation complexity is taken as the average among the

classifiers generated on BCW consisting of the same number of nodes. In Figure 2.3, we show

the representation complexity of only kmax = 3 and 6 for legibility.

We next observe the attained empirical and true error rates. We show the results of

generation procedures GEN-ICF, GEN-ICF∗ and GEN-DT on BCW (resp., CAR) data set

in Figures 2.5 to 2.7 (resp., Figures 2.8 to 2.10) respectively, where we use kmax = 3. In these

figures, for four segments of the number of nodes (which is proportional to representation

complexity), a classifier is plotted by empirical error rate (horizontal axis) and true error rate

(vertical axis). One can observe that a complex classifier is likely to attain a small empirical

error rate, where this does not always hold for the case of true error rate.

A set of classifiers generated by GEN-ICF (resp., GEN-ICF∗ and GEN-DT) approximates

the entire set of features composed by majorization (resp., features composed by extended

majorization and decision trees). Then the best (resp., smallest) true error rate in a classifier

set may indicate its potential performance. Let us call the best true error rate in a classifier

set its potential error rate. As shown in the figures, the potential error rates of the three
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Table 2.2: Potential error rates (×102) of GEN-ICF and GEN-DT

Data GEN-ICF GEN-DT
kmax = 3 4 5 6 7 8

AUS 13.90 13.06 12.45 12.75 13.15 13.73 13.47
BCW 2.36 2.66 2.54 2.86 2.92 2.83 3.56
BUPA 29.19 27.39 28.26 28.32 29.07 29.36 29.19
CAR 5.52 3.18 2.15 2.27 2.23 2.49 0.92
CRX 11.80 11.56 11.31 11.58 11.74 12.01 11.83
FLAG 9.17 8.45 8.96 9.79 9.07 9.58 9.89

HABER 21.63 21.70 21.76 21.70 21.90 21.70 23.46
HEART 14.37 13.25 13.7 14.66 14.51 15.25 14.66
IONO 7.78 7.78 7.78 7.95 8.29 8.18 9.26
MUSH 0.17 0.00 0.00 0.00 0.00 0.00 0.00
PIMA 22.37 22.03 22.26 22.78 22.47 22.96 22.18
TTT 21.12 16.57 12.19 8.35 8.39 8.56 2.12

VOTES 3.16 2.75 3.25 3.02 3.16 3.11 3.94

Potential 12.50 11.56 11.27 11.23 11.30 11.52 11.11

procedures do not differ on BCW, while GEN-DT is best of all on CAR in terms of potential

error rate; GEN-DT generates a classifier whose potential error rate is nearly 0.

Let us examine the potential error rates for all data sets. To compare the potential

error rates of the three procedures, we iterate division of the data set X into Xtrain and

Xtest 10 times and take the average of potential error rates as the evaluator of a generation

procedure. Tables 2.2 and 2.3 show the results of GEN-ICF and GEN-ICF∗ respectively,

where the result of GEN-DT is present in both tables for convenience. A boldfaced error rate

on ICF procedures indicates a value smaller than GEN-DT. A value at the bottom row (i.e.,

Potential) is the average of these potential error rates for all data sets.

ICF procedures outperform GEN-DT for all data sets except CAR and TTT. Also, as is

observed from the bottom row, GEN-ICF∗ appears to be better than GEN-ICF; extended

majorization can produce better features than majorization. The main reason for this is that

a feature composed by extended majorization has M-valued functions as its intermediate fea-

tures, and it can produce more various Boolean functions than one composed by majorization.

We observed that a larger value of kmax leads to a smaller potential error rate in general;

a large kmax may produce features with complex structure more often than a small kmax
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Table 2.3: Potential error rates (×102) of GEN-ICF∗ and GEN-DT

Data GEN-ICF∗ GEN-DT
kmax = 3 4 5 6 7 8

AUS 12.28 11.93 12.63 12.80 12.69 12.77 13.47
BCW 2.39 2.39 2.45 2.39 2.54 2.36 3.56
BUPA 28.09 27.34 27.28 28.03 27.80 27.91 29.19
CAR 4.16 2.75 2.38 2.18 2.16 2.67 0.92
CRX 11.25 11.34 11.10 11.52 11.46 11.52 11.83
FLAG 7.94 7.42 7.83 7.83 8.24 8.66 9.89

HABER 21.15 21.22 21.29 21.15 21.29 21.08 23.46
HEART 13.40 13.62 13.62 14.14 14.51 14.44 14.66
IONO 7.66 8.01 7.95 8.12 8.69 7.83 9.26
MUSH 0.07 0.00 0.00 0.00 0.00 0.00 0.00
PIMA 22.42 22.10 21.82 22.94 22.71 22.29 22.18
TTT 17.66 14.73 10.41 9.95 9.25 8.95 2.12

VOTES 2.56 2.65 2.93 2.93 2.93 2.84 3.94

Potential 11.61 11.19 10.89 11.07 11.09 11.02 11.11

does, and thus various Boolean functions can be generated by a large kmax. These results

show that extended majorization generates potentially good ICF classifiers since there exists

a good classifier in the feature set generated by GEN-ICF∗. In other words, we can compose

good features by extended majorization.

Then let us consider how to design a construction algorithm Λ that outputs one good

ICF classifier. We may consider such Λ as a procedure that generates a (reasonably) large

number of features similarly to the procedures in the experiments, and adopts one of them as

the classifier by using some criteria. Since we do not know the true error rate of a classifier

in the generation process of Λ, the criteria for adoption should reflect the tendency of true

error rate to some extent (at least in the generated feature set).

Besides, Λ may include several parameters for regulation, similarly to many of construc-

tion algorithms proposed so far in previous studies. It is desirable for Λ to produce a good

classifier when its parameter values are finely tuned up, but determining appropriate param-

eter values is usually difficult. Then what is more significant as a property of Λ is that a

good classifier is produced for almost all parameter values.

Based on this observation, we will propose construction algorithms of ICF classifiers in
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the next Chapter 3.

2.4 Concluding remarks

In this chapter, we compared the potential performance between two representation models,

ICF and DT. In Section 2.2, we showed that ICF is superior to DT in view of Occam’s Razor,

as is summarized in Theorem 2.1. In Section 2.3, we conducted experimental studies on two

feature determination schemes, majorization and extended majorization. The results showed

that these schemes enable us to construct better classifiers than decision trees, and that the

latter can produce better ICF classifiers than the former.
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Figure 2.5: Spreads of features by GEN-ICF with kmax = 3 on BCW
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Figure 2.6: Spreads of features by GEN-ICF∗ with kmax = 3 on BCW
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Figure 2.7: Spreads of decision trees by GEN-DT on BCW
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Figure 2.8: Spreads of features by GEN-ICF with kmax = 3 on CAR
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Figure 2.9: Spreads of features by GEN-ICF∗ with kmax = 3 on CAR
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Figure 2.10: Spreads of decision trees by GEN-DT on CAR



Chapter 3

Two Construction Algorithms for

ICF Classifiers: with/without

Missing Bits

3.1 Introduction

In this chapter, we propose two construction algorithms for ICF classifiers: ALG-ICF and

ALG-ICF∗. ALG-ICF (resp., ALG-ICF∗) constructs an ICF classifier by utilizing features

determined by majorization (2.6). (resp., extended majorization (2.7)).

Both algorithms consist of an iteration of composition process and selection process. In

the former, new features are composed from the already composed features, and in the latter,

some of them are selected to be maintained for the next iteration. Then at last, an ICF

classifier is obtained by selecting one feature from the maintained features as the final feature.

The two algorithms are different not only in feature types but also in selection process.

ALG-ICF selects features in a greedy way on the basis of empirical error rate. On the other

hand, ALG-ICF∗ selects features so that the selected features cover the entire training set

well, as measured by the classification cost .

We give some computational results in Section 3.3 to make comparison between several

construction algorithms; ALG-ICF, ALG-ICF∗ for ICF, C4.5 of release 5 [65] for DT, and

BSVM of version 2.06 [48, 46, 47] for SVM. The results show that ALG-ICF∗ outperforms

ALG-ICF, and that ALG-ICF∗ can construct better classifiers than C4.5 and BSVM, when

its parameter values are finely tuned up. We also observe that ALG-ICF∗ takes much less

computation time than ALG-ICF.

45
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3.2 Algorithms ALG-ICF and ALG-ICF∗

3.2.1 Common framework of ALG-ICF and ALG-ICF∗

We first describe the common structure of ALG-ICF and ALG-ICF∗. Both algorithms consist

of two nested iterations. Let us call the h-th outer iteration (h ≥ 1) stage h. An inner iteration

in each stage consists of composition process and selection process.

Assume that we are in stage h. Let Fh′ denote the set of features which are generated in

stage h′ (0 ≤ h′ < h) and are maintained currently, where we let F0 = A, the set of initial

features. Let F := F0 ∪ · · · ∪ Fh−1. In the (d − 1)-st inner iteration (d ≥ 2) of stage h, the

composition process generates the feature set Fh,d of features as follows;

Fh,d = {fS | S ⊆ F, S ∩ Fh−1 �= ∅, |S| = d}. (3.1)

In other words, features {fS} are composed in the order of the size |S| = d (and thus in the

order of representation complexity, approximately) in inner iterations.

The selection process then selects some features from F ∪ Fh,2 ∪ . . . Fh,d by the selection

rule, and prunes away the unselected features. The sets F,Fh,2, . . . , Fh,d are then reduced

to the sets of such features that remain after the selection process. If the reduced set Fh,d

satisfies Fh,d �= ∅, then the algorithms go to the next d-th inner iteration (and compose the

set Fh,d+1 of features). On the other hand, if Fh,d = ∅ holds, we consider the following two

cases: (i) d = 2 (i.e., no feature in stage h is selected). The algorithms output a feature in the

current set F as an ICF classifier and halt. (ii) d > 2. Let us denote by Fh = Fh,2∪· · ·∪Fh,d−1.

The algorithms update F := F ∪ Fh, and go to the next stage (h + 1).

The common description of the two algorithms is given as follows.

Common Description of ALG-ICF and ALG-ICF∗

Input: A data set X with n attributes (and thus with the set A = {a1, a2, . . . , an} of n

initial features) and parameters (which are specified in each algorithm).

Output: An ICF classifier.

Step 1: F := F0 := A and h := 1.

Step 2: d := 2.

Step 2-1 (Composition) : Generate Fh,d by (3.1).

Step 2-2 (Selection) : Let F ′ denote the features which are selected from F ∪Fh,2 ∪
· · · ∪Fh,d by the selection rule (specified in each algorithm). Update F := F ∩F ′,

Fh,2 := Fh,2 ∩ F ′, . . . , and Fh,d := Fh,d ∩ F ′.
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Step 2-3: If Fh,d �= ∅, then let d := d + 1 and return to Step 2-1.

Step 3: If d > 2, then let Fh := Fh,2 ∪ · · · ∪ Fh,d−1, F := F ∪ Fh, h := h + 1, and return to

Step 2.

Step 4: Output the feature having the smallest empirical error rate among F and halt.

ALG-ICF and ALG-ICF∗ are different in feature types and in selection rules. In the next

subsections, we show the detail of each algorithm.

3.2.2 Algorithm ALG-ICF

In ALG-ICF, each feature fS ∈ Fh,d is treated as a Boolean function fS : B
S → B, and is

determined by (2.6).

Let S = {f1, f2, . . . , fd} denote a set of d features, and let Sj = S \{f j} (j = 1, 2, . . . , d).

In the (d − 1)-st inner iteration of stage h (d ≥ 2, h ≥ 1), the selection rule of ALG-ICF is

described as follows;

Selection Rule (ALG-ICF): A set F ′ of features is selected from the given sets F ∪Fh,2∪
· · · ∪ Fh,d as follows.

Step 1: F ′ := A.

Step 2: For each feature fS ∈ (F \A)∪Fh,2 ∪ · · · ∪Fh,d, if fS satisfies all the following three

conditions, then F ′ := F ′ ∪ {fS}.

(i) fSj ∈ F ∪ Fh,2 ∪ · · · ∪ Fh,d holds for all j = 1, . . . , |S|.

(ii) e(fS ,X) ≤ ηe(fSj ,X) holds for all j = 1, . . . , |S|, where η is a parameter (0 ≤ η < 1).

(iii) fS has the smallest empirical error rate among the features in F ∪Fh,2∪· · ·∪Fh,d having

the same A ∩ VfS
.

Proposition 2.4 tells us that empirical error rate is non-increasing as the composition proceeds.

By (ii) of Step 2, we put a restrictive condition for a feature fS to be selected.

The conditions (i) and (ii) say that a feature fS of large S can be selected under a very

tight condition, and thus fS of a large representation complexity should not be selected. Due

to the condition (iii), the number of maintained features is kept within 2n (i.e., |F | ≤ 2n)

during the execution of ALG-ICF.
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3.2.3 Algorithm ALG-ICF∗

Classification cost.

We introduce the following cost function ϕ to be used in the algorithm ALG-ICF∗, in order

to evaluate an extended feature f∗
S by the performance on the training set X.

ϕ(f∗
S ,X) = (e(f∗

S ,X) + μu(f∗
S ,X))(

1
Δ(f∗

S)
)β , (3.2)

where the empirical error rate e(f∗
S ,X) is defined by (1.1), and

u(f∗
S ,X) =

1
|X| |{x ∈ X | f∗

S(x) = ∗}|,

Δ(f∗
S) =

1
2|S|

|{s ∈ B
S | f∗

S(s) ∈ B}|.

Here u(fS ,X) denotes the uncertainty rate of f∗
S on X, and Δ(fS) denotes the decisiveness

rate as a function on the restricted domain B
S (whose size is 2|S|). μ and β are parameters

to be set by the user. In the computational experiments in Section 3.3, μ is set from 0.1 to

0.5, and β is set to 0.3.

It may appear that a definition ϕ = e + μu (i.e., (3.2) with β = 0) is more natural for

the cost function; in fact, it is used in the pattern recognition algorithms [25, 67]. However,

it tends to give a good score to such a feature having a high u (i.e., close to 1) if μ is small,

even if the feature does not classify most examples decisively; e.g., if e = 0 and u = 1, then

ϕ = e + μu = μ. To avoid this, we require that f∗
S should be decisive to some extent, at least

in such inputs s whose components are all decisive (i.e., s ∈ B
S). Based on this observation,

we weight the cost e + μu by (1/Δ)β with an appropriate parameter β ≥ 0.

Given two sets S ⊂ S+, we note that s+ ∈ M
S+

and s = s+|S satisfy |XS,s| ≥ |XS+,s+|,
since |XS,s| =

∑
s+|S=s |XS+,s+|. Thus as a result of introducing the term (1/Δ)β , we expect

that ϕ(f∗
S ,X) ≤ ϕ(f∗

S+ ,X) holds, since f∗
S+(s+) = ∗ may hold for a small |XS+,s+| under a

relatively small α (e.g., α ≤ 0.5), as indicated in Figure 2.2; it leads to a small Δ(f∗
S+) and

thus a large ϕ(f∗
S+ ,X). In summary, the cost function (3.2) with a reasonably large β gives

an advantage to such a feature f∗
S that attains a small e + μu and is composed of a small

set S. In this sense, features selected by the selection process of ALG-ICF∗ are kept small

representation complexity, and thus kept rather robust (i.e., not overfitting to the data set

X). We will discuss the influence of parameters α, β, μ later in Section 3.3.

Description of ALG-ICF∗.

In ALG-ICF∗, each feature f∗
S ∈ Fh,d is treated as f∗

S : M
S → M determined by (2.7).
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Consider the (d−1)-st inner iteration of stage h (d ≥ 2, h ≥ 1). For each example x ∈ X,

we define

F (x) = {f∗
S ∈ (F \ A) ∪ Fh,2 ∪ · · · ∪ Fh,d | f∗

S(x) = y(x)}, (3.3)

i.e., F (x) is the set of features (not including initial features) covering x. The selection process

of ALG-ICF∗ tries to maintain a set of features from F ∪Fh,2∪· · ·∪Fh,d so that the resulting

features, as partial knowledge, cover X well. To be more precise, for each example x ∈ X,

if F (x) �= ∅, the feature f∗
S ∈ F (x) which has the smallest ϕ(f∗

S ,X) is selected; features not

selected for any example x ∈ X are pruned away.

Also, among the features selected as above, ones having relatively large ϕ are also pruned.

The selection process of ALG-ICF∗ is described as follows.

Selection Rule (ALG-ICF∗): A set F ′ of features is selected from the given sets F ∪Fh,2∪
· · · ∪ Fh,d as follows.

Step 1: F ′ := ∅. If d > 2, for each f∗
S ∈ Fh,d, test if there is an f∗

Sj
∈ Fh,d−1 for some

j = 1, . . . , d. If no, then let Fh,d := Fh,d \ {f∗
S}.

Step 2: Using the resulting F,Fh,2, . . . , Fh,d, construct F (x) of (3.3) for all x ∈ X. For each

x ∈ X, if F (x) �= ∅, then choose f∗
S ∈ F (x) having the smallest ϕ(f∗

S ,X). If f∗
S /∈ F ′,

then let F ′ := F ′ ∪ {f∗
S}.

Step 3: Exclude �π|F ′|� features from F ′ having the largest ϕ, where π is a parameter

(0 ≤ π ≤ 1).

Step 4: F ′ := F ′ ∪ A.

Note that initial features are not pruned by the selection process. It is due to the empirical

reason that maintaining them often makes a constructed classifier better.

Since at most one feature is selected for one example x ∈ X, |F | ≤ n + |X| holds at

the end of the selection process. This bound is much smaller than the bound |F | ≤ 2n for

ALG-ICF.

ALG-ICF∗ aims at constructing global knowledge (i.e., the output classifier) from pieces

of partial knowledge. We expect the features generated in later stages to attain small e and

u, Δ � 1, and thus a small ϕ. Here, boosting (e.g., [35]) is a methodology to construct a

better classifier from a set of classifiers, called weak hypotheses. In the research of boosting,

it is pointed out that weak hypotheses covering different examples from each other result in a

good classifier. We expect that our selection rule with covering condition has a similar effect.
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In Step 4 of the common algorithm description of Section 3.2.1, we modify each feature

f∗
S ∈ F to a function fS : M

S → B by determining fS(s) = 0 or 1 by (2.6) for each s ∈ M
S.

Then the empirical error rate e(fS ,X) is computed again. We obtain an ICF classifier as the

feature attaining the smallest empirical error rate.

3.3 Computational experiments

In the experiments, we compare classifiers constructed by four construction algorithms based

on different representation models. All computations are carried out on a PC (Pentium IV

2.8GHz, memory 1GB).

3.3.1 Experimental setting

Data sets.

We utilize UCI data sets of Table 2.1 by transforming them into binary data sets, similarly

to the experiments in Chapter 2. We also utilize artificial data sets. Each artificial data set

has a linear threshold function as its oracle y : B
n → B, which is defined as follows: For each

x ∈ B
n,

y(x) =

{
1 if

∑n
j=1 wjxj ≥ 0,

0 otherwise,

where we use n = 14. Let n0 ∈ {5, 6, . . . , n}. For an attribute j = 1, 2, . . . , n0, we set wj at

random so that −1 ≤ wj ≤ 1, and for a remaining attribute j = n0 + 1, n0 + 2, . . . , n, we set

wj = 0, in order to allow irrelevant attributes. (Thus each value of n0 defines an oracle on

B
n.) For each n0 ∈ {5, 6, . . . , n}, we call the data set containing whole vectors in B

n as the

examples ART5, ART6, . . . , ART14, respectively.

For each data set X and each construction algorithm, we generate a training set Xtrain

and a test set Xtest 10 times. For a UCI data set, we generate Xtrain and Xtest by dividing

X into halves at random so that |Xtrain| = |Xtest| = |X|/2 and Xtrain ∩ Xtest = ∅ hold. For

an artificial data set, we pick up 400 vectors in B
n at random and use them as examples of

Xtrain. We use the whole vectors in B
n as the test set, i.e,. Xtest = B

n. We construct a

classifier from each Xtrain, and estimate the true error rate by the average of 10 error rates

of classifiers on their test sets.
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Parameter values.

The construction algorithms have some program parameters, and they have more or less

significant influence on the performance.

ALG-ICF has a single parameter η ∈ [0, 1), which controls the number of generated

features; if η is larger, then more features are generated and the computation time gets

larger. We use η ∈ {0.75, 0.80, 0.85, 0.90, 0.95} such that ALG-ICF halts within 600 seconds.

Also, we use b = 0 in majorization (2.6).

For ALG-ICF∗, we use all combinations of parameter values such that α ∈ {0.01, 0.05, 0.1,
0.25, 0.5}, β = 0.3, μ ∈ {0.1, . . . , 0.5}, and π = 0.3. The influence of α, β, μ on ALG-ICF∗ is

discussed in the next subsection.

Among the parameters of C4.5 (see Section 2.3.2), CF (confidence level) has the most

significant role in determining the performance of output decision trees. We use 1%, 5%,

10%, 25%, 50%, 75%, 100% for CF.

A classifier of SVM is represented in the form of hyperplane, and its construction is

formulated in several ways [54, 72, 38, 78]. BSVM [48, 46, 47] uses a standard formulation

called a generalized support vector machine in [54]. In this formulation, an SVM classifier r

is represented as follows;

r(x) =

{
1 if

∑m
i=1 wiy

′
iK(x, xi) ≥ θ,

0 otherwise,
(3.4)

where m = |Xtrain|, xi ∈ Xtrain is the i-th example in Xtrain, y′i = 2y(xi) − 1 (and thus

y′i ∈ {±1}), K : R
n × R

n → R is a kernel function, each wi is determined by solving the

following mathematical programming problem;

max
w1,w2,...,wm

m∑
i=1

wi − 1
2

m∑
i,ι=1

wiwky
′
iy

′
ιK(xi, xι)

s.t.
m∑

i=1

wiy
′
i = 0,

wi ≥ 0 (i = 1, 2, . . . ,m), (3.5)

and θ in (3.4) is determined from the obtained w1, w2, . . . , wm.

For the kernel function, we employ two types of Boolean kernel functions for binary data

sets, denoted by K2 and K3, which are defined by:

K2(x, xi) = 2|{j|xj=xi
j=1, j=1,2,...,n}| − 1,

K3(x, xi) = 3|{j|xj=xi
j , j=1,2,...,n}| − 1.
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Table 3.1: Best true error rates (×102) of construction algorithms on UCI data sets

Data ALG-ICF ALG-ICF∗ C4.5 BSVM (Std.err)

AUS 15.13 
14.87 15.13 16.03 1.32
BCW 4.33 4.09 5.15 
3.92 0.74
BUPA 37.05 33.35 35.85 
33.29 2.54
CAR 5.53 1.10 1.81 
0.57 0.19
CRX 
12.91 13.43 13.69 15.57 1.31
FLAG 10.62 10.62 
10.60 13.20 2.21

HABER 27.62 
26.60 26.95 31.98 2.58
HEART 22.15 
18.30 20.15 21.33 2.35
IONO 
10.00 11.70 10.29 12.27 1.60
MUSH 1.14 
0.00 
0.00 
0.00 0.00
PIMA 26.38 
24.69 26.04 28.83 1.56
TTT 19.71 4.05 13.13 
1.71 0.42

VOTES 
3.99 4.13 4.86 5.41 0.94

Best 15.12 
12.84 14.13 14.16 (N.A.)

Note that the original implementation of BSVM does not support Boolean kernel functions.

We implement these functions by ourselves.

3.3.2 Results

True error rates.

We examine the best (i.e., smallest) true error rates of each construction algorithm, obtained

from all possible parameter values. The results for UCI data sets and artificial data sets are

shown in Tables 3.1 and 3.2, respectively. In the table, the sign 
 indicates the best true

error rate e among the four construction algorithms, and its standard error represented in

the rightmost column is determined by
√

e(1 − e)/|X|. We represent the error rates whose

difference from e is within the standard error (i.e., no significant difference from e) by boldface.

Also, at the bottom of Table 3.1 (resp., Table 3.2), we show the average of error rates for all

UCI data sets (resp., artificial data sets).

We see that ALG-ICF∗ is the best construction algorithm among all in the sense that it

ranks first on most data sets, and even in the data sets where it is not the case, it ranks second

or its error rates are within standard errors. Also, BSVM may be most suitable to artificial

data sets since an SVM classifier is represented by hyperplane, but for small n0, ALG-ICF∗
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Table 3.2: Best true error rates (×102) of construction algorithms on artificial data sets

Data ALG-ICF ALG-ICF∗ C4.5 BSVM (Std.err)

ART5 15.63 
0.00 
0.00 1.76 0.00
ART6 15.78 
0.00 0.63 3.78 0.00
ART7 19.30 
0.86 3.03 5.41 0.07
ART8 14.80 
2.50 4.72 5.88 0.12
ART9 17.48 
3.53 6.55 5.82 0.14
ART10 17.54 
5.47 10.00 7.58 0.18
ART11 19.79 
6.92 10.67 7.80 0.20
ART12 23.02 8.55 13.95 
8.52 0.22
ART13 28.81 10.99 17.98 
9.04 0.22
ART14 23.09 12.26 19.64 
9.18 0.23

Best 19.52 
5.11 8.72 6.48 (N.A.)

attains the best performance among all. The results show that ALG-ICF∗ can construct a

good classifier for various kinds of data sets by using appropriate parameter values.

In Figure 3.1, we show an ICF classifier constructed by ALG-ICF∗ on BCW data set: For

each feature f∗
S, we put the name of the feature f∗

S, the names of the features in S, and the

vectors s ∈ M
S to which f∗

S(s) = 0 or 1 holds (those to f∗
S(s) = ∗ is omitted). Also, the

estimated true error rate is shown on the final node (i.e., it is 4.971%, present on the node

named 5-2).

Computation time.

Table 3.3 shows the average of computation time which each construction algorithm takes to

construct the classifiers given in Tables 3.1 and 3.2. In the table, the sign - indicates that

computation time is less than 0.01 seconds. For ALG-ICF, recall that we test several values

for the parameter η. Then the sign + indicates that ALG-ICF does not halt within 600

seconds for large values of η, which means that the error rates given in Tables 3.1 and 3.2

are obtained by a small value of η.

As can be seen, C4.5 outperforms the other algorithms. BSVM ranks second, and ALG-

ICF∗ is slightly worse than BSVM. We note that ALG-ICF∗ takes much less computation

time than ALG-ICF. In our experience, the computation time of ALG-ICF∗ and ALG-ICF

is proportional to |F |, the number of maintained features, which is bounded as |F | ≤ n+ |X|
in ALG-ICF∗ and |F | ≤ 2n in ALG-ICF. It may explain the significant difference in the
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computation time between the two construction algorithms.

Comparison of ALG-ICF and ALG-ICF∗.

As clear from the computational results, ALG-ICF∗ shows much better performance than

ALG-ICF both in true error rate and in computation time. Recall that ALG-ICF∗ and

ALG-ICF are different in (i) feature types and in (ii) selection rules.

The effect of (i) can be seen in our observation that, for almost all data sets, the best

ALG-ICF∗ classifiers have small depths in DAG representations, and are achieved by small

α from 0.01 to 0.1 (i.e., composite features output ∗ for a nontrivial portion of inputs).

The effect of (ii) is also significant. ALG-ICF∗ maintains not only major features covering

many examples but also minor features covering a small number of (exceptional) examples in

the data set; ALG-ICF may maintain only major features due to its selection rule. We also

conducted the computational comparison between ALG-ICF∗ and ALG-ICF with features

f∗
S : M

S → M determined by extended majorization (2.7) (i.e., only the selection rules are

different), and observed that the former still gives better true error rate than the latter (the

details are omitted).

Influence of parameters on ALG-ICF∗.

We discuss the influence of parameters α, β, μ on ALG-ICF∗. Let S and S+ denote arbitrary

sets of features such that S ⊂ S+. Take an arbitrary vector s+ ∈ B
S+

, and let s = s+|S .

We first consider the influence of α. If α is large (e.g., α ≥ 0.75), then f∗
S(s) and f∗

S+(s+)

are likely to be set to 0 or 1, and Δ(f∗
S) and Δ(f∗

S+) become close to 1 (hence so do (1/Δ(f∗
S))β

and (1/Δ(f∗
S+))β in (3.2)). Then the influence of Δ, u on ϕ(f∗

S ,X), ϕ(f∗
S+ ,X) should be small,

and Proposition 2.4 tells us that ϕ(f∗
S+) ≤ ϕ(f∗

S) (approximately) holds. f∗
S+ composed of a

large set S+ is preferred in the selection process, and thus the inner iteration tends to halt

with a large d.

On the other hand, if α is small, then since |XS+,s+| < |XS,s|, f∗
S+(s+) is likely to be set to

∗, whereas f∗
S(s) is still likely to be set to 0 or 1 (see Figure 2.2). In this case, Δ(f∗

S+) < Δ(f∗
S)

implies (1/Δ(f∗
S+))β > (1/Δ(f∗

S))β (unless β is extremely small). Then f∗
S composed of a

small set S is preferred in the selection process, and thus the inner iteration tends to halt

with a small d.

We next consider the influence of β and μ. As argued above, u(f∗
S ,X) ≤ u(f∗

S+,X)

and Δ(f∗
S+) ≤ Δ(f∗

S) should usually hold (and μu(f∗
S ,X) ≤ μu(f∗

S+,X) and (1/Δ(f∗
S+))β ≥

(1/Δ(f∗
S))β should also hold). Then, if β and μ are large, we have ϕ(f∗

S+ ,X) > ϕ(f∗
S ,X),
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and f∗
S composed of a small set S is preferred in the selection process, and thus the inner

iteration tends to halt with a small d. If β and μ are small, the converse would be observed.

Figure 3.2 illustrates the above discussion about the influence of α, β on the size of d in

one stage of ALG-ICF∗, where a heavier color indicates a large d. Figure 3.3 gives the results

observed on ART8 data set. As the inner iteration may be executed more than once (i.e., in

more than one stage) in one execution of ALG-ICF∗, we keep the maximum dmax of d among

all stages, and take the average over 10 training sets for given α, β, μ. In Figure 3.3, we show

the average of dmax by colors for each μ ∈ {0.2, 0.3, 0.4, 0.5}, where a heavier color means a

large dmax. We notice that the results show a tendency similar to that anticipated in Figure

3.2.

Note that, if d is too large (resp., too small), then the resulting features may overfit

(resp., underfit) to the data set; in either case, they may attain poor true error rates. Thus

we should determine α, β, μ so that d is “appropriate” for the considered data set.

To confirm the above observation, we consider true error rates realized by different values

of α, β, μ (leading to different d) on ART8 data set. For given α, β, μ, we denote the estimated

true error rate by ε(α, β, μ). Figure 3.4 gives ε(α, β, μ) on ART8 for all tested α, β, μ. The

tendency as discussed above is clearly shown here, since the middle areas attain rather small

true error rates, where dmax is from 5 to 7 approximately.

The results in Tables 3.1 and 3.2 tell that ALG-ICF∗ can construct good classifiers if

we are allowed to tune the parameters appropriately, which, however, may be difficult to be

attained in practical situations.

3.4 Concluding Remarks

We proposed two construction algorithms for the representation model ICF, ALG-ICF and

ALG-ICF∗. ALG-ICF is based on features determined by majorization (2.6), while ALG-

ICF∗ is based on those determined by extended majorization (2.7). Both algorithms consist of

composition process and selection process, but are significantly different in selection process.

Our computational experiments show that ALG-ICF∗ outperforms ALG-ICF both in true

error rate and in computation time, and that ALG-ICF∗ is better than C4.5 for DT and

BSVM for SVM in true error rate.
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Name: 1-2

Name: 2-10 (1-2,1-4,1-3)
|010|110|101|011|111| -> 1

|000| -> 0

Name: 4-5 (1-2,3-38,1-6)
|010|110|011|111| -> 1

|000|100|001| -> 0

Name: 5-2 (1-2,4-5)
|01|11|1*| -> 1

|00|10|*0|*1|0*|**| -> 0
4.971%

Name: 1-10

Name: 3-38 (1-10,2-10)
|01|11|1*| -> 1

|00|0*| -> 0

Name: 1-4 Name: 1-3 Name: 1-6

Figure 3.1: An ICF classifier composed on BCW
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Table 3.3: Computation time (sec.) of construction algorithms

Data ALG-ICF ALG-ICF∗ C4.5 BSVM

AUS +0.03 0.11 - 0.06
BCW +15.48 0.51 - 0.02
BUPA +0.16 1.73 - 0.02
CAR +31.34 5.71 - 0.11
CRX +0.02 0.11 - 0.05
FLAG - - - -

HABER +2.45 0.08 - -
HEART +0.05 0.06 - 0.01
IONO 0.01 0.02 - 0.01
MUSH 0.29 0.24 0.01 0.10
PIMA +1.50 0.14 0.01 0.08
TTT +26.59 9.07 - 0.09

VOTES 0.02 0.02 - 0.01

ART5 +0.36 0.08 - 0.04
ART6 +0.57 0.18 - 0.04
ART7 +0.86 0.55 - 0.04
ART8 +5.92 0.39 - 0.04
ART9 +0.88 0.52 - 0.04
ART10 +4.83 0.73 - 0.04
ART11 +1.17 0.47 - 0.04
ART12 +0.66 0.69 - 0.04
ART13 +0.21 2.34 - 0.05
ART14 +11.70 1.43 - 0.05
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α

β

small d

large d

Figure 3.2: Influence of α, β on the resulting d of inner iterations
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Figure 3.3: dmax for various α, β, μ on ART8
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Chapter 4

Extention of ICF Classifiers to Real

World Data Sets

4.1 Introduction

In Chapter 3, we proposed the construction algorithm ALG-ICF∗ of ICF classifiers on M-

valued data sets, i.e., the data space S is represented as S = M
n, where n denotes the

dimensionality of M-valued data sets. In this chapter, we extend ALG-ICF∗ so that it can

process real world data sets consisting of numerical and/or categorical attributes. For this

purpose, we incorporate a discretization scheme into ALG-ICF∗ as its preprocessor, by which

an input real world data set is transformed into M-valued one.

Let us denote by N the dimensionality of such a real world data set. For each attribute

q ∈ {1, 2, . . . , N}, let us denote by Dq the domain of the attribute q. We assume that Dq

is either numerical or categorical. For a numerical attribute q, Dq may be a subset of the

set R of real numbers or the set Z of integers. For a categorical attribute q′, Dq′ is a set of

unordered categories, e.g., Dq′ = {blue, red, white, black}. We assume the data space S to

be S = D1 × D2 × · · · × DN , and write a data set over S by Ω.

In order to process Ω by ALG-ICF∗, we equip ALG-ICF∗ with a discretization scheme

as its processor, which maps Ω over S to X over M
n (where the dimensionality n is suitably

determined by the discretization scheme): In the resulting algorithm, we first transform Ω

into a data set X and then apply ALG-ICF∗ to X in order to construct an ICF classifier.

Thus our purpose in this chapter is to establish such a discretization scheme.

Let us denote by χ a discretizer , which is a mapping from S to M. Our discretization

scheme constructs a set D = {χ1, χ2, . . . , χn} of n discretizers, where each χj (j = 1, 2, . . . , n)

will be used as attribute j in the transformed M-valued data set X. It is desirable for a

61
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discretization scheme to select discretizers so that we can construct a good ICF classifier by

ALG-ICF∗ from the resulting X.

In Section 4.2, we introduce two conventional discretization schemes, domain based con-

struction (DC) and space based construction (SC). In DC, we regard a discretizer as a classifier

with reject option (i.e., classifier which may output ∗ to indicate “we don’t know the class”

rather than 0 or 1). For each numerical or categorical attribute q ∈ {1, 2, . . . , N}, we select

such a discretizer that minimizes the misclassification cost among all candidates. We can

find such an optimum discretizer by solving dynamic programming for a numerical attribute

[37], and by the Näıve-Bayesian approach for a categorical attribute [28]. On the other hand,

the SC searches a set of discretizers that partitions the data space S into “well-separated”

subspaces by a greedy algorithm.

Then in Section 4.3, after studying the advantages and defects of these schemes by compu-

tational experiments, we propose algorithm ALG-ICF∗
IC, which is ALG-ICF∗ equipped with

a new discretization scheme, integrated construction (IC). Our computational experiments

reveal that ALG-ICF∗
IC outperforms C4.5 designed for real world data sets in many cases.

4.2 Conventional discretization schemes

4.2.1 Discretizers

For a numerical or categorical attribute q ∈ {1, 2, . . . , N}, we define a discretizer by a tuple

χ = (q,P, �), where P denotes a partition of the domain Dq and � denotes a label . A partition

P = {P1, P2, . . . , Pk} is a family of disjoint subsets of Dq, i.e.,

⋃
κ=1,2,...,k

Pκ = Dq, Pκ ∩ Pκ′ = ∅ (1 ≤ κ < κ′ ≤ k). (4.1)

For a numerical attribute q, we assume that Dq is a closed interval [min Dq, max Dq], and define

a partition P by cutpoints: For w1, w2, . . . , wk−1 ∈ Dq, we take the k intervals [min Dq, w1),

[w1, w2), . . . , [wk−2, wk−1), [wk−1,max Dq] as the elements of P, respectively (where we as-

sume min Dq < w1 < w2 < · · · < wk−1 ≤ max Dq). For a categorical attribute, P is

determined by a family of subsets P1, P2, . . . , Pk of categories satisfying (4.1).

A label � is a mapping from {1, 2, . . . , k} to M, i.e., � assigns a value in M to each of

partitioned subsets P1, P2, . . . , Pk. Then a discretizer χ = (q,P, �) discretizes a data element

ω ∈ S as follows: Let us denote by κ ∈ {1, 2, . . . , k} the index such that ωq ∈ Pκ holds. Then

ω is mapped to �(κ).
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Table 4.1: A real data set Ω = Ω1 ∪ Ω0

ω1 ω2 ω3

Ω1 ω1 10.0 blue −1
ω2 6.3 red 0

Ω0 ω3 8.5 white 2
ω4 4.1 white 0
ω5 3.5 black 1

Let us take an example on a data set Ω of Table 4.1. Assume a discretizer χ1 as follows:

χ1 =
(
1, {[−∞, 8.0), [8.0,+∞]}, �1

)
,

where �1 is a label such that �(1) = 0 and �(2) = 1. Then χ1 maps the example ω1 =

(10.0, blue,−1) to �(2) = 1 since the value 10.0 of attribute 1 is in the second partitioned

subset [8.0,+∞]. χ1 maps the other examples ω2, ω3, ω4, and ω5 to 0, 1, 0, and 0, respectively.

For χ = (q,P, �) and ω ∈ S, we write the mapped value by χ(ω) instead of �(κ) for

convenience (where ωq ∈ Pκ). For a set D = {χ1, χ2, . . . , χn} of discretizers, we write

D(ω) = (χ1(ω), χ2(ω), . . . , χn(ω)) and D(Ω) = {D(ω) | ω ∈ Ω}.
In the discretization schemes DC and SC, a discretizer χ = (q,P, �) is determined by q

and P, which means that � is determined uniquely by q and P, but in a different way between

the two schemes. How to determine � and how to select q and P in each scheme are described

in the subsequent subsections.

4.2.2 Discretization scheme DC

Based on previous discretization schemes [28, 31], this subsection shows the discretization

scheme DC. It constructs a set D = {χ1, χ2, . . . , χn} of discretizers with n = N , which

means that one discretizer is constructed from one attribute. DC has two parameters, K and

μ′, where K specifies the maximum cardinality of partitions for numerical attributes, and

μ′ ∈ [0, 1] denotes the cost incurred by an assignment of ∗ to a discretizer.

How to determine a label.

Let us take a partition P = {P1, P2, . . . , Pk} on attribute q. By q and P, the data set Ω is

partitioned into k subsets according to the values of attribute q as Ωq,P,κ = {ω ∈ Ω | ωq ∈ Pκ},
κ ∈ {1, 2, . . . , k}. We denote Ω1

q,P,κ = Ω1 ∩ Ωq,P,κ and Ω0
q,P,κ = Ω0 ∩ Ωq,P,κ.
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For given q and P, we consider determining a value �(κ) ∈ M for κ ∈ {1, 2, . . . , k} so that

the cost defined in the following is minimized: If we assign �(κ) = 1 (resp., 0), then it costs us

|Ω0
q,P,κ| (resp., |Ω1

q,P,κ|) since the examples in Ω0
q,P,κ (resp., |Ω1

q,P,κ|) are classified erroneously

if we regard � as a classifier with reject option. On the other hand, if we assign �(κ) = ∗,
then it costs us μ′|Ωq,P,κ|, where the parameter μ′ is used as the relative cost of an uncertain

decision to an erroneous one. Then we define the misclassification cost ΓDC(χ) of a discretizer

χ = (q,P, �) as the sum of such costs over the k partitioned subsets Ωq,P,1,Ωq,P,2, . . . ,Ωq,P,k;

ΓDC(χ) =
∑

κ=1,2,...,k: �(κ)=1

|Ω0
q,P,κ| +

∑
κ=1,2,...,k: �(κ)=0

|Ω1
q,P,κ| + μ′ ∑

κ=1,2,...,k: �(κ)=∗
|Ωq,P,κ|.

(4.2)

Since the cost to each Ωq,P,κ is computed independently, the misclassification cost is mini-

mized by the following label: For κ ∈ {1, 2, . . . , k},

�(κ) =

⎧⎪⎨
⎪⎩

∗ if μ′|Ωq,P,κ| ≤ min{|Ω1
q,P,κ|, |Ω0

q,P,κ|},
1 if μ′|Ωq,P,κ| > min{|Ω1

q,P,κ|, |Ω0
q,P,κ|} and |Ω1

q,P,κ| > |Ω0
q,P,κ|,

0 otherwise.

(4.3)

Note that same values may be assigned to more than one index κ. In DC, we determine the

label � by (4.3) for given q and P.

How to select a partition for each attribute.

For each attribute q ∈ {1, 2, . . . , N}, we select a partition P such that χq = (q,P, �) attains

the smallest misclassification cost among all candidates, by which we obtain the set D =

{χ1, χ2, . . . , χN} of N discretizers. Note that the search of a partition is independent between

attributes because it is based on the domain of one attribute.

For a numerical attribute q, we examine such partitions whose cardinality is not larger

than the parameter K (i.e., |P| ≤ K) in order to save computation time. Then we obtain an

optimum partition P by solving the corresponding dynamic programming [31, 37]: Assuming

that there are m distinct values of attribute q in Ω (and thus m ≤ |Ω|), we write by w1,

w2, . . . , wm these m distinct values, where w1 < w2 < · · · < wm holds. For two indices

i, i′ ∈ {1, 2, . . . ,m} (i ≤ i′), let us denote:

Ω(i, i′) = {ω ∈ Ω | wi ≤ ωq ≤ wi′},

Ω1(i, i′) = Ω1 ∩ Ω(i, i′) and Ω0(i, i′) = Ω0 ∩ Ω(i, i′). Let us denote by Id(i, i′) the family of

sets of indices such that each member I = {i1, i2, . . . , id} ∈ Id satisfies i1 ≤ i2 ≤ · · · ≤ id,
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i1 = i and id = i′. Let us define ρk(Ω(i, i′)) as follows:

ρk(Ω(i, i′)) = min
I∈Id:2≤d≤k+1

∑
κ=1,2,...,|I|−1

min{|Ω1(iκ, iκ+1)|, |Ω0(iκ, iκ+1)|, μ′|Ω(iκ, iκ+1)|},

(4.4)

i.e., ρk(Ω(i, i′)) denotes the minimum classification cost over the subset Ω(i, i′) among the

partitions of cardinality of at most k. The equation (4.4) is solved by the following dynamic

programming:

ρk(Ω(i, i′)) =

⎧⎪⎨
⎪⎩

min{|Ω1(i, i′)|, |Ω0(i, i′)|, μ′|Ω(i, i′)|} if k = 1,
min{ρk−1(Ω(i, i′)),

minι=i,i+1,...,i′{ρ1(Ω(i, ι)) + ρk−1(Ω(ι + 1, i′))}} otherwise.

Then the minimum classification cost over the entire data set Ω among the partitions of

cardinality of at most K is obtained by solving ρK(1,m).

Assume that the minimum cost for ρK(1,m) is attained by the index set I = {i1, i2, . . . , id},
where i1 = 1 and id = m. Then, we adopt the following partition P.

P =
{
[min Dq,

wi2−1 + wi2

2
), [

wi2−1 + wi2

2
,
wi3−1 + wi3

2
), . . . , [

wid−1−1 + wid−1

2
,max Dq]

}
.

Note that |P| = d − 1 ∈ [1,K] holds, as is observed from (4.4).

For other types of cost functions on numerical attributes, one finds intensive studies on

minimization of Daróczy’s generalized entropy [23] and Shannon’s entropy [32].

For a categorical attribute, we obtain an optimum partition as the family where each

element is a singleton of a categorical value. One can easily verify that this is optimum

analogously with the correctness of the Näıve-Bayesian approach [28].

4.2.3 Discretization scheme SC

This subsection shows the discretization scheme SC. It constructs a set D = {χ1, χ2, . . . , χn}
of discretizers, where the dimensionality n is determined by our greedy algorithm. SC has two

parameters, ΓSC and V. The parameter ΓSC specifies the cost function to evaluate a discretizer

set in the greedy algorithm, which is either data space error ΓSC,ERR or unseparated pairs

ΓSC,PAIR. The algorithm selects discretizers based on the specified cost function, where the

greedy algorithm for ΓSC,PAIR was first proposed by Mii [55]. The other parameter V ∈ {B, M}
restricts the cardinality of a partition by |V| (i.e., 2 or 3) and the range of a label by V, i.e., we

consider only such a discretizer χ = (q,P, �) that satisfies |P| = |V| and � : {1, . . . , |V|} → V.
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How to determine a label.

Let us take a partition P = {P1, . . . , P|V|} on attribute q. Different from DC, we assign any

value of V to some output value �(κ) (κ = 1, . . . , |V|) in order to distinguish partitioned

subsets Dq = P1∪· · ·∪P|V| by �, by which we separate the data space S = D1×D2×· · ·×DN

into some subspaces. Under this concept, we determine the label � : {1, . . . , |V|} → V so that

the number of examples which are classified correctly by � (as a classifier with reject option)

is maximized. If V = B, then such � is determined as follows;

(�(1), �(2)) =

{
(1, 0) if |Ω1

q,P,1| + |Ω0
q,P,2| ≥ |Ω0

q,P,1| + |Ω1
q,P,2|,

(0, 1) otherwise.

Note that ∗ is not used for an output. If V = M, then we determine � as follows: We set

(�(κ), �(κ′)) = (1, 0) for such a pair (κ, κ′) that maximizes the sum |Ω1
q,P,κ|+ |Ω0

q,P,κ′| among

all κ, κ′ ∈ {1, 2, 3}, κ �= κ′. We then set �(κ′′) = ∗ to the remaining κ′′ = {1, 2, 3} \ {κ, κ′}.

How to select an attribute and a partition.

Let us denote by D = {χ1, χ2, . . . , χn} a set of n discretizers (n ≥ 1). For a vector s ∈ V
n,

we define a subset ΩD,s ⊆ Ω to be ΩD,s = {ω ∈ Ω | D(ω) = s}. We write Ω1
D,s = Ω1 ∩ ΩD,s

and Ω0
D,s = Ω0 ∩ ΩD,s. (Then the data set Ω is partitioned by D as Ω =

⋃
s∈Vn ΩD,s.) We

then define data space error ΓSC,ERR(D) and unseparated pairs ΓSC,PAIR(D) to be;

ΓSC,ERR(D) =
∑
s∈Vn

min{|Ω1
D,s|, |Ω0

D,s|}, ΓSC,PAIR(D) =
∑
s∈Vn

|Ω1
D,s| · |Ω0

D,s|.

We define ΓSC,ERR(∅) = min{|Ω1|, |Ω0|} and ΓSC,PAIR(∅) = |Ω1| · |Ω0| for convenience. With

functions ΓSC,ERR and ΓSC,PAIR, we evaluate how D partitions the data space S into “well-

separated” subspaces.

Let ΓSC represent the cost function of either ΓSC,ERR or ΓSC,PAIR. Now we describe the

greedy algorithm for SC as follows.

Algorithm ΓSC-GREEDY

Input: A data set Ω with N attributes.

Output: A set D of discretizers.

Step 1: Let D := ∅.

Step 2: Select such χ that minimizes ΓSC(D ∪ {χ}) among N candidates, each of which is

chosen from one attribute.
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Step 3: If ΓSC(D ∪ {χ}) < ΓSC(D) holds, then let D := D ∪ {χ} and return to Step 2.

Otherwise, output D and halt.

One can see that ΓSC,ERR(D′) is monotone non-increasing, while ΓSC,PAIR(D′) is monotone

decreasing with respect to the set inclusion over all subsets D′ ⊆ D. Hence, with ΓSC =

ΓSC,ERR, the greedy algorithm may halt even if ΓSC,ERR(D) = 0 is not attained. On the

other hand, with ΓSC = ΓSC,PAIR, the algorithm always attains ΓSC,PAIR(D) = 0 upon its

completion. For a discretizer set D, we note that ΓSC,PAIR(D) = 0 holds if and only if

ΓSC,ERR(D) = 0 holds. Thus use of ΓSC = ΓSC,PAIR may construct a discretizer set including

more detailed information on Ω since ΓSC = ΓSC,ERR may output such a discretizer set D′′

with ΓSC,ERR(D′′) > 0 (and thus ΓSC,PAIR(D′′) > 0). Note that finding a minimum sized D

attaining ΓSC,PAIR(D) = 0 (and thus ΓSC,ERR(D) = 0) is an NP-hard problem [27].

From a numerical attribute, we investigate all possible partitions of cardinality of most

|V|, and select the best one as the candidate (note that there are O(|Ω||V|) distinct partitions

where |V| = 2 or 3). On the other hand, there are |V|m possible partitions for a categorical

attribute q, where m denotes the number of categories for attribute q and m = O(|Ω|). Since

the size of |V|m can be extremely large, we search the partition by a heuristic method based

on local search (which is almost equivalent to the discretization scheme by Mii [55]), and use

it as the candidate from attribute q.

4.3 Computational experiments

Let us denote by ALG-ICF∗
DC (resp., ALG-ICF∗

SC and ALG-ICF∗
IC) the algorithm ALG-

ICF∗ equipped with discretization schemes DC (resp., SC and IC). In this section, we first

examine the advantages and defects of algorithms ALG-ICF∗
DC and ALG-ICF∗

SC through

computational experiments. Based on this observation, we propose another construction

algorithm ALG-ICF∗
IC with a new discretization scheme IC.

Experimental setting.

For the experiments, we use data sets from UCI Repository of Machine Learning [42] as real

world data sets. The summary is shown in Table 2.1, where Nnum (resp., Ncat) denotes the

number of numerical (resp., categorical) attributes.

Let C represent a discretization scheme among DC, SC and IC. For a real world data set

Ω, we evaluate the performance of the algorithm ALG-ICF∗
C as follows:
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(1) We divide Ω into two halves at random, one for the training set Ωtrain and the other for

the test set Ωtest.

(2) We construct a discretizer set DC by applying C to the training set Ωtrain, from which

we obtain an M-valued training set Xtrain = DC(Ωtrain).

(3) We construct an ICF classifier f by applying the original ALG-ICF∗ to Xtrain, and

measure its error rate e(f,Xtest) on an M-valued test set Xtest = DC(Ωtest).

We repeat the process of (1) to (3) 10 times for a set of given parameter values (i.e., α, β, μ, π

for ALG-ICF∗ and ones for discretization scheme C), and we use the average of error rates

on test sets as the performance evaluator.

Note that the above experimental setting is different from that of Chapter 3 in the order

of division of Ω and discretization. Since we now consider constructing a classifier from real

world data sets, DC should be constructed only from the information of a training set. A test

set, an approximation set of future data elements, should not be used in construction of DC .

Thus division of the data set is prior to discretization here.

Results on ALG-ICF∗
DC and ALG-ICF∗

SC.

Now we show the experimental results in Tables 4.2 and 4.3, where each row and column

corresponds to a data set and a construction algorithm, respectively. The parameters used

for discretization schemes are written at the top of the table; e.g., as to ALG-ICF∗
DC, we

show only the result of K = 3 and μ′ = 0.3 in the table, which was fairly better than all

other tested values of K ∈ {2, 3, . . . , 6} and μ′ ∈ {0.1, 0.2, . . . , 0.5}.
For each data set, an indicated value in Table 4.2 (resp., Table 4.3) denotes the best (resp.,

average) true error rate in all combinations of parameters: For ALG-ICF∗
DC and ALG-ICF∗

SC,

we take α ∈ {0.01, 0.05, 0.1, 0.25, 0.5}, β = 0.3, μ ∈ {0.1, . . . , 0.5}, and π = 0.3. For C4.5 [65],

we use 1%, 5%, 10%, 25%, 50%, 75%, 100% as its confidence level (which was described in

Section 2.3.2). Note that we exploit an algorithm that constructs C4.5 decision trees directly

from Ωtrain (not from Xtrain) since this chapter discusses construction algorithms on real world

data sets. For ICF algorithms, an error rate smaller than C4.5 is indicated by boldface. For

each data set, a sign 
 shows the best error rate among all construction algorithms.

The bottom of the tables shows the average of presented error rates for all data sets. The

row Best in Table 4.2 represents the average of the best error rate for each data set, among

those realized by adjusting parameters as above. On the other hand, the row Avg in Table

4.3 represents the average of error rates observed in all data sets and in all tested parameter
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Table 4.2: Best true error rates (×102)

Data ALG-ICF∗
DC ALG-ICF∗

SC C4.5
K = 3 ΓSC = ΓSC,ERR ΓSC = ΓSC,PAIR

μ′ = 0.3 V = B V = M V = B V = M

AUS 15.42 15.21 15.68 15.42 
15.13 15.95
BCW 
3.71 4.18 4.26 4.73 4.18 5.00
BUPA 36.82 
34.10 36.35 36.12 35.66 37.12
CAR 7.02 6.94 6.55 
1.12 1.38 2.36
CRX 13.45 
13.11 13.79 13.45 13.66 14.33
FLAG 10.92 
9.69 12.47 10.51 12.88 10.51

HABER 27.21 27.14 27.61 
25.91 26.66 26.27
HEART 
18.88 22.29 25.77 19.99 25.55 24.45
IONO 11.59 
11.42 12.44 13.86 13.63 12.32
MUSH 
0.00 0.23 0.23 0.01 
0.00 0.01
PIMA 
24.60 26.17 27.42 26.64 26.45 25.52
TTT 24.80 8.18 13.84 
5.26 13.96 8.08

VOTES 4.35 4.49 4.49 4.77 4.26 
3.98

Best 15.29 14.08 15.45 
13.67 14.87 14.30

values. If a construction algorithm Λ outperforms other Λ′ in Best (i.e., Λ achieves a smaller

Best value than Λ′), it means that Λ can construct a better classifier than Λ′ by tuning

up the parameter values. (Note that, however, determining appropriate parameter values

is usually difficult.) On the other hand, if Λ outperforms Λ′ in Avg, Λ should construct a

better classifier by arbitrary parameter values. We observe that ALG-ICF∗
DC and ALG-ICF∗

SC

outperforms C4.5 in Best but does not in Avg. In Chapter 3, we showed that ALG-ICF∗

outperforms C4.5 in Best on B
n-valued data sets. Thus we see that, with the discretization

schemes DC or SC, ALG-ICF∗ retains its high performance even on real world data sets. In

the following, we consider how to improve the discretization schemes so that ICF algorithms

has a better performance in Avg.

Recall that BCW, BUPA, HABER, IONO and PIMA consist only of numerical attributes,

CAR, MUSH, TTT and VOTES do of categorical attributes, and the rest data sets do of both

types of attributes (see Table 2.1). We consider that ALG-ICF∗
DC has a good performance

in data sets with numerical attributes partly because an effective discretizer for a numerical

attribute can be constructed by dynamic programming.
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Table 4.3: Average true error rates (×102)

Data ALG-ICF∗
DC ALG-ICF∗

SC C4.5
K = 3 ΓSC = ΓSC,ERR ΓSC = ΓSC,PAIR

μ′ = 0.3 V = B V = M V = B V = M

AUS 
16.61 17.7 18.72 18.45 18.15 17.48
BCW 4.78 4.85 4.98 5.20 
4.62 5.21
BUPA 39.90 
36.42 37.48 37.81 38.24 38.18
CAR 7.28 8.17 7.76 2.87 
2.68 2.73
CRX 
14.76 16.65 17.32 17.15 17.13 16.74
FLAG 12.61 
11.01 14.93 14.75 15.10 12.77

HABER 
27.64 28.26 29.31 29.10 29.27 28.40
HEART 
20.42 25.27 28.37 23.06 29.44 25.50
IONO 12.50 
12.32 13.53 15.89 16.13 12.64
MUSH 0.02 0.23 0.23 
0.01 
0.01 
0.01
PIMA 
25.75 28.41 29.43 29.22 29.81 27.90
TTT 26.58 12.11 17.51 9.01 17.34 
8.54

VOTES 5.04 5.42 5.42 5.73 5.72 
4.66

Avg 16.45 15.90 17.30 16.01 17.20 
15.44

For ALG-ICF∗
SC, use of V = B outperforms V = M regardless of ΓSC, as is observed

from almost all data sets in both Tables 4.2 and 4.3. We consider that this is because the

discretization process with V = M partitions the data space into rather too small subspaces

and the resulting data set X may include misleading information for classifier construction.

Then a classifier constructed from such X rather easily overfit to Ω.

As to evaluation function, use of ΓSC = ΓSC,PAIR is effective particularly for the data sets

consisting only of categorical attributes (i.e., CAR, MUSH, TTT and VOTES). It is empiri-

cally known that these data sets contain enough information to produce good classifiers. As

mentioned in Section 4.2.3, use of ΓSC = ΓSC,PAIR may construct a discretizer set containing

more detailed information on Ω than ΓSC,ERR, which may explain the above phenomena.

Algorithm ALG-ICF∗
IC.

We consider combining plural discretizer sets constructed by different discretization schemes.

From the above observation, we introduce a new discretization scheme, integrated construc-

tion (IC). Let us denote by DC a discretizer set constructed by discretization scheme C. Then
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Table 4.4: Best true error rates (×102) for various discretizer sets

Data DDC(3,0.3) ∪ DSC(ΓSC,V) DIC DIC′ C4.5
ΓSC = ΓSC,ERR ΓSC = ΓSC,PAIR

V = B V = M V = B V = M

AUS 15.13 15.91 
15.04 15.13 15.13 15.15 15.95
BCW 4.12 4.06 
3.85 4.06 4.12 3.94 5.00
BUPA 
33.81 35.26 34.97 35.78 
33.81 34.27 37.12
CAR 2.48 1.80 1.12 1.03 1.12 
0.99 2.36
CRX 
12.87 13.82 
12.87 13.85 
12.87 13.33 14.33
FLAG 
10.00 11.95 10.61 11.23 
10.00 10.61 10.51

HABER 27.34 27.21 27.48 26.46 27.34 27.00 
26.27
HEART 20.66 20.59 19.25 
18.07 20.66 20.81 24.45
IONO 
10.85 12.15 11.47 11.36 
10.85 11.19 12.32
MUSH 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 0.01
PIMA 26.04 27.08 25.46 25.93 26.04 
25.39 25.52
TTT 6.38 11.33 5.11 10.75 5.11 
4.44 8.08

VOTES 4.44 4.44 4.40 4.44 4.40 4.40 
3.98

Best 13.39 14.27 13.20 13.69 
13.18 13.19 14.30

we integrate DC and SC as follows:

• If the data set consists only of categorical attributes (i.e., Nnum = 0), then we use

D = DDC(3,0.3) ∪ DSC(ΓSC,PAIR,B) as the discretizer set.

• Otherwise, we use D = DDC(3,0.3) ∪ DSC(ΓSC,ERR,B).

Table 4.4 (resp., Table 4.5) shows the best (resp., average) true error rates of classifiers

(where we use the same parameter values as Tables 4.2 and 4.3). The tables also show the

error rates of other combinations of discretizer sets; how they are combined is shown at the

top of tables. (DIC′ is described below.) Note that the error rates of C4.5 are shown again

for clarity and thus the values are the same as Tables 4.2 and 4.3).

As seen from the result, ALG-ICF∗
IC outperforms C4.5 not only in Best but also in Avg.

This indicates that ALG-ICF∗
IC is better than C4.5 in a stronger sense than the original ALG-

ICF∗ in Chapter 3 is. It is interesting to see that the performance is enhanced by integrating

two discretization schemes of different concepts; in other words, either of DC and SC may

not provide enough information with ICF learning by itself.
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Table 4.5: Average true error rates (×102) for various discretizer sets

Data DDC(3,0.3) ∪ DSC(ΓSC,V) DIC DIC′ C4.5
ΓSC = ΓSC,ERR ΓSC = ΓSC,PAIR

V = B V = M V = B V = M

AUS 
17.35 18.34 17.52 17.51 
17.35 17.68 17.48
BCW 
4.63 4.64 4.71 5.00 
4.63 4.68 5.21
BUPA 36.27 36.97 36.98 38.19 36.27 
36.18 38.18
CAR 3.60 3.24 2.88 
2.18 2.88 2.60 2.73
CRX 
16.46 16.93 17.03 16.67 
16.46 16.89 16.74
FLAG 
12.30 14.92 14.56 14.17 
12.30 14.10 12.77

HABER 
28.17 29.93 29.37 29.67 
28.17 28.93 28.40
HEART 22.89 23.22 
22.54 23.30 22.89 23.14 25.50
IONO 
12.27 13.48 12.72 13.05 
12.27 12.42 12.64
MUSH 0.02 0.02 
0.00 
0.00 
0.00 0.02 0.01
PIMA 28.04 28.92 28.39 29.12 28.04 28.05 
27.90
TTT 10.43 15.52 9.17 16.14 9.17 9.04 
8.54

VOTES 5.43 5.38 5.86 5.60 5.86 5.91 
4.66

Avg 15.22 16.27 15.51 16.20 
15.09 15.35 15.44

We do not observe that, however, integration of more discretization schemes always en-

hances ICF classifiers; As shown, if we construct a discretizer set by the scheme IC′ as

DIC′ = DDC(3,0.3) ∪ DSC(ΓSC,ERR,B) ∪ DSC(ΓSC,PAIR,B), the error rates become slightly worse

than ALG-ICF∗
IC. Also, an integration method of this type increases the size of discretizer

set. It can increase the computation time of classifier construction process, as shown in Table

4.6: In Table 4.6, we show the computation time required to construct a classifier in an upper

entry and the number of M-valued attributes in a lower entry. (The latter is present only for

ICF algorithms.) Note that they are the averaged values in 10 divisions of Ω into training and

test sets. A sign - indicates the time smaller than 0.01 seconds. The computation time for

ICF algorithms consists of the time for constructing a discretizer set and that for ALG-ICF∗.

We observe that the latter requires much more time than the former in almost all cases.

4.4 Concluding remarks

In this chapter, we considered how to extend ICF classifiers, originally proposed on M-valued

data sets, so as to handle real world data sets. In order to process such data sets by ICF,
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we apply a discretization scheme to the given data set, and construct a classifier from the

discretized data set. We first introduced two discretization schemes DC and SC, and proposed

a new one, IC, based on the experimental results on the formers. We observed that ALG-

ICF∗
IC outperforms C4.5 in a stronger sense than Chapter 3.

For future work, an alternative approach to ICF extension is to enable the original ICF

(which is defined on S = M
n) to handle general discrete data sets, i.e., S = D1 ×D2 × . . . DN ,

where each Dq (q = 1, 2, . . . , N) is a set of discrete values rather than 0, 1 and ∗. By this, we

may be able to concentrate on numerical attributes in the discretization process.
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Table 4.6: Computation time (sec.) for constructing a classifier (upper) and the number of
M-valued attributes for ICF algorithms (lower)

Data ALG-ICF∗
DC ALG-ICF∗

SC ALG- ALG- C4.5
K = 3 ΓSC = ΓSC,ERR ΓSC = ΓSC,PAIR ICF∗

IC ICF∗
IC′

μ′ = 0.3 V = B V = M V = B V = M

AUS 0.66 8.83 6.91 4.68 5.00 10.50 18.25 0.03
14.0 18.7 11.4 13.2 8.6 32.7 45.9

BCW 0.08 0.19 0.10 0.26 0.08 0.19 0.38 -
9.0 8.3 6.9 9.0 5.8 17.3 26.3

BUPA 0.06 3.77 1.30 3.83 1.04 5.33 9.66 0.01
6.0 16.9 9.8 15.1 8.3 22.9 38.0

CAR 0.20 6.04 1.73 7.04 0.94 12.52 22.83 -
6.0 9.3 8.7 12.0 7.0 15.3 27.3

CRX 0.62 5.91 5.28 3.03 3.78 7.53 14.83 0.03
15.0 16.0 10.4 11.8 8.0 31.0 42.8

FLAG 0.09 0.05 0.06 0.06 0.06 0.28 0.55 -
28.0 6.2 6.3 7.3 5.0 34.2 41.5

HABER - 1.19 0.45 4.01 0.47 1.59 6.25 -
3.0 9.3 11.6 20.2 10.5 14.6 25.1

HEART 0.25 0.55 0.42 0.27 0.33 0.80 1.30 -
13.0 11.2 8.3 9.1 6.4 24.2 33.3

IONO 1.10 0.20 4.51 0.28 4.13 1.34 6.00 0.05
34.0 8.7 6.0 8.6 5.2 42.7 51.3

MUSH 7.34 0.55 0.55 0.30 0.17 9.18 15.07 0.05
22.0 4.6 4.6 5.0 4.0 26.6 31.6

PIMA 1.14 41.47 21.21 32.77 17.30 50.78 78.51 0.03
8.0 20.4 12.0 16.0 8.9 28.4 44.4

TTT 2.27 5.62 5.20 4.93 5.00 10.16 17.49 -
9.0 9.8 8.7 10.1 7.7 18.8 28.9

VOTES 0.09 0.05 0.05 0.08 0.06 0.20 0.26 -
16.0 4.7 4.7 7.9 7.2 20.7 28.6



Chapter 5

A Randomness Based Analysis on

the Data Size Needed for Removing

Deceptive Rules

5.1 Introduction

Recall that the approach to a general learning problem consists of the four steps described

in Section 1.1, where we mentioned the importance of the data size for acquiring meaningful

knowledge. A large data set should provide us with enough information to acquire knowledge

that describes the hidden structure of data successfully. On the other hand, we expect that

structure acquired from a small data set may be deceptive or useless in many cases.

In classification problem, it is known that the VC dimension of a representation model

gives a necessary or sufficient data size such that the empirical error rate and true error rate

become close to each other with a high probability [14, 30, 78]. Unfortunately, we conjecture

that it is difficult to compute the VC dimension of an ICF classifier with a fixed DAG exactly

since it is shown that the same problem on NN, where a classifier is also formulated by DAG,

is already difficult [6, 11, 12, 53].

In this chapter, we concentrate on more tractable structure of knowledge, called a pattern,

and discuss the data size necessary and sufficient for learning patterns successfully. We assume

the data space to be S = B
n again throughout this chapter. A pattern z = (J, b) is defined

by a set J ⊆ {1, 2, . . . , n} of n indices and a |J |-dimensional binary vector b ∈ B
J . For a data

element x ∈ B
n, we say that z covers x if x|J = b holds. We denote by B

n(z) the set of all

data elements covered by z, i.e., B
n(z) = {x ∈ B

n | x|J = b}. For a data set X = X1 ∪ X0,

let us denote by X(z) the set of examples in X covered by z, i.e., X(z) = X ∩ B
n(z). We

75
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define the frequency of z in X by:

λ(z,X) =
|X(z)|
|X| .

For a given constant θ ∈ [0, 1], we say that z is θ-frequent (resp., θ-infrequent) in X, if

λ(z,X) ≥ θ (resp., λ(z,X) ≤ θ) holds. For given constants θ1, θ0 ∈ [0, 1], we say that z is

a (θ1, θ0)-pattern in X, if λ(z,X1) ≥ θ1 and λ(z,X0) ≤ θ0. If θ1 is “large enough” and θ0

is “small enough,” a (θ1, θ0)-pattern represents a trend of attribute values toward X1 rather

than X0, and thus might be utilized as useful information of data. However, if the size of X

is small, a (θ1, θ0)-pattern z may be deceptive: z may not capture the real trend of data and

may not serve as good knowledge.

In this chapter, we consider necessary and sufficient sizes of a data set with which it

contains such deceptive patterns with a low probability. In Section 5.2, we define a deceptive

(θ1, θ0)-pattern, and make an assumption on the probability distribution of data elements.

Any data set in this chapter is distributed based on the assumption, which is summarized as

Assumption 5.1. This assumption is not a particular one, and is often used in the literature

[67].

In Section 5.3, we derive a sufficient data size with which a data set contains deceptive

patterns with a low probability. The derivation of the sufficient data size is based on Ho-

effding’s inequalities [43]. In Section 5.4, we propose a necessary data size by utilizing an

observation arising from randomness. Let us call a data set generated at random a random

data set . If the size is sufficiently large, a random data set does not contain (θ1, θ0)-patterns

(for a “large” θ1 and a “small” θ0). However, if the size is sufficiently small, even a ran-

dom data set contain (θ1, θ0)-patterns, which should be deceptive. Then we claim that any

data set should have a certain number of examples such that a random data set with the

same number contains (θ1, θ0)-patterns with a low probability so as to remove such deceptive

(θ1, θ0)-patterns. We justify our claim by computational experiments on UCI data sets. We

also derive an upper bound on the proposed necessary data size as its estimate.

Notes on patterns.

One may be interested in a trend of attribute values towards X0; i.e., a pattern z satisfying

λ(z,X1) ≤ θ1 and λ(z,X0) ≥ θ0 for “small” θ1 and “large” θ0. Since the results in this

chapter can be obtained by interchanging the roles of true and false examples, we focus on

good patterns for true examples.

Enumerating frequent/infrequent patterns in the data set is an important issue in data

mining and bio-informatics (e.g., knowledge discovery from genome databases) [1, 33, 83]. The
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term “frequent/infrequent set” is widely used in the literature to denote a frequent/infrequent

pattern, but in order to distinguish this from a simple set of elements, we use the term

“pattern” to denote z = (J, b) in this chapter. It is well-known that one can find frequent/

infrequent patterns in incrementally polynomial time [1], and many fast algorithms for this

task have been proposed so far (e.g., [76]). By applying these algorithms, we can enumerate

all (θ1, θ0)-patterns in the data set X in incrementally polynomial time; e.g., by taking the

intersection of the set of θ1-frequent patterns in X1 and that of θ0-infrequent patterns in X0,

both of which can be enumerated in incrementally polynomial time.

A pattern z = (J, b) is called a maximal frequent pattern if z is frequent in X and no

pattern z′ = (J ′, b′) with J ′ ⊃ J and b′|J = b is frequent in X. Also, z is called a minimal

infrequent pattern if z is infrequent in X and no pattern z′ = (J ′, b′) with J ′ ⊂ J and b|J ′ = b′

is infrequent in X. Boros et al. [18] showed that, given a family of O(nε) maximal frequent

patterns, it is NP-complete to decide whether X has any other maximal frequent patterns (for

arbitrarily small fixed ε > 0), and that all minimal infrequent patterns can be enumerated in

incremental quasi-polynomial time.

Related works.

We here describe related works and the main difference between our approach and those

existing ones. The problem of enumerating frequent patterns is closely related to that of

association rules. An association rule is generally defined by a pair of patterns (z, z′) =

((J, b), (J ′, b′)) with J ∩ J ′ = ∅; it represents that an example x with x|J = b is likely to

attain x|J ′ = b′. Patterns in this chapter may be regarded as special cases of association

rules such that the classes of examples are attached to the original data set as the (n + 1) st

Boolean variable and z′ is restricted to z′ = ({n + 1}, (1)).
An association rule (z, z′) is usually evaluated by its support λsup(z, z′) and confidence

λconf(z, z′) defined as follows:

λsup(z, z′) = λ((J ∪ J ′, (b, b′)),X) =
|{x ∈ X | x|J∪J ′ = (b, b′)}|

|X| ,

λconf(z, z′) = λ(z′,X(r)) =
|{x ∈ X(z) | x|J ′ = b′}|

|X(z)| ,

while we evaluate a pattern z by its frequency in X1 and infrequency in X0. Thus enumeration

of frequent patterns is a basic operation in finding association rules.

As the task of enumerating association rules from a huge data set is very time-consuming,

Li and Gopalan [51] and Toivonen [75] discussed the proper size of a randomly drawn subset

X ′ of the original data set X such that λ(z,X ′) is close enough to λ(z,X) with a high
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probability for all patterns z. While they consider random sampling of a manageable size

from the given huge data set, we consider the situation in which the size of the given data

set is small, and discuss whether the data set contains deceptive patterns or not.

5.2 Preliminaries

Let us define a data source by D = (ζ, P 1, P 0), where ζ ∈ [0, 1] denotes a probability, and

P 1, P 0 : B
n → [0, 1] denote probability distributions. Since P 1 and P 0 are probability

distributions, it holds that ∑
x∈Bn

P 1(x) =
∑
x∈Bn

P 0(x) = 1. (5.1)

Then we make an assumption on generation of examples as follows.

Assumption 5.1 For a given data source D = (ζ, P 1, P 0), an example x with class y(x) = C

is generated by the following steps independently:

Step 1: The class C is set to 1 with probability ζ, and to 0 otherwise (i.e., with probability

1 − ζ).

Step 2: A binary vector x with class y(x) = C is drawn according to the distribution PC .

Let us take a data set X = X1∪X0, which is a set of examples generated as above. Since the

oracle y in this case is probabilistic, it may occur X1 ∩X0 �= ∅. If m1 = |X1| and m0 = |X0|,
then we call X an (m1,m0)-data set.

Let us denote by PU : B
n → [0, 1] the uniform distribution on the n-dimensional hyper

cube such that PU (x) = 1/2n for any x ∈ B
n. We define a random data source by Drand =

(ζ, PU , PU ) for an arbitrary ζ ∈ [0, 1]. We call a data set generated by Drand a random data

set.

Let us take a data source D = (ζ, P 1, P 0) and a pattern z = (J, b). Assumption 5.1

determines the posterior probability λ∗
1(z,D) (resp., λ∗

0(z,D)) with which z covers an example

x under the condition that x is a true (resp., false) example as follows:

λ∗
1(z,D) = Pr(x|J = b | y(x) = 1) =

∑
x∈Bn(z)

P 1(x),

λ∗
0(z,D) = Pr(x|J = b | y(x) = 0) =

∑
x∈Bn(z)

P 0(x). (5.2)

Note that λ∗
1(z,D) (resp., λ∗

0(z,D)) becomes equivalent with the frequency of z in a large

amount of true (resp., false) examples. Let us say that a pattern z is θ1-frequent in the true
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class if λ∗
1(z,D) ≥ θ1 is satisfied. Similarly, we say that z is θ0-infrequent in the false class if

λ∗
0(z,D) ≤ θ0 is satisfied. Now we define a (θ1, θ0)-deceptive pattern as follows.

Definition 5.1 Assume that we are given a data source D = (ζ, P 1, P 0), a data set X

generated by D, constants θ1, θ0 ∈ [0, 1]. We call a pattern z a deceptive (θ1, θ0)-pattern if

z is a (θ1, θ0)-pattern on X but is not both θ1-frequent in the true class and θ0-infrequent in

the false class.

Assume that we are given m1 true examples generated by D. Then the probability with

which a pattern z is θ1-frequent in these m1 true examples is determined by:

B+(m1, θ1, λ
∗
1(z,D)) =

m1∑
i=	θ1m1


(
m1

i

)
λ∗

1(z,D)i(1 − λ∗
1(z,D))m1−i. (5.3)

Similarly, if we are given m0 false examples generated by D, then the probability with which

z is θ0-infrequent in the m0 false examples is determined by:

B−(m0, θ0, λ
∗
0(z,D)) =

�θ0m0�∑
i=0

λ∗
0(z,D)i(1 − λ∗

0(z,D))m0−i. (5.4)

For B+ and B− in (5.3) and (5.4), the following result was given by Hoeffding [43].

Theorem 5.1 (Hoeffding [43]) Assume that we are given a positive integer m and θ ∈ [0, 1].

For p ∈ [0, θ], B+ in (5.3) satisfies:

B+(m, θ, p) ≤ exp(−2m(θ − p)2). (5.5)

For p ∈ [θ, 1], B− in (5.4) satisfies:

B−(m, θ, p) ≤ exp(−2m(p − θ)2). (5.6)

5.3 A sufficient data size by Hoeffding’s inequalities

By using Hoeffding’s inequalities in Theorem 5.1, we derive a sufficient data size with which

any data set contains deceptive (θ1, θ0)-patterns with a low probability. For this, we introduce

two parameters ε, δ ∈ (0, 1], where ε (resp., δ) is a parameter for frequency (resp., probability).

Then the following Theorem 5.2 (resp., Theorem 5.3) states that, if a given set X1 (resp.,

X0) of true (resp., false) examples is large, then some of the patterns which are not (1−ε)θ1-

frequent in the true class (resp., (1 + ε)θ0-infrequent in the false class) become θ1-frequent in

X1 (resp., θ0-infrequent in X0) with a probability lower than δ.
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Theorem 5.2 Assume that we are given a data source D, a set X1 of m1 true examples

generated by D, a constant θ1 ∈ [0, 1] and parameters ε, δ ∈ (0, 1]. Then some of the patterns

which are not (1− ε)θ1-frequent in the true class become θ1-frequent in X1 with a probability

lower than δ if the m1 satisfies the following:

m1 >
n ln 3 − ln δ

2ε2θ2
1

. (5.7)

Proof: Let us assume a pattern z which is not (1 − ε)θ1-frequent in the true class. Then

we have λ∗
1(z,D) < (1 − ε)θ1 < θ1. From (5.5) of Theorem 5.1, the probability with which z

is θ1-frequent in X1 is bounded as follows:

B+(m1, θ1, λ
∗
1(z,D)) < B+(m1, θ1, (1 − ε)θ1) < exp(−2m1ε

2θ2
1). (5.8)

Since there are 3n patterns in all, some of the patterns which are not (1 − ε)θ1-frequent in

the true class become θ1-frequent in X1 with probability at most 3n · exp(−2m1ε
2θ2

1). Then

the inequality 3n · exp(−2m1ε
2θ2

1) < δ is equivalent with (5.7). �

Theorem 5.3 Assume that we are given a data source D, a set X0 of m0 false examples

generated by D, a constant θ0 ∈ [0, 1] and parameters ε, δ ∈ (0, 1]. Then some of the pat-

terns which are not (1 + ε)θ0-infrequent in the false class become θ0-infrequent in X0 with a

probability lower than δ if the m0 satisfies the following:

m0 >
n ln 3 − ln δ

2ε2θ2
0

. (5.9)

Proof: The proof is similar to Theorem 5.2. Let us assume a pattern z which is not

(1 + ε)θ0-infrequent in the false class. Then from (5.6) of Theorem 5.1,

B−(m0, θ0, λ
∗
0(z,D)) < B−(m0, θ0, (1 + ε)θ0) < exp(−2m0ε

2θ2
0). (5.10)

Then the inequality 3n · exp(−2m0ε
2θ2

0) < δ is equivalent with (5.9). �

We finally obtain the following corollary that describes a data size sufficient for removing

deceptive (θ1, θ0)-patterns of Definition 5.1.

Corollary 5.1 Assume that we are given an (m1,m0)-data set X. If m1 and m0 satisfy (5.7)

and (5.9) respectively, the probability with which some of the (θ1, θ0)-patterns on X become

deceptive is lower than 2δ.
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5.4 A necessary data size based on randomness based claim

5.4.1 Randomness based claim

Since a (θ1, θ0)-pattern with a “large” θ1 and a “small” θ0 should represent a trend of attribute

values towards true examples, we assume θ1 > θ0 throughout this section.

A random data set of a sufficiently large size should not contain (θ1, θ0)-patterns since

any pattern z satisfies λ∗
1(z,D) = λ∗

0(z,D) and thus z cannot be θ1-frequent in the true class

and θ0-infrequent in the false class at the same time. However, if the size is small, even a

random data set may contain (θ1, θ0)-patterns (all of which are deceptive of Definition 5.1).

Based on this observation, we give a claim on deceptive patterns as follows.

Claim 5.1 Assume that we are given a data source D, an (m1,m0)-data set X generated by

D and constants θ1, θ0 ∈ [0, 1] (θ1 > θ0). If a random (m1,m0)-data set contains (θ1, θ0)-

patterns with a high probability, then we claim that X should contain deceptive (θ1, θ0)-

patterns.

In other words, in order to remove deceptive (θ1, θ0)-patterns from any data set, the data

size needs to large enough so that a random data set contains (θ1, θ0)-patterns with a low

probability.

We conducted the following computational experiments to validate Claim 5.1. Let us

denote by ED(m1,m0; θ1, θ0) the expectation of the number of (θ1, θ0)-patterns existing in

an (m1,m0)-data set generated by data source D, which is determined as follows: For a

pattern z, the probability with which z becomes θ1-frequent in m1 true examples (resp.,

θ0-infrequent in m0 false examples) is determined by B+ = B+(m1, θ1, λ
∗
1(z,D)) (resp.,

B− = B−(m0, θ0, λ
∗
0(z,D))), as described in (5.3) and (5.4). Thus z is a (θ1, θ0)-pattern

in an (m1,m0)-data set with probability B+B− since examples are assumed to be generated

independently. From the linearity of expectation, we have

ED(m1,m0; θ1, θ0) =
∑
z∈Z

1 · B+(m1, θ1, λ
∗
1(z,D)) · B−(m0, θ0, λ

∗
0(z,D))

+ 0 · (1 − B+(m1, θ1, λ
∗
1(z,D)) · B−(m0, θ0, λ

∗
0(z,D)))

=
∑
z∈Z

B+(m1, θ1, λ
∗
1(z,D)) · B−(m0, θ0, λ

∗
0(z,D)), (5.11)

where Z denotes the set of all patterns (and hence |Z| = 3n holds).

Let us denote by M1 and M0 sufficiently large numbers. Regardless of data source D,

ED(m1,m0; θ1, θ0) should change as follows: If m1 and m0 are small, then ED(m1,m0; θ1, θ0)

should be much larger than ED(m1,m0; θ1, θ0) since every pattern has a large probability
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B+B− to be a (θ1, θ0)-pattern. On the other hand, if m1 and m0 are large, it holds that

ED(m1,m0; θ1, θ0) � ED(M1,M0; θ1, θ0).

We can compute the exact value of the expectation EDrand
(m1,m0; θ1, θ0) for the random

data source Drand since λ∗
1(z,Drand) and λ∗

0(z,Drand) are available for any pattern z from

(5.2): For a pattern z = (J, b), let us call the cardinality |J | the level of z. If the level is k,

one can easily see that λ∗
1(z,Drand) = λ∗

0(z,Drand) = 1/2n−k holds. Then we decide whether

a random (m1,m0)-data set contains (θ1, θ0)-patterns with a high probability or not based

on the size of EDrand
(m1,m0; θ1, θ0). If the expectation is smaller (resp., larger) than some

threshold, we conclude that a random (m1,m0)-data set does not contain (resp., contains)

(θ1, θ0)-patterns with a high probability. In the experiments, we set the threshold to 1.

For an (m1,m0)-data set generated by a general data domain D, we decide whether it

contains many deceptive (θ1, θ0)-patterns or not based on the change of ED(m1,m0; θ1, θ0);

if ED(m1,m0; θ1, θ0) � ED(M1,M0; θ1, θ0) (resp., ED(m1,m0; θ1, θ0) � ED(M1,M0; θ1, θ0)),

then we consider that an (m1,m0)-data set contains many (resp., few) deceptive (θ1, θ0)-

patterns.

For a real binary data set, however, we cannot compute ED(m1,m0; θ1, θ0) exactly since

the probability distributions P 1, P 0 of D = (ζ, P 1, P 0) are unavailable to us. Thus in the

experiments, we estimate an expectation by bootstrapping method [29, 81]: Let us denote

by X = X1 ∪ X0 the given binary data set. For given numbers m1 and m0, we generate

an (m1,m0)-data set X ′ by sampling examples from X with replacement and enumerate

(θ1, θ0)-patterns from X ′. We repeat this 100 times and estimate ED(m1,m0; θ1, θ0) by the

average of observed numbers of (θ1, θ0)-patterns.

Expectation EDrand
in random data sets.

We first compute the expectation EDrand
(m1,m0; θ1, θ0) of the number of (θ1, θ0)-patterns in

a random (m1,m0)-data set by (5.11) with D = Drand. In order to compare m1 and m0

satisfying EDrand
(m1,m0; θ1, θ0) ≤ 1 with the change of ED for a UCI data set X = X1 ∪X0

of Table 2.1 later, we adopt the same number of attributes n and the same rate of true

and false examples m1/m0 = |X1|/|X0| as X. For θ1 and θ0, we test θ1 ∈ {0.10, 0.20} and

θ0 ∈ {0.00, 0.01, 0.02, 0.05}.
Figures 5.1 and 5.2 show the computed expectations with the parameters corresponding to

BCW and BUPA, respectively; i.e., n = 13 and m1 + m0 is changed with keeping m1/m0 =

239/444 for BCW, and n = 21 and m1/m0 = 200/145 for BUPA. Each figure contains

two cases corresponding to θ1 = 0.10 and 0.20, where the horizontal (resp., vertical) axis

represents m1 + m0 (resp., EDrand
) and four curves correspond to different values of θ0. Note
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Figure 5.1: Expectation of the number of (θ1, θ0)-patterns in random data sets compared to
BCW

(n = 12, m1/m0 = 239/444. Lines with points ×,�,�, ◦ represent θ0 = 0.00, 0.01, 0.02, 0.05,
respectively.)

that the vertical axis is in the logarithmic scale. The EDrand
appears to be monotonically

decreasing with m1+m0 if we neglect small irregularities, and becomes less than 1 as m1+m0

becomes larger than a certain point.

Among the examined values of m1 (resp., m0), let us denote by M∗
1 (resp., M∗

0 ) the

smallest value that attains EDrand
(m1,m0; θ1, θ0) ≤ 1. Thus M∗

1 (resp., M∗
0 ) indicates the

necessary size of true (resp., false) examples in view of Claim 5.1. Table 5.1 shows the

observed M∗
1 + M∗

0 for UCI data sets.

Expectation ED in UCI data sets.

We show the (estimated) expectations of the numbers of (θ1, θ0)-patterns in UCI data sets in

Figures 5.3 and 5.4, where the former is for AUS, BCW, BUPA, CAR, CRX and FLAG, and

the latter is for HEART, IONO, MUSH, TTT and VOTES. (Since our experimental scheme

utilizing bootstrapping method must require too much computation time for HABER and

PIMA, we have not conducted experiments on these data sets.) In these figures, we use

θ1 = 0.10. A broken line parallel to the vertical axis represents M∗
1 + M∗

0 , the proposed

necessary data size, which corresponds to the value presented in Table 5.1.

Our claim asserts that m1+m0 should be larger than at least M∗
1 +M∗

0 so that ED(m1,m0;

θ1, θ0) is saturated; indeed, ED(M∗
1 ,M∗

0 ; θ1, θ0) � ED(M1,M0; θ1, θ0) holds in many cases,

which means that an (M∗
1 ,M∗

0 )-data set generated by D should contain many deceptive
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Figure 5.2: Expectation of the number of (θ1, θ0)-patterns in random data sets compared to
BUPA

(n = 20, m1/m0 = 200/145. Lines with points ×,�,�, ◦ represent θ0 = 0.00, 0.01, 0.02, 0.05,
respectively.)

(θ1, θ0)-patterns, and thus more examples are needed to remove them.

5.4.2 Upper bounds on the necessary data size

We denote by Zk the set of all possible patterns of level k (1 ≤ k ≤ n). Note that |Zk| = 2k
(n
k

)
holds and that |Bn(z)| = 2n−k holds for any z ∈ Zk. Let and ED,k(m1,m0; θ1, θ0) be the

expectation of the number of (θ1, θ0)-patterns in an (m1,m0)-data set by D when their levels

are restricted to k. Then (5.11) is rewritten as follows:

ED(m1,m0; θ1, θ0) =
n∑

k=1

ED,k(m1,m0; θ1, θ0)

=
n∑

k=1

∑
z∈Zk

B+(m1, θ1, λ
∗
1(z;D))B0(m0, θ0, λ

∗
0(z;D)). (5.12)

The determination of the proposed necessary data size M∗
1 +M∗

0 by using (5.11) or (5.12)

requires expensive computational time. To alleviate this, we derive upper bounds on M∗
1 and

M∗
0 in this subsection. For the derivation, we assume that any data source D = (ζ, P 1, P 0)

satisfies the following assumption.

Assumption 5.2 For any x ∈ B
n, P 1(x) ≤ p1 and P 0(x) ≥ p0 hold for some constants p1

and p0.

From (5.1), it is implied that p1 ≥ 1/2n and p0 ≤ 1/2n. Note that the random data source

Drand is realized by setting p1 = p0 = 1/2n.
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Table 5.1: The proposed necessary sizes M∗
1 + M∗

0 for UCI data sets

Data θ1 = 0.10 θ1 = 0.20
θ0 = 0.00 0.01 0.02 0.05 θ0 = 0.00 0.01 0.02 0.05

AUS 270 315 425 1260 100 100 125 180
BCW 200 255 345 1145 85 85 115 160
BUPA 295 365 465 1120 115 115 115 190
CAR 235 265 400 1265 100 100 115 165
CRX 245 285 395 1125 100 100 110 165
FLAG 195 195 290 740 80 80 80 115

HABER 390 545 785 2430 155 175 195 310
HEART 205 250 340 970 90 90 100 135
IONO 235 235 360 705 95 95 95 140
MUSH 85 85 85 230 40 40 40 65
PIMA 285 400 515 1690 130 130 145 215
TTT 245 245 370 735 100 100 100 145

VOTES 230 230 345 720 90 90 90 140

For a data source D satisfying Assumption 5.2, we show that an upper bound on ED,k(m1,m0;

θ1, θ0) becomes sufficiently small (i.e., not more than ε, a small positive value) if k is in some

range, either m1 or m0 is larger than some threshold, and a few other conditions hold. If

an upper bound on ED,k(m1,m0; θ1, θ0) becomes sufficiently small for all k = 1, 2, . . . , n,

then their sum ED(m1,m0; θ1, θ0) =
∑

k ED,k(m1,m0; θ1, θ0) also becomes small; thus such

thresholds on m1 and m0 respectively serve as upper bounds on the needed numbers of true

and false examples, M∗
1 and M∗

0 .

Note that ED,k with “large” k or “small” k cannot be large for the following reason.

Consider a pattern z with level k and an (m1,m0)-data set X = X1 ∪X0. If k is large (resp.,

small), then |Bn(z)| = 2n−k tells that the z covers a small (resp., large) portion of binary

vectors in B
n. Thus the z is unlikely to be frequent in X1 (resp., infrequent in X0), and thus

unlikely to be a (θ1, θ0)-pattern in X. Our analysis in the following is obtained by refining

this observation.

Now let us introduce the following Chernoff’s inequalities [24], well-known in the proba-

bility theory, whose variations can be found in [3], for example.

Theorem 5.4 (Chernoff [24]) Assume that we are given a positive integer m and θ ∈ [0, 1].
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let Qi be a random variable taking the value as follows:

Qi =

{
1 − θ with probability θ,

−θ with probability 1 − θ,

and let Q =
∑m

i=1 Qi. Then, for any σ > 1,

Pr(Q ≥ (σ − 1)θm) < (exp(σ − 1)σ−σ)θm (5.13)

holds.

Upper bounds on ED,k for a large k.

We derive two types of upper bounds on ED,k for “large” k by Theorems 5.5 and 5.6.

Theorem 5.5 Assume that we are given a data source D satisfying Assumption 5.2, con-

stants θ1, θ0 ∈ [0, 1] satisfying θ1 > θ0, a parameter ε ∈ (0, 1], m1, m0 and k. If k ≥ K1 and

m1 ≥ M∗
1 , then ED,k(m1,m0; θ1, θ0) ≤ ε holds, where

K1 = n − log2
θ1

exp(2)p1
, M∗

1 =
n ln(2n) − ln ε

θ1
.

Proof: Let z be a pattern of level k ≥ K1. From Assumption 5.2 and |Bn(z)| = 2n−k,

we have λ∗
1(z;D) ≤ min{1, 2n−kp1}, and since 2n−k ≤ 2n−K1 = θ1/(exp(2)p1), we have

λ∗
1(z;D) ≤ 2n−kp1 ≤ θ1/ exp(2) < 1. Let Q′

i be a random variable taking the value as follows:

Q′
i =

{
1 with probability 2n−kp1,

0 with probability 1 − 2n−kp1,

and let Q′ =
∑m1

i=1 Q′
i. We take another random variable Qi defined by Qi = Q′

i − 2n−kp1

and let Q =
∑m1

i=1 Qi (and then Q = Q′ − 2n−kp1m1). We have

ED,k(m1,m0; θ1, θ0) =
∑
z∈Zk

B+(m1, θ1, λ
∗
1(z;D))B−(m0, θ0, λ

∗
0(z;D))

≤ B+(m1, θ1, 2n−kp1) · |Zk|

= Pr(Q′ ≥ θ1m1) · 2k

(
n

k

)

= Pr
(

Q ≥ 2n−kp1m1

(
θ1

2n−kp1
− 1

))
· 2k

(
n

k

)
.
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From k ≥ K1, it holds θ1/(2n−kp1) ≥ exp(2) > 1. By applying Theorem 5.4 with m = m1,

θ = 2n−kp1 and σ = θ1/(2n−kp1), we have

ED,k(m1,m0; θ1, θ0) <

(
2n−kp1 exp(1)

θ1

)θ1m1

· 2k

(
n

k

)

≤
(

2n−kp1 exp(1)
θ1

)θ1m1

· (2n)k

≤ exp(−θ1m1) · (2n)n.

Then the inequality exp(−θ1m1) · (2n)n ≤ ε is equivalent with m1 ≥ M∗
1 . �

Another upper bound on ED,k for a large k is given by the following Theorem 5.6. It

depends on a parameter ν1 and can bound ED,k for k with k > K1 − 3.

Theorem 5.6 Assume that we are given a data source D satisfying Assumption 5.2, con-

stants θ1, θ0 ∈ [0, 1] satisfying θ1 > θ0, a parameter ε ∈ (0, 1], m1, m0 and k. If k ≥ K1(ν1)

and m1 ≥ M∗
1 (ν1) for some ν1 ∈ (0, θ1), then ED,k(m1,m0; θ1, θ0) ≤ ε holds, where

K1(ν1) = n − log2
θ1 − ν1

p1
, M∗

1 (ν1) =
n ln(2n) − ln ε

2ν2
1

.

Proof: For an arbitrary ν1 ∈ (0, θ1), let z be a pattern of level k ≥ K1(ν1). From Assumption

5.2 and |Bn(r)| = 2n−k, we have λ∗
1(z;D) ≤ min{1, 2n−kp1}. Since k ≥ K1(ν1), we have

2n−kp1 ≤ θ1 − ν1 < θ1 ≤ 1. Thus λ∗
1(z;D) ≤ 2n−kp1 and

B+(m1, θ1, λ
∗
1(z;D)) ≤ B+(m1, θ1, 2n−kp1).

By applying (5.5) of Theorem 5.1 with m = m1, θ = θ1 and p = 2n−kp1, we have

B+(m1, θ1, 2n−kp1) ≤ exp(−2m1(θ1 − 2n−kp1)2),

and hence

ED,k(m1,m0; θ1, θ0) ≤ exp(−2m1(θ1 − 2n−kp1)2) · 2k

(
n

k

)
≤ exp(−2m1ν

2
1) · (2n)n.

Then the inequality exp(−2m1ν
2
1) · (2n)n ≤ ε is equivalent with m1 ≥ M∗

1 (ν1). �

Note that the K1 in Theorem 5.5 is a constant while K1(ν1) in Theorem 5.6 depends on the

parameter ν1. The following corollary is immediate from the definitions of K1 and K1(ν1)

and is useful in obtaining an upper bound ED,k ≤ ε for such k with K1(ν1) ≤ k ≤ K1 from

Theorem 5.6.
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Corollary 5.2 If we set ν1 = θ1(1 − C/ exp(2)) for a constant 1 ≤ C < exp(2), then

K1 − K1(ν1) = log2 C.

Note that K1 − K1(ν1) < log2 exp(2) < 3 holds.

An upper bound on ED,k for a small k.

Now we turn to an upper bound on ED,k for a “small” k.

Theorem 5.7 Assume that we are given a data source D satisfying Assumption 5.2, con-

stants θ1, θ0 ∈ [0, 1] satisfying θ1 > θ0, a parameter ε ∈ (0, 1], m1, m0 and k. If k ≤ K0(ν0)

and m0 ≥ M∗
0 (ν0) for some ν0 ∈ (0, 1), then ED,k(m1,m0; θ1, θ0) ≤ ε holds, where

K0(ν0) = n − log2

θ0 + ν0

p0
, M∗

0 (ν0) =
K0(ν0) ln(2n) − ln ε

2ν2
0

.

Proof: The proof is similar to that of Theorem 5.6. For an arbitrary ν0 ∈ (0, 1), let z be a

pattern of level k ≤ K0(ν0). From Assumption 5.2, |Bn(z)| = 2n−k and k ≤ K0(ν0), we have

λ∗
0(z;D) ≥ 2n−kp0 ≥ θ0 + ν0 > θ0. By applying (5.6) of Theorem 5.1 with m = m0, θ = θ0

and p = 2n−kp0,

B−(m0, θ0, λ
∗
0(z;D)) ≤ B−(m0, θ0, 2n−kp0) ≤ exp(−2m0(2n−kp0 − θ0)2).

Hence we have

ED,k(m1,m0; θ1, θ0) ≤ exp(−2m0(2n−kp0 − θ0)2) · 2k

(
n

k

)
≤ exp(−2m0ν

2
0) · (2n)K0(ν0).

Then the inequality exp(−2m1ν
2
0) · (2n)K0(ν0) ≤ ε is equivalent with m0 ≥ M∗

0 (ν0). �

An upper bound on ED.

Recall that Theorems 5.5 and 5.6 hold for a large k and Theorem 5.7 holds for a small k.

Thus if one of these theorems holds for every k = 1, 2, . . . , n, we have ED =
∑

k ED,k ≤ nε.

More precisely, if we choose parameters ν1 and ν0 so that K1(ν1) ≤ K0(ν0) holds, and we

have m1 ≥ max{M∗
1 ,M∗

1 (ν1)} and m0 ≥ M∗
0 (ν0), then one of these theorems holds for every

k = 1, 2, . . . , n. A sufficient condition for K1(ν1) ≤ K0(ν0) is given in the following corollary,

immediate from the definitions of K1(ν1) and K0(ν0).

Corollary 5.3 If ν1 ∈ (0, θ1(1 − 1/ exp(2))] and ν0 ∈ (0, 1) satisfy ν0 ≤ p0(θ1 − ν1)/p1 − θ0,

then K0(ν0) ≥ K1(ν1) holds.
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Finally, ED =
∑

k ED,k becomes sufficiently small under the conditions given in the

following theorem.

Theorem 5.8 Assume that we are given a data source D satisfying Assumption 5.2, con-

stants θ1, θ0 ∈ [0, 1] satisfying θ1 > θ0, a parameter ε ∈ (0, 1], m1 and m0. If ν1 ∈ (0, θ1(1 −
1/ exp(2))] and ν0 ∈ (0, 1) satisfy ν0 ≤ p0(θ1 − ν1)/p1 − θ0, and m1 ≥ max{M∗

1 ,M∗
1 (ν1)} and

m0 ≥ M∗
0 (ν0), then ED(m1,m0; θ1, θ0) ≤ nε holds.

Corollary 5.4 For a random data source Drand (i.e., p1 = p0 = 1/2n), there exist such

ν1 ∈ (0, θ1(1−1/ exp(2))] and ν0 ∈ (0, 1) that satisfy the condition ν0 ≤ θ1−ν1−θ0 in Theorem

5.8. Then if we take ε sufficiently small (e.g., ε = 2−n), ED(m1,m0; θ1, θ0) converges to 0.

Corollary 5.5 The max{M∗
1 ,M∗

1 (ν1)} and M∗
0 (ν0) in Theorem 5.8 give upper bounds on the

proposed necessary sizes M∗
1 and M∗

0 , respectively.

Let us consider the possibility of using max{M∗
1 ,M∗

1 (ν1)} and M∗
0 (ν0) as estimates on

M∗
1 and M∗

0 , respectively. To see how close they are, we computed M∗
1 , M∗

1 (ν1) and M∗
0 (s)

on the random data source Drand for some combinations of (n, θ1, θ0), where we set ν1 and ν0

to the values that minimize max{M∗
1 ,M∗

1 (ν1),M∗
0 (ν0)} among all ν1 = C1 · 10−3 ∈ (0, θ1(1−

1/ exp(2))] and ν0 = C0 · 10−3 ∈ (0, θ1 − θ0 − ν1] with natural numbers C1 and C0. The

obtained upper bounds, however, are not very tight; e.g., for (n, θ1, θ0, ε) = (12, 0.10, 0.01, 1),

M∗
1 = 406.22, M∗

1 (ν1) = 6838.07 and M∗
0 (ν0) = 6817.67. For UCI data sets with n = 12, i.e.,

BCW, CAR, HEART and TTT, however, M∗
1 + M∗

0 is estimated as 255, 265, 250 and 245

(see Table 5.1), respectively.

The above discussion should indicate that the bounds max{M∗
1 ,M∗

1 (ν1)} and M∗
0 (ν0) are

not very accurate indicators of M∗
1 and M∗

0 . It is left as our future work to derive tighter

theoretical estimates of M∗
1 and M∗

0 .

5.5 Concluding remarks

In this chapter, we considered how many examples are sufficient or necessary in a given data

set in order to remove deceptive (θ1, θ0)-patterns. In Section 5.3, we derived a sufficient data

size by using Hoeffding’s inequalities. In Section 5.4, for the derivation of a necessary data

size, we claim that the data set should have at least a certain number of examples in the

entire data space such that a random data set with the same number of examples contains

(θ1, θ0)-patterns with a low probability. We gave some computational results to validate our

claim. We also derived a theoretical upper bound on the proposed necessary data size as its

estimate.
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Figure 5.3: Expectations of the numbers of (θ1, θ0)-patterns in UCI data sets (AUS, BCW,
BUPA, CAR, CRX and FLAG)

(Lines with points ×,�,�, ◦ represent θ0 = 0.00, 0.01, 0.02, 0.05, respectively. A broken line
parallel to the vertical axis represents M∗

1 + M∗
0 .)
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Figure 5.4: Expectations of the numbers of (θ1, θ0)-patterns in UCI data sets (HEART,
IONO, MUSH, TTT and VOTES)

(Lines with points ×,�,�, ◦ represent θ0 = 0.00, 0.01, 0.02, 0.05, respectively. A broken line
parallel to the vertical axis represents M∗

1 + M∗
0 .)





Chapter 6

Conclusion

Throughout this thesis, we considered the machine learning problem, mainly on the two-class

supervised classification problem in step (L–3) and the data size used for learning in step

(L–1) of Section 1.1.

In Chapter 2, we compared the potential performance between two representation models,

ICF and DT. For this, we conducted theoretical and experimental analyses. In view of

Occam’s Razor, we showed the superiority of ICF to DT, as is summarized in Theorem 2.1.

In Section 2.3, we conducted experimental studies on two feature determination schemes,

majorization and extended majorization. The results showed that these schemes enable us

to construct better ICF classifiers than decision trees, and that extended majorization can

produce better features than majorization. Hence we consider that ICF is a promising model,

and that it should be selected in step (C–1) of Section 1.1.1 in many cases.

In Chapter 3, we proposed two construction algorithms for ICF, ALG-ICF and ALG-ICF∗.

Both algorithms consist of composition process and selection process, but are significantly

different in selection process. Also, ALG-ICF is based on features determined by majorization,

while ALG-ICF∗ is based on those determined by extended majorization. Our computational

experiments show that ALG-ICF∗ outperforms ALG-ICF both in true error rate and in

computation time, and that ALG-ICF∗ is better than C4.5 for DT and BSVM for SVM in

true error rate, provided that the parameter values are finely tuned up.

In Chapter 4, we considered extending ICF classifiers, originally proposed on M-valued

data sets, to real world data sets consisting of numerical and/or categorical attributes. In

order to process such data sets by ICF, we first apply a discretization scheme to the given

data set, and then construct a classifier from the discretized data set. We introduced two

discretization schemes DC and SC, and based on the studies on their advantages and defects,

we proposed a new one, IC. We observed that ALG-ICF∗
IC outperforms C4.5 in a stronger
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sense than the comparison in Chapter 3, i.e., ALG-ICF∗ constructs a better classifier than

C4.5 by arbitrary parameter values. By this, we assert that ALG-ICF∗ is a new classifier

construction algorithm in step (C–2) of Section 1.1.1, displaying a concept hierarchy on real

world data sets.

In Chapter 5, we considered how many examples are sufficient or necessary in a given

data set in order to remove deceptive (θ1, θ0)-patterns. In Section 5.3, we derived a sufficient

data size by using Hoeffding’s inequalities. In Section 5.4, for the derivation of a necessary

data size, we claim that the data set should have a certain number of examples in the entire

data space such that a random data set with the same number of examples contains (θ1, θ0)-

patterns with a low probability. We gave some computational results to validate our claim,

and then derived theoretical upper bounds on such numbers of examples.

The results from Chapters 2 to 4 show that ICF is substantially effective for UCI data sets,

which are benchmark instances usually used for researcher and consist of at most 104 examples

and 102 attributes, while many existing data sets are much larger. Our approach to such

data sets may require exhausting computation time since the construction algorithm scans

the whole data set many times. Hence we have to attain a scalable scheme for applications

with large data sets. A possible solution to this is to construct an ICF classifier from an

arbitrarily sampled subset of the whole data set. For this, the result of Chapter 5 may give a

helpful suggestion: We analyzed a data size needed for removing deceptive (θ1, θ0)-patterns,

which are simpler structure of knowledge than ICF classifiers. Then we may not expect to

construct a good ICF classifier from the data set smaller than the derived necessary size.

An extension of ICF to multi-class data sets is also a demanded task. These are left for our

future work.

The author hopes that this thesis will provide some assistance to the research community

of machine learning and artificial intelligence.
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