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Preface

Vehicle routing and scheduling are problems concerning the distribution of goods between

depots and final users. The standard objective is minimizing the total travel distance of

a number of vehicles, under various constraints, where every customer must be visited

exactly once by a vehicle. They have been intensively studied since a paper by Dantzig

and Ramser appeared in 1959, and there have been hundreds of successful applications in

many industries. These application successes have been aided by the growing computer

power, the geographic information system (GIS) technology, and so on.

Including vehicle routing and scheduling problems, a variety of combinatorial optimiza-

tion problems appear in many application fields. It is known to be difficult to obtain exact

optimal solutions to them, and the difficulties were proved in the sense of NP-hardness. It

is strongly believed that an NP-hard problem cannot be solved in polynomial time of the

input size. In other words, solving an NP-hard problem exactly may necessitate enumer-

ating an essential portion of the set of all solutions, whose number increases exponentially

as problem size grows. However, in most practical applications, we do not need exact

optimal solutions and are satisfied with sufficiently good solutions. In this sense, heuristic

algorithms, which provide reasonably good solutions in practical time, have a significant

benefit.

There are several representative heuristic algorithms, such as greedy methods and local

search. A greedy method directly constructs a solution by successively determining the

values of variables on the basis of some local information. This method can find good

solutions in very short time in many cases. Local search is the method that improves the

current solution iteratively. Although, in general, it is not a polynomial time algorithm, it

was reported that near-optimal solutions could typically be obtained in reasonable time.

More sophisticated algorithms that utilize the local search in more flexible frameworks

such as iterated local search, tabu search, simulated annealing, genetic algorithm and their

variants have been studied well, and applied to many NP-hard problems. Such algorithms

are generically called metaheuristics.

In this thesis, we describe general models for vehicle routing and scheduling problems
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and propose efficient local search-based algorithms for them incorporating mathematical

programming techniques. We also propose a high-performance metaheuristic algorithm

for a standard vehicle routing and scheduling problem. The aim of the thesis is to propose

general models that can include various types of specific variants, and to develop high-

performance algorithms.

Vehicle routing and scheduling problems are fundamental issues in human society. As

information tools related to vehicle routing and scheduling (e.g., GIS, demand forecasting)

have recently been enhanced, an efficient algorithm may immediately make an improve-

ment on these issues. The author hopes that the work contained in this thesis will be

helpful to advance the study in this important and interesting field.

March, 2008

Hideki Hashimoto
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Chapter 1

Introduction

1.1 Background

Vehicle routing and scheduling problems have been intensively studied since a paper by

Dantzig and Ramser [36] appeared in 1959. They are interesting from both theoretical

and practical point of view, and they attract academic and industrial people in a wide

range of fields.

Vehicle routing and scheduling are problems concerning the distribution of goods be-

tween depots and final users (customers) [41, 42, 141, 149]. The standard objective is

minimizing the total travel distance of a number of vehicles, under various constraints,

where every customer must be visited exactly once by a vehicle. Among a number of vari-

ants of vehicle routing and scheduling problems, the capacitated vehicle routing problem

(CVRP) [49], the vehicle routing problem with time windows (VRPTW) [97,125,133,142],

the vehicle routing problem with backhauls (VRPB) [150] and the vehicle routing problem

with pickup and delivery (VRPPD) [39, 130] are classic, and the vehicle routing problem

with time windows is one of the problems most intensively studied recently. In the past

four decades, a variety of approaches have been applied and quite a number of exact and

heuristic algorithms have been proposed. See the bibliographies by Laporte [100] and by

Laporte and Osman [101]. The latter bibliography contains 500 references.

Many applications of vehicle routing and scheduling problems are described in the prac-

tical problems: soft-drink distribution [128], oil industry [55], bulk sugar delivery [153],

brewing industry [46], food distribution [28], transportation of live animals [115,137] and so

on. See the survey by Golden, Assad and Wasil [69] for more real-world applications. The

savings achievable by solving these problems have a significant impact on the global eco-

nomic system. Indeed, according to Toth and Vigo [148], in the large number of real-world

applications both in North America and in Europe, the use of computerized procedures for
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the distribution process planning produces substantial savings generally from 5% to 20%

in the global transportation costs. They also mentioned that the transportation process

involves all stages of the production and distribution systems, and a relevant component

amounts to generally from 10% to 20% of the final cost of the goods.

1.2 Complexity of the problems

A variety of combinatorial optimization problems appear in many application fields. They

were known to be difficult to obtain an exact optimal solution and the difficulties were

proved in the sense of NP-hardness, which was the notion proposed around 1970. In the

late 1960s, the fundamental nature of algorithms was discussed; Edmonds [45] called an

algorithm which runs in polynomial time of the input size a “good” algorithm. In the

1970s, Cook [31] first proved that SAT is an NP-complete problem, and in the subsequent

years, the foundations for the theory of NP-completeness were established [53]. A problem

is called NP-hard when it is at least as hard as NP-complete problems. Nowadays many

problems are proved to be NP-hard [13,33,53,76]. It is strongly believed that an NP-hard

problem cannot be solved in polynomial time of the input size. In other words, solving an

NP-hard problem exactly may necessitate enumerating an essential portion of the set of

all solutions, whose number increases exponentially as problem size grows.

A solution of vehicle routing and scheduling problems basically consists of

(Assignment) the assignment of customers to vehicles,

(Routing) the visiting order of customers who are assigned to a vehicle, and

(Scheduling) the scheduling of service times of customers.

They usually obey some conditions; for example, the followings are typical.

• Each customer has a demand and each vehicle has a capacity, and the total load on

a vehicle route cannot exceed the capacity of the assigned vehicle.

• Each travel between customers takes a cost, and the total traveling cost of all vehicles

should be minimized.

• Each vehicle must start the service at each customer in the period specified by the

customer.

Under these conditions, the above three components of a solution (i.e., assignment, routing

and scheduling) are difficult to be determined even if some other components are fixed.
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Indeed, the following three NP-hard problems are such cases: bin packing problem (as-

signment), traveling salesman problem (routing) and sequencing with release times and

deadlines (scheduling). They are formulated as follows.

Bin packing problem

input: A set I of items, a size a(i) ∈ Z
+ for each i ∈ I and the bin capacity

b ∈ Z
+.

output: A partition of I into the minimum number k of disjoint subsets

I1, I2, . . . , Ik such that the total size
∑

i∈Ij
a(i) is b or less for each sub-

set Ij.

Traveling salesman problem

input: A complete directed graph G = (V,E) and a cost function c : E → R
+

(R+ is the set of all nonnegative real numbers).

output: A minimum cost tour of G, i.e., a directed simple cycle of |V | vertices

with minimum total cost.

Sequencing with release times and deadlines

input: A set T of tasks and, for each task t ∈ T , a length l(t) ∈ Z
+, a release

time r(t) ∈ Z
+
0 , and a deadline d(t) ∈ Z

+.

output: “Yes” if there is a one-processor schedule for T that satisfies the

release time constraints and meets all the deadlines; otherwise “No”.

All the three problems (i.e., bin packing, traveling salesman, sequencing with release times

and deadlines) are known to be NP-hard in the strong sense and no pseudo-polynomial

time algorithm exists unless P = NP [11, 53]. Furthermore, for the traveling salesman

problem, no polynomial time algorithm guarantees the solution quality bounded by a

constant times the optimal value unless P = NP [132]. Note however that, such algorithms

were proposed for spacial cases of the traveling salesman problem, which are still NP-hard:

for the metric traveling salesman problem by Christofides [27,154] and for the Euclidean

traveling salesman problem by Arora [11,154].

In spite of the theoretical intractability, it may be possible to solve an NP-hard prob-

lem efficiently in the practical sense, since the NP-hardness is based on the worst case

complexity. Representative methods frequently applied to this end are branch-and-bound,

branch-and-cut and dynamic programming. Branch-and-bound and dynamic programming

are methods that enumerate only promising solutions efficiently [14, 83, 84]. Although
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branch-and-cut [111] is a method for the integer linear programming problem, most of

combinatorial problems can naturally be formulated as an integer linear program, which

has a mature theory [113,135]. With intensive studies on these exact algorithms and as a

result of the rapid progress of computer technology, the problem size that can be exactly

solved has been increasing. However, it is still not large enough to accommodate all the

problems arising in real applications.

Fortunately, in vehicle routing and scheduling problems as well as most applications,

we are satisfied with good solutions obtained in reasonable computation time even if we

are not able to obtain an exact optimal solution. In this thesis, we focus on heuristic

algorithms. One of the well known heuristic algorithms is the greedy method. The greedy

method directly constructs a solution by successively determining the values of variables

on the basis of some local information. This method can find optimal solutions for some

problems, which are called matroid [156], or find good solutions in many cases for other

problems in very short time. Another typical heuristic is local search. Local search is the

method that improves the current solution iteratively. Although, in general, it is not a

polynomial time algorithm, it was reported that near-optimal solutions could typically be

obtained in reasonable time (see, for example, Johnson and McGeoch [88] for the traveling

salesman problem). When more quality is needed and more computation time is available,

metaheuristics is often very effective. We will discuss local search and metaheuristics in the

next section. Among heuristic algorithms, an algorithm which guarantees the quality of

the output solution by a function of the optimal value is especially called an approximation

algorithm. Approximation algorithms have been investigated in the past two decades and

the theory of hardness of approximation have been developed [13,76,154].

1.3 Local search

In this section, we review local search in combinatorial optimization.

Local search is a universal method that starts from an initial solution and repeatedly

replaces it with a better solution in its neighborhood [2, 121, 158, 159]. Neighborhood of a

solution is a set of solutions obtainable from the solution by applying a slight perturba-

tion. Local search terminates when it reaches a solution having no better solution in the

neighborhood. Such a solution is called locally optimal. Figure 1.1 illustrates the process

of local search. In the figure, each circle represents the neighborhood of a solution denoted

by a dot in its center and an arrow represents a move; i.e., an act of replacing solutions.

The local search has widely been used in combinatorial optimization since it provides a

robust approach to obtain good solutions. In the late 1950s and early 1960s, the first edge-

exchange algorithms for the traveling salesman problem were introduced by Croes [34],
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An initial solution

Figure 1.1: An illustration of local search

Algorithm 1 Standard local search (LS)

1: Set x := x(0).

2: If there is a feasible solution x′ ∈ N(x) such that f(x′) < f(x) holds, set x := x′ and

return to Step 2. Otherwise (i.e., f(x) ≤ f(x′) holds for all solutions x′ ∈ N(x)),

output the current locally optimal solution x and stop.

Lin [105] and Reister and Sherman [129]. In the subsequent years, it was also applied to

scheduling problems [114, 120] and the graph partitioning problem [92]. Until now, local

search algorithms have been proposed for a variety of hard optimization problems (e.g.,

assignment problems, packing problems, covering problems, routing problems, and so on)

and have accomplished successful results in computational experiments. Furthermore, in

the past few decades, some theoretical results have been developed. See the annotated

bibliography by Aarts and Verhoeven [1].

An instance of a combinatorial optimization problem is a pair (S, f), where the solution

set S is the set of feasible solutions and the cost function f is a mapping f : S → R. A

neighborhood function is a mapping N : S → 2S , which defines for each solution x ∈ S

a set N(x) ⊆ S of solutions that are in some sense close to x. The set N(x) is the

neighborhood of solution x. A solution x is locally optimal (minimal) with respect to N

if f(x) ≤ f(x′) for all x′ ∈ N(x). The local search problem is the problem of finding a

locally optimal solution.

The standard local search algorithm with an initial solution x(0), neighborhood N(x)

and the objective function f(x) is formally described as Algorithm 1. The search procedure

of finding the next solution x′ in Step 2 is called the neighborhood search, and the set of all

solutions which may be potentially visited in a local search algorithm is called the search

space. We will discuss the neighborhood search in Section 1.3.2.



6 Introduction

1.3.1 Overview of local search

Several thousands of papers about local search have been published over the past four

decades. Here we review the empirical and theoretical results of local search-based methods

(i.e., it may not a result just by the standard local search algorithm) among them.

Empirical results indicate local search provides a robust approach to obtain good

solutions. For the traveling salesman problem, Johnson and McGeoch [88] reported that a

local optimization with the 3-opt neighborhood typically obtained solutions within 3–4%

of optimal and the local search of Lin and Kernighan [106] typically obtained solutions

within 1–2% for random Euclidean instances from 100 to 1,000,000 cities. Moreover, they

also reported that the growth rates of their running times appeared to be subquadratic.

Further successful results of local search for many problems were reported: for example,

job shop scheduling by Vaessens, Aarts and Lenstra [151], vehicle routing by Gendreau,

Laporte and Potvin [59] and by Kindervater and Savelsbergh [94], machine scheduling by

Anderson, Glass and Potts [8], VLSI layout synthesis by Aarts et al. [3], and code design

by Honkala and Österg̊ard [81].

In spite of the very good empirical results, the standard local search algorithm is not a

polynomial time algorithm even if the neighborhood search can be executed in polynomial

time, because the number of improvement can be exponential. An illustrative example is

the simplex algorithm for linear programming [29,35], which can be considered as a local

search algorithm. Klee and Minty [95] showed an example that the simplex algorithm takes

exponential steps. Note that the complexities of a local search algorithm and a local search

problem are different; e.g., though the simplex algorithm can take exponential steps, the

linear programming problem can be solved in polynomial time (e.g., ellipsoid method [135],

interior-point method [90], Vaidya’s algorithm [152]). Approximation in some senses may

be a key to efficient algorithms for problems which have an intractable complexity. Orlin,

Punnen and Schulz [117] proposed an approximate local search algorithm framework. They

introduced the concept of ǫ-local optimality and showed that, for every ǫ > 0, an ǫ-local

optimum can be identified in time polynomial in the problem size and 1/ǫ whenever the

corresponding neighborhood can be searched in polynomial time.

Though local search usually cannot guarantee the solution quality, approximation al-

gorithms that rely on local search have been proposed recently: facility location problems

by Arya et al [12], degree-bounded minimum spanning trees by Könemann and Ravi [96],

minimum vertex feedback edge set problem by Khuller, Bhatia, and Pless [93], weighted

k-set packing problem by Arkin and Hassin [10], k-set cover problem by Halldórsson [72].

See the survey by Angel [9] for further results.

In the past few decades, the theory of complexity for a local search problem have
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been developed. In 1988, Johnson, Papadimitriou and Yannakakis [89] introduced the

complexity class PLS (for polynomial time local search) to formalize the question how

easy it is to find a local optimum. A combinatorial optimization problem together with a

given neighborhood function N belongs to PLS if

1. for a given instance, all solutions are polynomial time recognizable and a feasible

solution is computable in polynomial time,

2. for a given solution, it is decided in polynomial time whether it is locally optimal,

and if not, a better neighborhood solution is computable in polynomial time.

All common local search problems are in PLS. It has been shown that a problem in PLS

cannot be NP-hard unless NP = co-NP [89]. Furthermore, the concept of a PLS-reduction

has been introduced and a problem in PLS is PLS-complete if any problem in PLS is

PLS-reducible to it. The PLS-complete problems are the hardest ones in PLS and if one

of them is shown to be solvable in polynomial time, then all the others are. The follow-

ing problems are PLS-complete: graph partitioning under the swap neighborhood [134],

traveling salesman problem under the k-opt neighborhood for some constant k [98], MAX-

CUT under the flip neighborhood [134] and MAX-2-SAT under the flip neighborhood [99].

Johnson, Papadimitriou and Yannakakis [89] showed that it is NP-hard to determine the

output of the Kernighan-Lin algorithm [92] on an arbitrary instance of the graph parti-

tioning problem, and there are instances for which it takes exponentially many iterations.

Krentel [99] also showed that it is NP-hard to determine the output of the standard local

search with the flip neighborhood on an arbitrary instance of the MAX-SAT problem, and

there are instances for which it takes exponentially many iterations. See the extensive

survey by Yannakakis [160].

1.3.2 Neighborhood search

Local search usually spends most of its computation time to search the neighborhood.

Hence it is crucial to search the neighborhood efficiently in order to find a good solution

in short time and handle large-scale instances.

The definition of neighborhood is an essential part in designing a local search algo-

rithm. A locally optimal solution with a larger neighborhood is usually more accurate

than that with a smaller neighborhood. On the other hand, the neighborhood search with

a larger neighborhood often takes more computation time. Standard local search algo-

rithms exhaustively search neighborhoods whose sizes are sufficiently small. In contrast,

algorithms with a neighborhood whose size can be exponential are called very large-scale

neighborhood search [4,5,47,48]. Instead of searching the neighborhood exhaustively, these
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algorithms solve the problem of finding a better solution in the neighborhood by using

more sophisticated techniques such as heuristic methods, dynamic programming methods

and network flow algorithms.

As for move strategies in local search, the first admissible move strategy and the best

admissible move strategy are usually used. In the first admissible move strategy, solutions

in N(x) are scanned according to a prespecified order, and the first improved solution is

immediately accepted as the next solution. In the best admissible move strategy, the best

solution in N(x) is chosen as the next solution. Move strategies which accept a nonim-

proved solution are also allowed in the metaheuristic context (e.g., simulated annealing

and tabu search). By allowing such moves, they enable the local search to continue the

search from locally optimal solutions and examine a wider area of solutions around them.

In addition to the definition of neighborhood and move strategy, data structure [32]

plays an important role to search neighborhoods efficiently. For example, an efficient

implementation of local search algorithms for the traveling salesman problem may need

some sophisticated data structure (e.g., segment-tree [51], k-d tree [17], two-level tree [51],

splay tree [139]).

1.3.3 Metaheuristics

Metaheuristics [20, 43, 65, 70, 82, 155, 157] first appeared in the 1980s (the term meta-

heuristics was coined by Glover [61] in 1986) and many metaheuristics algorithms that

provide a near-optimal solution have been revealed. See the bibliography by Osman and

Laporte [119], which provides a classification of a comprehensive list of 1380 references on

the theory and application of metaheuristics. Gendreau and Potvin [60] provide an account

of the most recent developments. In this section, we briefly review some of representative

metaheuristics.

The iterated local search (ILS) [107] iterates local search many times from those initial

solutions generated by slightly perturbing a good solution xseed obtained so far. It is

important to generate initial solutions that retain some features of solution xseed and to

avoid a cycling of solutions in order to improve the performance of ILS. In Algorithm 2,

we describe an iterated local search algorithm which uses the best obtained solution x∗ as

xseed.

The tabu search (TS) tries to enhance local search by using the memory of previous

searches. TS repeatedly replaces the current solution x with its best neighbor x′ ∈ N(x) \

({x} ∪ T ) even if f(x′) ≥ f(x) holds, where the set T , called the tabu list, is a set of

solutions which includes those solutions most recently visited. Cycling of a short period

can be avoided as a result of introducing tabu list. See reference [62, 63, 66] for detailed
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Algorithm 2 Iterated local search (ILS)

1: Initialize x∗ to be an arbitrary solution.

2: Generate a solution x by slightly perturbing x∗

3: Improve x by local search.

4: If f(x) ≤ f(x∗) holds, set x∗ := x. If some stopping criterion is satisfied, output x∗

and halt; otherwise return to Step 2.

Algorithm 3 Tabu search (TS)

1: Generate an initial solution x.

2: Set x∗ := x and T := ∅.

3: Find the best solution x′ ∈ N(x) \ ({x} ∪ T ), and set x := x′.

4: If f(x) < f(x∗) holds, set x∗ := x. If some stopping criterion is satisfied, output the

best obtained solution x∗ and halt; otherwise update T according to some rule and

return to Step 3.

explanation of the tabu search. TS is described as Algorithm 3.

The simulated annealing (SA) is a kind of probabilistic local search, in which test

solutions are randomly chosen from N(x) and accepted with probability that is 1 if the

test solution is better than the current solution x, and is positive even if it is worse than

x. The acceptance probability of moves is controlled by a parameter called temperature,

whose idea stems from the physical process of annealing. SA is described as Algorithm 4.

One of the simplest rules is the geometric cooling, where the temperature is updated by

t := αt (0 < α < 1 is a parameter) at intervals of the prespecified iterations.

The genetic algorithm (GA) [78] is inspired by the evolutionary process in nature. GA

repeatedly generates a set of new solutions Q by applying the operations crossover and/or

mutation to the set of current solutions P . A crossover generates one or more new solutions

by combining two or more current solutions, and a mutation generates a new solution by

Algorithm 4 Simulated annealing (SA)

1: Generate an initial solution x randomly and set x∗ := x. Determine the initial tem-

perature t.

2: Generate a solution x′ ∈ N(x) randomly, and set ∆ := f(x′) − f(x). If ∆ < 0 holds

(i.e., a better solution is found), set x := x′; otherwise set x := x′ with probability

e−∆/t.

3: If f(x) < f(x∗) holds, set x∗ := x. If some stopping criterion is satisfied, output x∗

and halt; otherwise update the temperature t according to some rule and return

to Step 2.
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Algorithm 5 Genetic algorithm (GA)

1: Generate an initial set of solutions P and let x∗ be the best solution among P .

2: repeat

3: Choose two or more solutions from P , crossover them to generate one or more new

solutions and add the generated solutions to Q.

4: Choose a solution from P ∪Q, mutate it to generate a new solution and add the

generated solutions to Q.

5: until The set of new solutions Q are obtained where the cardinality of Q is prespecified

6: If there is a solution x ∈ Q with f(x) < f(x∗), choose a best solution x ∈ Q and set

x∗ := x.

7: Select a set of solutions P ′ (of a prespecified size) from the resulting P ∪ Q, and set

P := P ′.

8: If some stopping criterion is satisfied, output the best obtained solution x∗ and halt;

otherwise return to Step 2

Algorithm 6 Adaptive memory programming (AMP)

1: Initialize the memory.

2: while A stopping criterion is not met do

3: Generate a new provisional solution s using data stored in the memory.

4: Improve s by a local search.

5: Update the memory using the pieces of knowledge brought by s.

6: end while

slightly perturbing a current solution. GA starts from an initial set of solutions P and

repeatedly replaces P with P ′ ⊆ P ∪ Q according to its selection rule. GA is described

as Algorithm 5. In Step 7 of Algorithm 5, the following strategies to make a new set of

solutions P ′ are often used: random selection, roulette wheel selection, and elitism.

The adaptive memory programming (AMP) [64, 143] is a general framework which

includes a number of metaheuristics (e.g., GA, TS). AMP is described as Algorithm 6.

1.4 Overview of the thesis

The thesis is organized as follows.

In Chapter 2, we explain several basic techniques for solving the standard vehicle

routing and scheduling problems. We propose a general formulation which includes the

standard vehicle routing and scheduling problems and then we propose an efficient neigh-

borhood search method for the standard neighborhoods called 2-opt∗, cross exchange and
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Or-opt. The neighborhood search method is incorporated in the algorithms of the follow-

ing chapters.

In Chapter 3, we describe a generalization of the standard vehicle routing problem

by allowing soft time window and soft traveling time constraints, where both constraints

can be violated and the amounts of violation are penalized by cost functions. With the

proposed generalization, the problem becomes very general. In the algorithm, we use

the neighborhood search method which is described in Chapter 2. In order to apply the

framework, we need a dynamic programming algorithm for the problem of determining the

optimal start times of services at visited customers after fixing the route of each vehicle.

We show that this subproblem is NP-hard when cost functions are general, but can be

efficiently solved with dynamic programming when traveling time cost functions are convex

even if time window cost functions are non-convex. We deal with the latter situation in

the developed iterated local search algorithm. The computational results on benchmark

instances confirm the benefits of the proposed generalization.

In Chapter 4, we concern another generalization of the standard vehicle routing prob-

lem with time windows by allowing both traveling times and traveling costs to be time-

dependent functions. In the algorithm, we also use the neighborhood search method. We

show that the subproblem of asking an optimal time schedule of a route can be efficiently

solved by dynamic programming, which is incorporated in the local search algorithm.

We further propose a filtering method that restricts the search space in the neighbor-

hoods to avoid many solutions having no prospect of improvement. The computational

results of our iterated local search algorithm compared against existing methods confirm

the effectiveness of the restriction of the neighborhoods and the benefits of the proposed

generalization.

In Chapter 5, we describe a path relinking approach for the vehicle routing problem

with time windows. The path relinking is an evolutionary mechanism that generates new

solutions by combining two or more reference solutions. In our algorithm, those solutions

generated by path relinking operations are improved by a local search. To make the

search more efficient, we propose a neighbor list that prunes the neighborhood search

heuristically. Infeasible solutions are allowed to be visited during the search, while the

amount of violation is penalized. As the performance of the algorithm crucially depends

on penalty weights that specify how such penalty is emphasized, we propose an adaptive

mechanism to control the penalty weights. The computational results on well-studied

benchmark instances with up to 1000 customers revealed that our algorithm is highly

efficient especially for large instances. Moreover, it updated 41 best known solutions

among 356 instances.

Finally, in Chapter 6, we summarize our study in this thesis.





Chapter 2

Vehicle Routing and Scheduling

Problem

2.1 Introduction

In this chapter, we first formulate the vehicle routing problem with time windows. The

problem is the most common and best-studied among a number of vehicle routing and

scheduling problems and it has been a subject of intensive research focused mainly on

heuristic and metaheuristics approaches [23, 24]. We briefly review classic heuristic ap-

proaches. We then formulate a general model, which includes all problems considered

in this thesis. Finally we propose an efficient neighborhood search method for the gen-

eral model. The proposed search method can be applied to the standard neighborhood

called 2-opt∗, cross exchange and Or-opt neighborhoods and can evaluate these neighbor-

hood solutions efficiently by utilizing the information from the past dynamic programming

recursion used to evaluate the current solution.

2.2 The vehicle routing problem with time windows

In this section, we formulate the standard vehicle routing problem with time windows.

Let G = (V,E) be a complete directed graph with vertex set V = {0, 1, . . . , n} and

edge set E = {(i, j) | i, j ∈ V, i 6= j}, and M = {1, 2, . . . ,m} be a vehicle set. In this

graph, vertex 0 is the depot and other vertices are customers. Each customer i and each

edge (i, j) ∈ E are associated with:

1. a fixed quantity ai (≥ 0) of goods to be delivered to i,

2. a time window [ei, li],
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3. a traveling time tij(≥ 0) and a traveling distance cij(≥ 0) from i to j.

We assume a0 = 0 and e0 = 0 without loss of generality. Each vehicle has an identical

capacity u.

Let σk denote the route traveled by vehicle k, where σk(h) denotes the hth customer

in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by vehicle k

exactly once. We denote by nk the number of customers in σk. For convenience, we define

σk(0) = 0 and σk(nk + 1) = 0 for all k (i.e., each vehicle k ∈ M departs from the depot

and comes back to the depot). Moreover, let si be the start time of service at customer i

(by exactly one of the vehicles) and sa
k be the arrival time of vehicle k at the depot. Note

that each vehicle is allowed to wait at customers before starting services.

Let us introduce 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V \ {0} and k ∈M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 holds if and only if vehicle k visits customer i. The traveling distance of

a vehicle k is expressed as d(σk) =
∑nk

h=0 cσk(h),σk(h+1). Then the vehicle routing problem

with time windows is formulated as follows:

minimize
∑

k∈M

d(σk) (2.2.1)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0} (2.2.2)

∑

i∈V \{0}

aiyik(σ) ≤ u, k ∈M (2.2.3)

t0,σk(1) ≤ sσk(1), k ∈M (2.2.4)

sσk(i) + tσk(i),σk(i+1) ≤ sσk(i+1), 1 ≤ i ≤ nk − 1, k ∈M (2.2.5)

sσk(nk) + tσk(nk),0 ≤ sa
k ≤ l0, k ∈M (2.2.6)

ei ≤ si ≤ li, i ∈ V \ {0} (2.2.7)

yik(σ) ∈ {0, 1}, i ∈ V \ {0}, k ∈M. (2.2.8)

Constraint (2.2.2) means that every customer i ∈ V \ {0} must be served exactly once

by a vehicle. Constraint (2.2.3) means a capacity constraint for vehicle k. Constraints

(2.2.4)–(2.2.6) require that each vehicle cannot serve a customer before arriving at the

customer. Constraint (2.2.7) is a time window constraint for each customer. Note that

essential decision variables in this formulation are routes σk, since the values of yik(σ) are



2.3 Construction algorithm 15

automatically determined from σ, and finding appropriate values for si and sa
k, if any, is

easy when σ is fixed.

For VRPTW, even just finding a feasible schedule with a given number of vehicles is

known to be NP-complete in the strong sense. Hence it may not be reasonable to restrict

the search only within the feasible region of VRPTW, especially when the constraints are

tight. Moreover, in real-world situation, time window and capacity constraints can be

often violated to some extent. Considering these, the two constraints are often allowed

to be violated. A constraint is called hard if it must be satisfied, while it is called soft

if it can be violated. The violation of soft constraints is usually penalized and added

to the objective function. The VRP with hard (resp., soft) time window constraints is

abbreviated as VRPHTW (resp., VRPSTW).

2.3 Construction algorithm

In this section, we review construction algorithms which successively determines the values

of variables (e.g., assignment of a customer to a vehicle, a route edge). In this section,

the number of vehicles m can also be a decision variable, and, in this case, the objective

is to find a solution with the minimum vehicle number and the total traveling distance in

the lexicographical order (i.e., a solution is better than another (1) if its vehicle number

is smaller or (2) if the vehicle numbers are the same but the distance is smaller).

Construction algorithms run in very short time compared with local search and meta-

heuristics, and they may be used to generate an initial solution for local search and meta-

heuristics.

2.3.1 Insertion heuristic

An insertion heuristic was proposed and analyzed for the traveling salesman problem by

Rosenkrantz, Stearns and Lewis [131] in 1977 and it was applied to the vehicle routing

problem with time windows by Solomon [140] in 1987.

An insertion heuristic starts from an empty set of routes and unrouted customers.

It repeats inserting an unrouted customer into a current partial route until no unrouted

customer exists. An insertion heuristic is described as Algorithm 7. Important points in

designing insertion heuristics are (1) the selection of an unrouted customer who is inserted

for the next insertion, and (2) the position where the selected customer is inserted.

Campbell and Savelsbergh [26] discussed efficient implementations of insertion heuris-

tics for vehicle routing and scheduling problems with complicated constraints.
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Algorithm 7 Insertion heuristic

1: Let N be a set of unrouted customers and R be a set of routes which initially contain

no customer.

2: while N 6= ∅ do

3: Select customer i ∈ N , route r ∈ R and a position in r.

4: Insert i at the selected position and let N := N \ {i}.

5: end while

2.3.2 Savings heuristic

A savings heuristic was proposed for the capacitated vehicle routing problem, which has

no time window constraint, by Clarke and Wright [30] in 1964.

It begins with a solution in which every customer is visited by an individual vehicle,

and the following combining procedure is repeated. Let Sij be a cost saving which is

achieved by combining two routes, where the last customer of a route is i and the first

customer of the other route is j, i.e., Sij = ci0 + c0j − cij . It selects the edge (i, j) which

maximizes Sij under the condition that the combined route is feasible and combines the

two routes. A savings heuristic is described as Algorithm 8.

Algorithm 8 Savings heuristic

1: Generate n vehicle routes σi = (0, i, 0) for i ∈ V \ {0}.

2: Compute the savings Sij = ci0 + c0j − cij and order the savings in a nonincreasing

fashion.

3: for Start from the top of the savings list do

4: Given a saving Sij, determine whether there exist two routes, one containing edge

(0, j) and the other containing edge (i, 0), that can feasibly be merged. If so,

combine these two routes by deleting (0, j) and (i, 0) and introducing (i, j).

5: end for

2.3.3 Fisher and Jaikumar algorithm

The Fisher and Jaikumar algorithm [50] was proposed for the capacitated vehicle routing

problem in 1981.

The algorithm is a two-phase algorithm which is categorized as a cluster-first route-

second method. In the first phase, it partitions customers to m clusters by solving a

generalized assignment problem (GAP), where a cluster will be visited by a vehicle. It

selects a seed customer ik for each vehicle k, and estimates the assignment cost of customer

i to cluster k by dik = min{c0,i + ci,ik + cik ,0, c0,ik + cik ,i + ci,0}− (c0,ik + cik,0). They solve
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the resulting GAP by a branch-and-bound method based on a Lagrangian relaxation

technique. Then, in the second phase, it determines an optimal route for each cluster by

solving the corresponding traveling salesman problems (TSP). The algorithm is described

as Algorithm 9.

Algorithm 9 Fisher and Jaikumar heuristic

1: Select seed customers ik ∈ V for each vehicle k.

2: Compute the cost dik of assigning customer i to vehicle k as dik = min{c0,i + ci,ik +

cik ,0, c0,ik + cik,i + ci,0} − (c0,ik + cik ,0).

3: Solve the resulting instance of the GAP (i.e., assignment cost dik, customer weights

ai and vehicle capacity u).

4: Solve instances of TSP for each assignment of vehicle k corresponding the GAP solu-

tion.

Bramel and Simchi-Levi [21] and Koskosidis, Powell and Solomon [97] proposed algo-

rithms, which are generalizations of the Fisher and Jaikumar algorithm, for the vehicle

routing problem with time windows.

2.4 Local search

In this section, we review the representative neighborhoods for the traveling salesman

problem, the capacitated vehicle routing problem, and the vehicle routing problem with

time windows. See [4, 23,52,94] for more information.

In general, for routing problems, a neighborhood consists of the set of solutions that

can be obtained by swapping a subset of route edges. There are two categories: One is the

single-route neighborhood whose neighborhood operation is applied for a single route. The

other is the multi-route neighborhood whose neighborhood operation is applied for more

than one route. In figures of this thesis, squares represent the depot (which is duplicated

at each end) and small circles represent customers in the routes. A thin line represents

a route edge and a thick line represents a path (i.e., more than two customers may be

included).

2.4.1 λ-opt neighborhood

The λ-opt neighborhood was proposed by Lin [105] for the traveling salesman problem. For

a given route, it removes λ edges of a route, and the resulting λ segments are reconnected.
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2.4.2 2-opt∗ neighborhood

The 2-opt∗ neighborhood was proposed by Potvin and Rousseau [126] in 1995, which is

a variant of the 2-opt neighborhood. A 2-opt∗ operation removes two edges from two

different routes (one from each) to divide each route into two parts and exchanges the

second parts of the two routes. Figure 2.1 illustrates a 2-opt∗ neighborhood operation.

Figure 2.1: A 2-opt∗ neighborhood operation

2.4.3 λ-interchange neighborhood

Osman [118] proposed a λ-interchange neighborhood for the capacitated vehicle routing

problem. A λ-interchange exchanges up to λ customers between two routes.

2.4.4 Cross exchange neighborhood

The cross exchange neighborhood was proposed by Taillard et al. [142] in 1997. A cross

exchange operation removes two paths from two routes (one from each) of different vehicles

and exchanges them. Figure 2.2 illustrates a cross exchange neighborhood operation.

The exchange neighborhood, which is the set of solutions obtainable by exchanging

a customer of a route with a customer of the other, is included in the cross exchanging

neighborhood. The relocate neighborhood, which is the set of solutions obtainable by

removing a customer from a route and inserting the customer to another, is also included

in the cross exchanging neighborhood.

The icross exchange neighborhood is an extension where the exchanged paths can be

inserted with the reverse order [22].
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Figure 2.2: A cross exchange neighborhood operation

2.4.5 Or-opt neighborhood

The Or-opt neighborhood was proposed for TSP by Or [116] in 1976. An Or-opt neigh-

borhood operation removes a path which contains at most three customers and inserts it

into another position of the same route. Figure 2.3 illustrates an Or-opt neighborhood

Figure 2.3: An Or-opt neighborhood operation

operation.

The intra neighborhood [142] is an extension of Or-opt neighborhood that removes a

path which can contain more than three customers and inserts it into another position of

the same route. The intra neighborhood is also known as the iopt neighborhood [22]. An

intra operation is categorized into four types:
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1. the removed path is inserted forward with its order reversed,

2. the removed path is inserted forward with its order preserved,

3. the removed path is inserted backward with its order reversed, and

4. the removed path is inserted backward with its order preserved.

2.4.6 Cyclic transfer

Thompson and Psaraftis [147] proposed a cyclic transfer to vehicle routing and scheduling

problems. A k-cyclic λ-transfer operation transfers λ customers from each route in a

circular manner among k routes. However, in general, the neighborhood search problem

is NP-hard [146].

2.5 General model

In this section, we formulate a general model which includes all problems considered in

this thesis, and, in the next section, we describe a general neighborhood search framework

for the model. Desaulniers et al. [40] made a similar attempt to provide a general solving

framework. They proposed another general model, which can treat a variety of vehicle

routing and scheduling problems, and presented a branch-and-bound framework.

Let G = (V,E) be a complete directed graph with vertex set V = {0, 1, . . . , n} and edge

set E = {(i, j) | i, j ∈ V, i 6= j}, M = {1, 2, . . . ,m} be a vehicle set, and Ω = {1, 2, . . . , ν}

be a resource set. In this graph, vertex 0 is the depot and other vertices are customers.

Each customer i, each edge (i, j) ∈ E and the depot are associated with:

1. a cost function pcust
ω
i (X) for the amount X of resource ω consumed on the route

from the depot to customer i,

2. a cost function pdepot
ω
k (X) for the amount X of resource ω consumed on the whole

route visited by vehicle k,

3. a resource demand function λω
i,j(X) between edge (i, j) when the amount of resource

ω consumed on the route from the depot to customer i is X, and

4. a cost function qω
i,j(Y,X) between edge (i, j) when the amount of resource ω con-

sumed on the route from the depot to customer i is X and the amount of resource

ω supplied on the edge is Y .
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When a vehicle travels an edge (i, j), it consumes λω
i,j(X) units of resource for each ω

where the amount depends on the amount X consumed on the route from the depot to i,

and the resource can be supplied by arbitrary amount Y with additional cost qω
i,j(Y,X).

Let σk denote the route traveled by vehicle k, where σk(h) denotes the hth customer

in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by vehicle

k exactly once. We denote by nk the number of customers in σk. For convenience, we

define σk(0) = 0 and σk(nk + 1) = 0 for all k (i.e., each vehicle k ∈ M departs from the

depot and comes back to the depot). Let us introduce 0-1 variables yik(σ) ∈ {0, 1} for

i ∈ V \ {0} and k ∈M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 holds if and only if vehicle k visits customer i. Moreover, let Xω
i be

the amount of resource ω consumed on the route from the depot to i by a vehicle, let

Xdepot
ω
k be the amount of resource ω consumed on the whole route visited by vehicle k,

and let

X =





X1
1 X1

2 . . . X1
n Xdepot

1
1 Xdepot

1
2 . . . Xdepot

1
m

X2
1 X2

2 . . . X2
n Xdepot

2
1 Xdepot

2
2 . . . Xdepot

2
m

...
...

...
...

...
...

Xν
1 Xν

2 . . . Xν
n Xdepot

ν
1 Xdepot

ν
2 . . . Xdepot

ν
m




.

Let Y ω
i,j be the amount of resource ω supplied on edge (i, j), and let

Y = (Y ω
i,j).

The cost pω(σk,X,Y ) of resource ω for a route σk is the sum of the cost for the amount

consumed on the route from the depot to each customer σk(h) and the depot and the cost

for the amounts of resource supplied on the traveled edges by vehicle k:

pω(σk,X ,Y ) =

nk∑

h=1

pcust
ω
σk(h)(X

ω
σk(h)) + pdepot

ω
k (Xdepot

ω
k )

+ qω
0,σk(1)(Y

ω
0,σk(1), 0) +

nk∑

h=1

qω
σk(h),σk(h+1)(Y

ω
σk(h),σk(h+1),X

ω
σk(h)). (2.5.9)
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Then a general problem is formulated as follows:

minimize
∑

ω∈Ω

∑

k∈M

pω(σk,X ,Y ) (2.5.10)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0}

(2.5.11)

λω
0,σk(1)(0)− Y ω

0,σk(1) = Xω
σk(1), k ∈M,ω ∈ Ω

(2.5.12)

Xω
σk(h) + λω

σk(h),σk(h+1)(X
ω
σk(h))− Y ω

σk(h),σk(h+1) = Xω
σk(h+1),

1 ≤ h ≤ nk − 1,

k ∈M,ω ∈ Ω

(2.5.13)

Xω
σk(nk) + λω

σk(nk),0(X
ω
σk(nk))− Y ω

σk(nk),0 = Xdepot
ω
k , k ∈M,ω ∈ Ω

(2.5.14)

yik(σ) ∈ {0, 1}, i ∈ V \ {0},

k ∈M.

(2.5.15)

For example, in this model, time is considered as a resource ω; it takes λω
i,j(X) time to

travel an edge (i, j) (in other words the resource is consumed), its traveling time depends

on the start time X of traveling (in other words, the consumed amount of the resource

so far), and the traveling time can be shortened by Y with additional cost qω
i,j(Y,X)

(in other words, it takes cost to supply the resource). The time window constraint of

servicing customer i (resp., arrival of vehicle k at the depot ) can be expressed by defining

pcust
ω
i (Xω

i ) (resp., pdepot
ω
k (Xdepot

ω
k )) as 0 if Xω

i (resp., Xdepot
ω
k ) is within its time window,

otherwise ∞.

We consider the problem of determining the optimal schedule for a given route σk so

that the total cost is minimized. Since the route is given and the problem is independent

for each resource ω, we have only to consider the following simpler problem, which we

call the optimal scheduling problem (OSP). For convenience, we assume that vehicle k

visits customers 1, 2, . . . , nk in this order. Let customer 0 represent the departure from

the depot (i.e., Xω
0 = 0), and let customer nk + 1 represent the arrival at the depot (i.e.,

Xω
nk+1 = Xdepot

ω
k and pcust

ω
nk+1(X

ω
nk+1) = pdepot

ω
k (Xdepot

ω
k )). Then, the OSP is described
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as follows:

minimize

nk+1∑

h=1

pcust
ω
h(Xω

h ) +

nk∑

h=0

qω
h,h+1(Y

ω
h,h+1,X

ω
h ) (2.5.16)

subject to Xω
h + λω

h,h+1(X
ω
h )− Y ω

h,h+1 = Xω
h+1, 0 ≤ h ≤ nk. (2.5.17)

We will formulate the dynamic programming recursion for the OSP in two ways, which

will be applied in the efficient neighborhood search in the next section. Note that, in

general, the problem is NP-hard as described in Section 3.3.

Let fh(t) be the minimum cost incurred on the path from the depot through

customer h under the condition that the amount of resource consumed on the

path is exactly t (i.e., Xω
h = t).

We call fh(t) as a forward minimum cost function. Then it can be computed by the

following recurrence formula of dynamic programming:

f0(t) =

{
0, t = 0

+∞, otherwise

fh(t) = pcust
ω
h(t) + min

Xω
h−1+λω

h−1,h
(Xω

h−1)−Y ω
h−1,h

=t
{fh−1(X

ω
h−1) + qω

h−1,h(Y ω
h−1,h,Xω

h−1)},

1 ≤ h ≤ nk + 1,−∞ < t < +∞. (2.5.18)

The optimal cost of the OSP for a route σk is given by mint fnk+1(t). We can also formulate

the dynamic programming recursion in another way.

Let bh(t) be the minimum cost incurred on the path from customer h through

the depot under the condition that the amount of resource consumed from the

depot through h is exactly t (i.e., Xω
h = t).

We call this a backward minimum cost function. Then, bh(t) can be formulated as follows

in a symmetric manner:

bnk+1(t) = pcust
ω
nk+1(t)

bh(t) = pcust
ω
h(t) + min

t+λω
h,h+1(t)−Y ω

h,h+1=Xω
h+1

{bh+1(X
ω
h+1) + qω

h,h+1(Y
ω
h,h+1, t)},

1 ≤ h ≤ nk. (2.5.19)

Now the optimal cost of the OSP for a route σk is also given by

min
t

{

fh(t) + min
t+λω

h,h+1(t)−Y ω
h,h+1=Xω

h+1

{bh+1(X
ω
h+1) + qω

h,h+1(Y
ω
h,h+1, t)}

}

(2.5.20)

for any h (1 ≤ h ≤ nk).
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2.6 Efficient neighborhood search method

In this section, we propose an efficient neighborhood search method for the general prob-

lem. We first describe the basic idea, and then describe how it is applied to each neigh-

borhood search. Let popt(σk) be the optimal cost of σk.

2.6.1 Basic idea

A key observation to the efficient computation is that each route σk of a neighborhood

solution is a recombination of a few paths of the current solution. Hence we consider

a speeding up approach that stores some useful information of paths from the depot to

customers and those from customers to the depot, among those paths of the current

routes. For each customer h in a new route σk, let Fh (resp., Bh) be some data structure

that contains the information of the path (of σk) from the depot to h (resp., from h to the

depot). We call Fh as a forward data structure and Bh as a backward data structure. Note

that Fh and Bh signify the information of the paths of the new route σk. For example,

if σk is generated by a 2-opt∗ operation, and the path from the depot to h and the path

from h+1 to the depot are from the current solution, then Fh and Bh+1 are available from

the stored information when they are used to compute popt(σk). On the other hand, for

the cross exchange and intra-route neighborhoods, Fh and Bh for customers h in inserted

paths need to be computed, because in the new route σk the path from the depot to such

an h and that from h to the depot are different from those in the current route. What is

important in this approach is to execute the followings efficiently for a given σk:

1. construction of Fh+1 from Fh (the forward computation),

2. construction of Bh from Bh+1 (the backward computation), and

3. computation of popt(σk) from Fh and Bh+1.

It is not hard to show that each neighborhood solution can be evaluated in O(T ) time,

if the above operations can be done in O(T ) time for any h (0 ≤ h ≤ nk). However, to

accomplish this, the neighborhood need to be searched in an appropriate search order.

This strategy has also been used to devise efficient algorithms for a variety of vehicle

routing and scheduling problems [74, 75, 85, 86]. Although, in this strategy, the optimal

cost for a route is computed by connecting two paths, Kindervater and Savelsbergh [94]

and Ibaraki et al. [86] proposed search strategies where the optimal cost for a route is

computed by connecting more than two paths for the vehicle routing problem with time

windows and the vehicle routing problem with convex time penalty functions, respectively.
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2.6.2 How to apply the basic idea to evaluate solutions in neighborhoods

We now explain how to apply the above idea to evaluate solutions in the 2-opt∗, cross

exchange and intra neighborhoods efficiently. Here we assume that Fi and Bi for each

customer i are stored in memory. The time for the initial construction and an update

caused by a move from the current solution can be ignored because they occur much less

often than evaluations of solutions.

Below let Forward(F , (i, j)) (resp., Backward(B, (i, j))) denote a call to construction of

data structure for the forward (resp., backward) computation from F (resp., B) along edge

(i, j) whose output is the constructed data structure, and let Connect(F ,B, (i, j)) denote

a call to the computation of the optimal cost of the route which consists of the paths

corresponding to F and B and (i, j) concatenating them. We assume these procedure

(i.e., Forward, Backward and Connect) can be done in O(T ) time. We will denote by

〈σk(h1)→ σk(h2)〉 the path from the h1st customer to the h2nd customer in route σk, and

by 〈σk(h1)→ σk(h2)〉–〈σk′(h3)→ σk′(h4)〉 the path constructed by connecting two paths

〈σk(h1)→ σk(h2)〉 and 〈σk′(h3)→ σk′(h4)〉 from routes σk and σk′ .

2-opt∗ neighborhood

Let us consider the 2-opt∗ operation on routes σk and σk′ .

In Figure 2.4, an example of a 2-opt∗ operation on routes σk and σk′ is shown. We

σk σk′

σk′ (hk′)σk(hk)

σk′ (hk′ + 1)σk(hk + 1)

σnew

k
σnew

k′

Figure 2.4: An illustration of the search method for the 2-opt∗ neighborhood

denote by σnew
k and σnew

k′ the resulting two routes (i.e., σnew
k = 〈0 → σk(hk)〉–〈σk′(hk′ +

1) → 0〉 and σnew
k′ = 〈0 → σk′(hk′)〉–〈σk(hk + 1) → 0〉). Then the cost popt(σ

new
k′ ) (resp.,

popt(σ
new
k )) of the new route is obtained by connecting σk(hk) and σk′(hk′ + 1) (resp.,

σk′(hk′) and σk(hk + 1)). Hence, when a 2-opt∗ operation is applied to routes σk and σk′ ,

we can evaluate the cost of the resulting solution in O(T ) time. The procedure is described

as Algorithm 10.
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Algorithm 10 The search method for the 2-opt∗ neighborhood

1: procedure 2-opt∗(σk, σk′ , hk, hk′)

2: Connect(Fσk(hk),Bσk′ (hk′+1), (σk(hk), σk′(hk′ + 1))) ⊲ popt(σ
new
k )

3: Connect(Fσk′ (hk′)
,Bσk(hk+1), (σk′(hk′), σk(hk + 1))) ⊲ popt(σ

new
k′ )

4: end procedure

Cross exchange neighborhood

Let us consider the cross exchange operation on routes σk and σk′ . We restrict the length

(i.e., the number of customers in the path) of the exchanged path at most Lcross (a pa-

rameter).

To evaluate solutions in the cross exchange neighborhood efficiently, we need to search

the solutions in the neighborhood in a specific order. To apply cross exchange operations

on routes σk and σk′ , we start from a solution obtainable by exchanging one customer from

each route, and then extend lengths of the paths to be exchanged one by one. We denote

by σnew
k and σnew

k′ the resulting two routes (i.e., σnew
k = 〈0 → σk(h

k
1)〉–〈σk′(hk′

1 + 1) →

σk′(hk′ + l′)〉– 〈σk(hk + l + 1)→ 0〉 and σnew
k′ = 〈0→ σk′(hk′

1 )〉–〈σk(hk
1 + 1)→ σk(hk + l)〉–

〈σk′(hk′ + l′ + 1) → 0〉). Then the cost popt(σ
new
k ) (resp., popt(σ

new
k′ )) of the new route is

obtained by connecting σk′(hk′+l′) and σk(hk+l+1) (resp., σk(hk+l) and σk′(hk′+l′+1)).

The procedure is described as Algorithm 11. See Figure 2.5 for a help to understand the

description.

σk(hk
1
) σk′ (hk

′

1
)

σk′ (hk
′

1
+ 1)σk(hk

1
+ 1)

σk′ (hk
′

1
+ l′)σk(hk

1
+ l)

σk′ (hk
′

1
+ l′ + 1)σk(hk

1
+ l + 1)

(a) (b)

σk σk′ σnew

k
σnew

k′

Figure 2.5: An illustration of the search method for the cross exchange neighborhood

Although, in Algorithm 11, at least one customer is exchanged from both routes for
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Algorithm 11 The search method for cross exchange neighborhood

1: procedure Cross(σk, σk′ , hk
1 , h

k′

1 )

2: for l← 1,min{Lcross, nk − hk
1} do ⊲ Extend path 〈σk(h

k
1 + 1)→ σk(h

k
1 + l)〉

3: if l = 1 then

4: F̃ :=Forward(Fk′

σk′ (h
k′

1 )
, (σk(h

k
1), σk(hk

1 + 1)))

5: else

6: F̃ :=Forward(F̃ , (σk(h
k
1 + l − 1), σk(h

k
1 + l)))

7: end if

8: for l′ ← 1,min{Lcross, nk′−hk′

1 } do ⊲ Extend path 〈σk′(hk′

1 +1)→ σk′(hk′

1 + l)〉

9: if l = 1 then

10: F̃ ′:=Forward(Fk
σk(hk

1)
, (σk′(hk′

1 ), σk′(hk′

1 + 1)))

11: else

12: F̃ ′:=Forward(F̃ ′, (σk′(hk′

1 + l′ − 1), σk′(hk′

1 + l′)))

13: end if

14: Connect(F̃ ,Bk
σk(hk

1+l+1)
, (σk′(hk′

1 + l′), σk(hk
1 + l + 1))) ⊲ popt(σ

new
k )

15: Connect(F̃ ′,Bk′

σk′ (h
k′

1 +l′+1)
, (σk(h

k
1 + l), σk′(hk′

1 + l′ + 1))) ⊲ popt(σ
new
k′ )

16: end for

17: end for

18: end procedure

simplicity, a neighborhood operation which relocates the path from a route to the other

(e.g., the relocation neighborhood) can be evaluated in O(T ) time. Furthermore each

icross neighborhood solution can analogously be evaluated in O(T ) time.

Intra neighborhood

Let us consider the intra operation on route σk. We restrict the length of the exchanged

path at most Lintra
path (a parameter) and the position to be inserted is limited within length

Lintra
ins (a parameter) from the original position. As described before, there are four types

of intra neighborhood operations:

1. the removed path is inserted forward with its order reversed,

2. the removed path is inserted forward with its order preserved,

3. the removed path is inserted backward with its order reversed, and

4. the removed path is inserted backward with its order preserved.

The procedure for the case that the removed path is inserted forward with its order re-

versed is described as Algorithm 12. See Figure 2.6 for a help to understand the description.
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We denote by σnew
k the resulting route. In Algorithm 12, a path 〈σk(h1 + l−1)→ σk(h1)〉

Algorithm 12 The search method for the forward reverse intra neighborhood

1: procedure IntraForwardReverse(σk, h1)

2: for h2 ← h1 + 1,min{h1 + Lintra
ins , nk} do ⊲ Insert a path between σk(h2) and

σk(h2 + 1)

3: for l← 1,min{Lintra
path , h2 − h1} do ⊲ Extend path 〈σk(h1)→ σk(h1 + l − 1)〉

4: if h2 = h1 + 1 then

5: F̃l:=Forward(F̃l, (σk(h1 − 1), σk(h2)))

6: else

7: F̃l:=Forward(F̃l, (σk(h2 − 1), σk(h2)))

8: end if

9: if l = 1 then

10: B̃:=Backward(B, (σk(h1 + l − 1), σk(h2 + 1)))

11: else

12: B̃:=Backward(B̃, (σk(h1 + l − 1), σk(h1 + l − 2)))

13: end if

14: Connect(F̃l, B̃, (σk(h2), σk(h1 + l − 1))) ⊲ popt(σ
new
k )

15: end for

16: end for

17: end procedure

is removed from σk and is inserted between σk(h2) and σk(h2 +1), and the exchanged path

is extended by one at each iteration. For each evaluation of the neighborhood solutions, it

takes O(T ) time; it calls Forward, Backward and Connect once. Hence each intra neigh-

borhood solution which inserts a path forward with its order reversed can be evaluated in

O(T ) time.

Other cases can be treated similarly. The descriptions of search methods and figures

to help understand them are as follows: Algorithm 13 and Figure 2.7 are for the case

where the removed path is inserted forward with its order preserved, Algorithm 14 and

Figure 2.8 are for the case the removed path is inserted backward with its order reversed,

and Algorithm 15 and Figure 2.9 are for the case the removed path is inserted backward

with its order preserved.
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σk(h2) σk(h2 + 1)

σk(h1 − 1)

σk(h1) σk(h1 + l − 1)

σk(h1 + l)

σ
new
k

Figure 2.6: An illustration of the search method for the forward reverse intra neighborhood

σk(h2) σk(h2 + 1)

σk(h1 − l)

σk(h1)σk(h1 − l + 1)

σk(h1 + 1)

σ
new
k

Figure 2.7: An illustration of the search method for the forward normal intra neighborhood
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σk(h2 − 1) σk(h2)

σk(h1 − l)

σk(h1)σk(h1 − l + 1)

σk(h1 + 1)

σ
new
k

Figure 2.8: An illustration of the search method for the backward reverse intra neighbor-

hood

σk(h2 − 1) σk(h2)

σk(h1 − 1)

σk(h1) σk(h1 + l − 1)

σk(h1 + l)

σ
new
k

Figure 2.9: An illustration of the search method for the backward normal intra neighbor-

hood



Algorithm 13 The search method for the forward normal intra neighborhood

1: procedure IntraForwardNormal(σk, h1)

2: for h2 ← h1 + 1,min{h1 + Lintra
ins , nk} do ⊲ Insert a path between σk(h2) and

σk(h2 + 1)

3: for l← 1,min{Lintra
path , h2 − h1} do ⊲ Extend path 〈σk(h1 − l + 1)→ σk(h1)〉

4: if h2 = h1 + 1 then

5: F̃l:=Forward(Fσk(h1−l), (σk(h1 − l), σk(h2)))

6: else

7: F̃l:=Forward(F̃l, (σk(h2 − 1), σk(h2)))

8: end if

9: if l = 1 then

10: B̃:=Backward(Bσk(h2+1), (σk(h1 − l + 1), σk(h2 + 1)))

11: else

12: B̃:=Backward(B̃, (σk(h1 − l + 1), σk(h1 − l + 2)))

13: end if

14: Connect(F̃l, B̃, (σk(h2), σk(h1 − l + 1))) ⊲ popt(σ
new
k )

15: end for

16: end for

17: end procedure
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Algorithm 14 The search method for the backward reverse intra neighborhood

1: procedure IntraBackwardReverse(σk, h1)

2: for h2 ← h1 − 1,max{h1 − Lintra
ins , 1} do ⊲ Insert a path between σk(h2 − 1) and

σk(h2)

3: for l← 1,min{Lintra
path , h1 − h2} do ⊲ Extend path 〈σk(h1 − l + 1)→ σk(h1)〉

4: if h2 = h1 − 1 then

5: B̃l:=Backward(Bσk(h1−l), (σk(h2), σk(h1 + 1)))

6: else

7: B̃l:=Backward(B̃l, (σk(h2), σk(h2 + 1)))

8: end if

9: if l = 1 then

10: F̃ :=Forward(Fσk(h2−1), (σk(h2 − 1), σk(h1 − l + 1)))

11: else

12: F̃ :=Forward(F̃ , (σk(h1 − l + 2), σk(h1 − l + 1)))

13: end if

14: Connect(F̃ , B̃l, (σk(h1 − l + 1), σk(h2))) ⊲ popt(σ
new
k )

15: end for

16: end for

17: end procedure
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Algorithm 15 The search method for the backward normal intra neighborhood

1: procedure IntraBackwardNormal(σk, h1)

2: for h2 ← h1 − 1,max{h1 − Lintra
ins , 1} do ⊲ Insert a path between σk(h2 − 1) and

σk(h2)

3: for l← 1,min{Lintra
path , h1 − h2} do ⊲ Extend path 〈σk(h1)→ σk(h1 + l − 1)〉

4: if h2 = h1 − 1 then

5: B̃l:=Backward(Bσk(h1+l), (σk(h2), σk(h1 + l)))

6: else

7: B̃l:=Backward(B̃l, (σk(h2), σk(h2 + 1)))

8: end if

9: if l = 1 then

10: F̃ :=Forward(Fσk(h2−1), (σk(h2 − 1), σk(h1 + l − 1)))

11: else

12: F̃ :=Forward(F̃ , (σk(h1 + l − 2), σk(h1 + l − 1)))

13: end if

14: Connect(F̃ , B̃l, (σk(h1 + l − 1), σk(h2))) ⊲ popt(σ
new
k )

15: end for

16: end for

17: end procedure
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Chapter 3

The Vehicle Routing Problem

with Flexible Time Windows and

Traveling Times

3.1 Introduction

In this chapter, in addition to soft time window constraints, we treat the traveling times

between customers as variables. The difference between the start times of services at a

customer i and the next customer j in a route is the sum of the following three components:

(1) the service time of i, (2) the traveling time between i and j, and (3) the waiting time

at j. The service time and the traveling time are given as constant values, in standard

VRP formulation. In practice, however, these values can be changed with some cost (e.g.,

the service time can be shortened by investing more work force, and the traveling time can

be shortened by paying the turnpike toll). We therefore redefine the traveling time as a

variable representing the difference between the start times of services at two consecutive

customers, and introduce its cost function. Our goal is to find a flexible solution, whose

cost is considerably small, with a little penalty if necessary.

With soft time windows and/or variable traveling times, even after fixing the order of

customers for each vehicle to visit, it becomes nontrivial to determine the optimal start

times of services at all customers so that the total cost of the vehicle is minimized. We first

show that this problem is NP-hard when cost functions are general. We then consider a

restricted problem, which is still NP-hard, and propose a dynamic programming algorithm

whose time complexity is of pseudo polynomial order. Then, assuming that traveling time

cost functions are convex we modify the dynamic programming into a polynomial time

algorithm, which is then incorporated in the iterated local search algorithm of this chapter,
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We conduct computational experiments on representative benchmark instances of

VRPTW. Our algorithm can find solutions whose traveling distances are much smaller

than those of the best known solutions by allowing small violations of the given time win-

dow and/or traveling time constraints. The outcomes may indicate the usefulness of the

proposed generalization.

3.2 Problem definition

Here we formulate the VRP with time window and traveling time constraints. Let G =

(V,E) be a complete directed graph with vertex set V = {0, 1, . . . , n} and edge set E =

{(i, j) | i, j ∈ V, i 6= j}, and M = {1, 2, . . . ,m} be a vehicle set. In this graph, vertex 0

is the depot and other vertices are customers. Each customer i, each vehicle k and each

edge (i, j) ∈ E are associated with:

1. a fixed quantity ai (≥ 0) of goods to be delivered to i,

2. a time window cost function pi(t) of the start time t of the service at i (p0(t) is the

time window cost function of the arrival time t at the depot),

3. a capacity uk (≥ 0) of k,

4. a distance dij (≥ 0) from i to j,

5. a traveling time cost function qij(t) of the traveling time t from i to j.

We assume a0 = 0 without loss of generality. The distance matrix (dij) is not necessarily

symmetric. We assume that each time window cost function pi(t) is nonnegative, piecewise

linear and lower semicontinuous (i.e., pi(t) ≤ limε→0 min{pi(t + ε), pi(t − ε)} at every

discontinuous point t). Note that pi(t) can be non-convex and discontinuous as long as

it satisfies the above conditions. We also assume pi(t) = +∞ for t < 0 so that the start

time t of the service is nonnegative. Similarly, we assume that each traveling time cost

function qij(t) is nonnegative, piecewise linear and lower semicontinuous. We also assume

qij(t) = +∞ for t < 0 so that the traveling time t between customers is nonnegative.

These assumptions ensure the existence of an optimal solution. We further assume that

the linear pieces of each piecewise linear function are given explicitly.

Let σk denote the route traveled by vehicle k, where σk(h) denotes the hth customer

in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by vehicle k

exactly once. We denote by nk the number of customers in σk. For convenience, we define
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σk(0) = 0 and σk(nk + 1) = 0 for all k (i.e., each vehicle k ∈ M leaves the depot and

comes back to the depot). Moreover, let si be the start time of service at customer i (by

exactly one of the vehicles) and sa
k be the arrival time of vehicle k at the depot, and let

s = (s1, s2, . . . , sn, sa
1, s

a
2, . . . , s

a
m).

We assume that all vehicles have the same departure time 0 (i.e., s0 = 0) from the depot,

and all time window cost functions of the arrival time at the depot (i.e., p0(t)) are identical

for convenience. Note however that we can consider separate time window cost functions

of vehicles at the depot by introducing m dummy customers and making each vehicle visit

one of the dummy customers first.

Let us introduce 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V \ {0} and k ∈M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 holds if and only if vehicle k visits customer i. Then the total distance

dsum traveled by all vehicles, the total time window cost psum of all customers, the total

traveling time cost qsum, and the total excess amount asum of capacities are expressed as

dsum(σ) =
∑

k∈M

nk∑

h=0

dσk(h),σk(h+1), (3.2.1)

psum(s) =
∑

i∈V \{0}

pi(si) +
∑

k∈M

p0(s
a
k), (3.2.2)

qsum(σ, s) =
∑

k∈M

nk−1∑

h=0

qσk(h),σk(h+1)(sσk(h+1) − sσk(h))

+
∑

k∈M

qσk(nk),0(s
a
k − sσk(nk)), (3.2.3)

asum(σ) =
∑

k∈M

max





∑

i∈V \{0}

aiyik(σ)− uk, 0




 . (3.2.4)

Then, the problem can be formulated as follows:

minimize dsum(σ) + psum(s) + asum(σ) + qsum(σ, s) (3.2.5)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0}. (3.2.6)

In this formulation, time window, traveling time and capacity constraints are all treated

as soft, and their violation is evaluated as costs psum(s), qsum(σ, s) and asum(σ) in the

objective function, respectively.
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The standard problem VRPHTW, in which time windows [tri , t
d
i ], service times τi and

traveling times tij are given as constant values, can be formulated in the form of (3.2.5)–

(3.2.6) by using the following pi(t) and qij(t):

pi(t) =

{
0, tri ≤ t ≤ tdi

+∞, otherwise,

qij(t) =

{
+∞, t < τi + tij

0, t ≥ τi + tij.

3.3 Optimal start times of services

In this section, we consider the problem of determining the time to start services at

customer i in a given route σk so that the total of time window and traveling time costs is

minimized. (How to determine σk will be discussed in Section 3.4.) We call this the optimal

start time problem, and abbreviate it as OSTP. First, we prove that OSTP is NP-hard in

general in Section 3.3.1. Next, in Section 3.3.2, we consider a restricted problem, which

is still NP-hard, but permits a dynamic programming algorithm of pseudo polynomial

time order. Then in Section 3.3.3, we show that the same dynamic programming can be

implemented so that it runs in polynomial time, if each traveling time cost function is

convex.

For convenience, throughout this section, we assume that vehicle k visits customers

1, 2, . . . , nk in this order and let customer nk + 1 represent the arrival at the depot (i.e.,

snk+1 = sa
k and pnk+1(snk+1) = p0(s

a
k)). Then, OSTP is formulated as follows:

minimize fOSTP(s) =

nk+1∑

i=1

pi(si) +

nk+1∑

i=1

qi−1,i(si − si−1) (3.3.7)

subject to s0 = 0.

3.3.1 NP-hardness

Theorem 3.3.1 The optimal start time problem (OSTP) is NP-hard if each time window

cost function pi and each traveling time cost function qij are general piecewise linear.

Proof. We reduce the 0-1 knapsack problem (abbreviated as KP), which is one of the
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representative NP-hard problems [91,109], to OSTP. KP with n′ items is defined by

maximize

n′∑

i=1

cixi (3.3.8)

subject to
n′∑

i=1

wixi ≤ b

xi ∈ {0, 1}, i = 1, 2, . . . , n′.

Note that objective function (3.3.8) is equivalent to

minimize

n′∑

i=1

ci(1− xi) =

n′∑

i=1

ci −
n′∑

i=1

cixi. (3.3.9)

For a given instance of KP, we set nk := n′ − 1 and define pi and qi−1,i for i =

1, 2, . . . , nk + 1 as follows:

pi(t) =

{
0, t ∈ [0, b]

+∞, t ∈ (b,+∞),
(3.3.10)

qi−1,i(t) =

{
ci, t ∈ [0, wi)

0, t ∈ [wi,+∞).
(3.3.11)

We will show that this OSTP instance has the same objective value as KP with objective

function (3.3.9).

Let us define a vector s̃ = (s̃0, s̃1, . . . , s̃nk+1) of start times, corresponding to a feasible

solution x̃ of the 0-1 knapsack, by s̃0 = 0 and the following s̃i for i ≥ 1:

s̃i =

{
s̃i−1, if x̃i = 0

s̃i−1 + wi, if x̃i = 1.
(3.3.12)

Then
s̃i =

∑

j≤i

wj x̃j ≤ b, i = 1, 2, . . . , nk + 1 (3.3.13)

holds from the feasibility of x̃. The time window cost of s̃ is
∑nk+1

i=1 pi(s̃i) = 0 from (3.3.10)

and (3.3.13), and the traveling time cost is
∑nk+1

i=1 qi−1,i(s̃i− s̃i−1) =
∑nk+1

i=1 ci(1− x̃i) from

(3.3.11) and (3.3.12). Hence the objective value of s̃ for the OSTP instance is equal to

the objective value of x̃ for the KP instance.

Conversely, let us define x̂ corresponding to a solution ŝ that has a finite objective

value for the OSTP instance as follows:

x̂i =

{
1, if ŝi − ŝi−1 ≥ wi

0, if ŝi − ŝi−1 < wi.
(3.3.14)
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Then we have

nk+1∑

i=1

wix̂i ≤

nk+1∑

i=1

(ŝi − ŝi−1)x̂i ≤

nk+1∑

i=1

(ŝi − ŝi−1) = ŝnk+1 ≤ b.

Note that the last inequality is derived from (3.3.10) and the fact that ŝ has a finite

objective value. For the same reason, we have
∑nk+1

i=1 pi(ŝi) = 0, and hence

nk+1∑

i=1

ci(1− x̂i) =

nk+1∑

i=1

pi(ŝi) +

nk+1∑

i=1

qi−1,i(ŝi − ŝi−1)

holds from definitions (3.3.11) and (3.3.14). The optimal value of the KP instance is

therefore equal to the optimal value of the OSTP instance.

As the KP instance always has a feasible solution x = 0, the above discussion shows

that KP is reducible to OSTP. �

3.3.2 Pseudo polynomial time algorithm

We first show that OSTP defined for route σk of vehicle k can be solved by using dynamic

programming.

Let fk
h(t) be the minimum sum of the costs for customers 0, 1, 2, . . . , h served

by vehicle k in this order under the condition that customers 0, 1, . . . , h −

1 are served before time t and customer h is served exactly at time t (i.e.,

mins0=0,sh=t
∑h

i=1 pi(si) +
∑h

i=1 qi−1,i(si − si−1)).

Throughout this chapter, we call this a forward minimum cost function. Then fk
h (t) can

be computed by the following recursive formula

fk
0 (t) =

{
+∞, t 6= 0

0, t = 0

fk
h (t) = ph(t) + min

0≤t′≤t
{fk

h−1(t
′) + qh−1,h(t− t′)}, (3.3.15)

1 ≤ h ≤ nk + 1,−∞ < t < +∞.

The optimal cost for route σk is given by mint fk
nk+1(t).

In this subsection, we assume that each breakpoint t (i.e., the left or right end of a

linear piece) of given piecewise linear functions pi(t) and qij(t) is integer. Note that pi(t)

and qij(t) may not be integers. In this case, it is not difficult to show the following lemma.

Lemma 3.3.1 An OSTP instance with integer input has an optimal solution whose start

times are integers.
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Proof. Let s
∗ = (s∗1, s

∗
2, . . . , s

∗
nk+1) be an optimal solution of the problem. We will show

by induction that all s∗i can be integers.

By definition (3.3.7), s∗0 = 0 holds. Assume that s∗i are integers for i ≤ h− 1 but s∗h is

not an integer, where h ≤ nk holds.

If s∗h+1 − s∗h is not an integer, then the gradient of fOSTP for s∗h exists and is given by

∂

∂s∗h
fOSTP(s∗) =

∂

∂s∗h
{qh−1,h(s∗h − s∗h−1) + ph(s∗h) + qh,h+1(s

∗
h+1 − s∗h)}, (3.3.16)

because the breakpoints of qh−1,h, ph and qh,h+1 are integers but s∗h−s∗h−1, s∗h and s∗h+1−s∗h

are not integers. If the gradient (3.3.16) is not 0, we can reduce the objective value by

changing s∗h slightly, which is a contradiction. Hence the gradient is 0. We can therefore

change s∗h until it becomes an integer without increasing the objective value by choosing

the direction of the change appropriately so that s∗h becomes an integer before s∗h+1 − s∗h
does or both s∗h and s∗h+1 − s∗h become integers simultaneously.

If s∗h+1− s∗h is an integer, we fix the difference s∗h+1− s∗h and change the values of s∗h+1

and s∗h simultaneously. For this purpose, we contract customers h and h + 1 to form a

new customer h̃ with s∗
h̃

= s∗h and define the time window cost function and traveling time

cost functions as follows:

ph̃(t) = ph(t) + ph+1(t + s∗h+1 − s∗h) (3.3.17)

qh−1,h̃(t) = qh−1,h(t) (3.3.18)

qh̃,h+2(t) = qh,h+1(s
∗
h+1 − s∗h) + qh+1,h+2(t− s∗h+1 + s∗h), (3.3.19)

where we define qh̃,h+2(t) only if h ≤ nk−1. Then increasing the value of s∗
h̃

by a constant

c is equivalent to increasing the values of s∗h and s∗h+1 by c in the original formulation. The

breakpoints of ph̃(t), qh−1,h̃(t) and qh̃,h+2(t) are integers, because s∗h+1 − s∗h is an integer.

Hence the number of variables s∗i we have to consider decreases.

Now assume that all s∗i (i ≤ nk) are integers. If s∗nk+1 is not an integer, the gradient

of the objective function for s∗nk+1

∂

∂s∗nk+1

fOSTP(s∗) =
∂

∂s∗nk+1

{qnk,nk+1(s
∗
nk+1 − s∗nk

) + pnk+1(s
∗
nk+1)} (3.3.20)

exists. Hence, by a similar argument, we can change s∗nk+1 until it becomes an integer

without increasing the objective value. �

The lemma indicates that traveling times between customers are nonnegative integers,

and hence we can compute fk
h (t) by

fk
h (t) = ph(t) + min

t′∈{0,1,...,t}
{fk

h−1(t
′) + qh−1,h(t− t′)}, t = 0, 1, 2, . . . , (3.3.21)
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instead of equation (3.3.15). In order to compute equation (3.3.21), we consider a T ×

(nk + 1) table whose (t, h) element is fk
h (t), where T is the maximum time that we need

to consider. We will discuss the value of T below. With this table, fk
h (t) can be computed

in O(T ) time from fk
h−1(0), f

k
h−1(1), . . . , f

k
h−1(t). Hence, starting from fk

0 (0) = 0, fk
0 (1) =

fk
0 (2) = · · · = fk

0 (T ) = +∞, we can compute all elements of the table in O(nkT
2) time.

Now we consider the value of T . Let t = Ph be the largest breakpoint of the piecewise

linear function ph. Similarly, let t = Qh−1,h be the largest breakpoint of function qh−1,h.

Note that the gradients of the last pieces of ph(t) and qh−1,h(t) are nonnegative because

of the nonnegativity of these functions, and hence the gradient of the last piece of fk
h (t)

is also nonnegative. Then,

Th =

{
0, h = 0,

max{Th−1 + Qh−1,h, Ph}, h ≥ 1
(3.3.22)

represents the maximum time that we need to consider to compute fk
h (t). We therefore set

T = Tnk+1. Let h∗ be the largest h that satisfy Th−1 + Qh−1,h < Ph (if Th−1 + Qh−1,h ≥

Ph holds for all h = 1, 2, . . . nk + 1, we set h∗ = 0 and P0 = 0 for convenience), i.e.,

Th∗ = Ph∗ and Th = Th−1 + Qh−1,h holds for all h > h∗. Then we have T = Tnk+1 =

Ph∗ +
∑nk+1

h=h∗+1 Qh−1,h ≤ maxh∈{1,2...,nk+1} Ph +
∑nk+1

h=1 Qh−1,h. Recall that these functions

are all given explicitly as the input. This indicates that the time complexity O(nkT
2) is

pseudo-polynomial order.

Theorem 3.3.2 Problem OSTP with integer input can be solved in pseudo polynomial

time.

3.3.3 Polynomial time algorithm for convex traveling time cost functions

In this section, we propose a polynomial time algorithm for OSTP (3.3.7) in which each

traveling time cost function qh−1,h is convex. Here we do not assume integer input as

in Section 3.3.2. Note that time window cost functions ph can be general; i.e., ph can

be non-convex and/or discontinuous functions. If all time window cost functions are also

convex, this problem can be formulated as a convex programming problem and efficient

algorithms exist [19, 29]. Moreover if all coefficients are integers, this can be a special

case of the convex cost integer dual network flow problem and a more general algorithm

exists [6].

Computation of fk
h

Since functions ph and qh−1,h are piecewise linear, each fk
h is also piecewise linear. There-

fore we can store all functions in recursion (3.3.15) in linked lists; each cell stores the
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interval and the linear function of the corresponding piece, and the cells are linked accord-

ing to the order of intervals. For example, Figure 3.1 shows a piecewise linear function g

and its linked list. Let δ(g) be the number of linear pieces of a piecewise linear function

g. For example, the function g in Figure 3.1 has seven linear pieces (i.e., δ(g) = 7). Then

it is straightforward to see that summation g + g′ of two piecewise linear functions g and

g′ can be done in O(δ(g) + δ(g′)) time.

g(t)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

t

init (−∞, 1] y = −2x + 2 y = 0 y = 2x − 6 y = − 4
3
x + 28

3

y = 2
3
x − 14

3 y = 0 y = 4x − 52

[1, 3] [3, 4] (4, 7]

[7, 10) [10, 13] [13, +∞)

Figure 3.1: A function g and the linked list that represents g

A nontrivial part in recursion (3.3.15) is the computation of min0≤t′≤t{f
k
h−1(t

′) +

qh−1,h(t − t′)}.1 Even if qh−1,h is convex, fk
h−1 is not necessarily convex. For conve-

nience of explanation, we define a convex interval of a piecewise linear function to be a

maximal domain interval on which the function is convex, and let δ̂(g) be the number

of convex intervals of g. Then let Sl, l = 1, 2, . . . , δ̂(g), denote all convex intervals of g,

which are labeled in the increasing order of their contents. For example, the function g in

Figure 3.1 has three convex intervals S1 = (−∞, 4 ], S2 = (4, 10) and S3 = [10,+∞), and

hence δ̂(g) = 3.

We split the entire domain of fk
h−1 into convex intervals S1, S2, . . . , SK , where K =

δ̂(fk
h−1), and define the following convex functions Fl for l = 1, 2, . . . ,K, which are ex-

1Note that this computation is similar to that of Minkowski sum of a convex polygon and a nonconvex

polygon [38].
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tended from fk
h−1(t) on Sl. Let Cl(Sl) = [cL

l , cR
l ] denote the closure of Sl.

Fl(t) =






+∞, t /∈ Cl(Sl)

fk
h−1(t), t ∈ Sl

limε→+0 fk
h−1(t + ε), t = cL

l

limε→+0 fk
h−1(t− ε), t = cR

l .

Let

el(t) = min
0≤t′≤t

{Fl(t
′) + qh−1,h(t− t′)}. (3.3.23)

Then we have

min
0≤t′≤t

{fk
h−1(t

′) + qh−1,h(t− t′)} = min
0≤t′≤t

{
min

1≤l≤K
{Fl(t

′) + qh−1,h(t− t′)}

}

= min
1≤l≤K

{
min

0≤t′≤t
{Fl(t

′) + qh−1,h(t− t′)}

}

= min
1≤l≤K

el(t).

That is, min0≤t′≤t{f
k
h−1(t

′)+qh−1,h(t−t′)} is the lower envelope of functions e1, e2, . . . , eK .

Computation of el

To compute el(t) of (3.3.23), we use the next theorem since both of Fl and qh−1,h are

convex piecewise linear.

Theorem 3.3.3 Suppose that two lower semicontinuous convex piecewise linear functions

φ1 and φ2 are stored in linked lists. Then we can compute function

φ(t) = min
0≤t′≤t

{φ1(t
′) + φ2(t− t′)}

in O(δ(φ)) time, where δ(φ) ≤ δ(φ1) + δ(φ2) holds. Moreover φ is convex.

Proof. Let us consider the plane whose horizontal axis is x1 and vertical axis is x2, and

consider φ1(x1)+φ2(x2). This is shown in Figure 3.2, where vertical and horizontal broken

lines represent breakpoints of functions φ1 and φ2, respectively. Then φ(t) is given as the

minimum of φ1(x1) + φ2(x2) on the line x1 + x2 = t. First, we consider the minimum

point of φ1(x1) + φ2(x2) on the line segment AB in Figure 3.2. The shaded rectangle that

contains AB corresponds to one linear piece of φ1(x1) and another of φ2(x2). This means

that φ1(x1) + φ2(x2) = φ1(x1) + φ2(t − x1) = φ1(t − x2) + φ2(x2) is a linear function of

x1 (or equivalently of x2) on AB; hence either point A or point B achieves its minimum.

Since similar argument applies to all rectangular regions of broken lines, φ(t) is achieved

on one of the points where line x1 + x2 = t and broken lines meet.
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x2

x1

x1 + x2 = t

B

A

Figure 3.2: Breakpoints of φ1(x1) and φ2(x2) on the plane of x1 and x2

x1 + x2 = t

x1 + x2 = t + ε

x1

x2

A

B

C

D

Figure 3.3: The points that achieves φ(t) and φ(t + ε)

Now we show the continuity of the points which achieve φ(t). Let a point (x∗
1(t), x

∗
2(t))

achieve φ(t) (if there is more than one such point, we take the one whose x∗
1(t) is smallest).

We then derive a contradiction from assumption x∗
1(t + ε) < x∗

1(t). Figure 3.3 shows this

situation, where assume that points A and C achieve φ(t) and φ(t + ε), and points B and

D are their projections to lines x1 + x2 = t + ε and x1 + x2 = t, respectively, where ε is an

arbitrarily small positive number. Then, the value φ1(x1)+φ2(x2) at C is less than or equal

to that at B, and the value at A is exactly less than that at D. Hence the increment from A

to B is greater than the increment from D to C, which is a contradiction to the convexity

of function φ2. We then have x∗
1(t) ≤ x∗

1(t + ε). Similarly we have x∗
2(t) ≤ x∗

2(t + ε) (i.e.,

t− x∗
1(t) ≤ t + ε− x∗

1(t + ε)). Then we have

x∗
1(t) ≤ x∗

1(t + ε) ≤ x∗
1(t) + ε. (3.3.24)
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Thus trajectory (x∗
1(t), x

∗
2(t)) for t = 0 → +∞ is continuous and lies on the lattice of

broken lines (see Figure 3.2), i.e., it is a nondecreasing staircase curve from (0, 0) to its

top right as shown in Figure 3.4.

x2

x1

-3 -1 0 2 5

-5

-1

1

4

Figure 3.4: An example of the trajectory of (x∗
1(t), x

∗
2(t)) which achieves φ(t)

In order to compute φ, we walk on the lattice of broken lines from (0, 0), selecting the

direction (i.e., upward or rightward) with a smaller gradient at each intersection. Figure 3.4

shows such an example, where the numbers on x1 and x2 axes denote the gradients of the

corresponding intervals of linear pieces of φ1 and φ2. Whenever we determine the direction

at each intersection, we compute the data of φ for the corresponding interval, and add it

to the linked list that represents φ(t). Note that the gradient of φ is the same as that of

the selected piece of φi. As it is not difficult to show that the gradients of linear pieces of

φ added to the list are nondecreasing, the computed φ is also convex.

The time complexity of this algorithm is clearly O(δ(φ)). It is also clear from the above

argument that δ(φ) ≤ δ(φ1) + δ(φ2) holds. �

Lower envelope of all el

After obtaining convex functions el(t), l = 1, 2, . . . ,K by the algorithm described in Section

3.3.3, we compute their lower envelope. We show in this subsection that the time for this

computation is O(
∑K

l=1 δ(el)). For convenience, let EL(t) = min1≤l≤L el(t). In general,

the information of the lower envelope includes

• the set of functions el which appear in the lower envelope EK ,

• their order, and

• the crossing point of el and el′ for each adjacent pair.

We use the following Lemma 3.3.2 and Theorem 3.3.4 to obtain these data.
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Lemma 3.3.2 If l < l′, then the right differential coefficient of el(t) is greater than or

equal to that of el′(t) at any t.

Proof. Let us consider φ(t) = el(t) and the trajectory (x∗
1(t), x

∗
2(t)) achieving φ(t) (e.g.,

Figure 3.4), where in this case the horizontal axis denotes start time sh−1 and the vertical

axis denotes traveling time th−1,h. Figure 3.5 illustrates the situation in which there are two

trajectories corresponding to el(t) and el′(t). For a given t, let t∗l = arg min0≤t′≤t{Fl(t
′) +

qh−1,h(t−t′)}, i.e., el(t) = Fl(t
∗
l )+qh−1,h(t−t∗l ), and t∗l′ = arg min0≤t′≤t{Fl′(t

′)+qh−1,h(t−

t′)}. Then t− t∗l ≥ t− t∗l′ holds, since t∗l ∈ Cl(Sl) and t∗l′ ∈ Cl(Sl′). If t∗l = t∗l′ the lemma

Sl Sl′
t∗l t∗l′ t′

t− t∗l

t− t∗l′

el el′

Figure 3.5: el and el′

holds, since the right differential coefficient of el(t) is equal to that of qh−1,h(t − t∗l ) and

the right differential coefficient of el′(t) is less than or equal to that of qh−1,h(t − t∗l′) (=

qh−1,h(t− t∗l )). Then we assume t∗l < t∗l′ . The right differential coefficient of el(t) is greater

than or equal to that of qh−1,h(t− t∗l − ε) where ε is an arbitrarily small positive number.

The right differential coefficient of el′(t) is less than or equal to that of qh−1,h(t− t∗l′ + ε).

Since qh−1,h is convex and t−t∗l > t−t∗l′, the right differential coefficient of qh−1,h(t−t∗l −ε)

is greater than or equal to that of qh−1,h(t− t∗l′ + ε). Hence the right differential coefficient

of el(t) is greater than or equal to that of el′(t) at any t. �

Theorem 3.3.4 Each el appears in the envelope EL (l ≤ L), at most once and the order

of their appearances preserves the order of their indices l.

Proof. Consider an adjacent pair of el(t) and el′(t) (l < l′), which appear in EL.

Lemma 3.3.2 implies that el′(t) − el(t) is nonincreasing with t; hence el and el′ cross
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at most once, and if they cross, the sign of el′(t)− el(t) changes from positive to negative.

This tells that each el appears in EL at most once and the order of their appearances is l

before l′. �

The computation of the lower envelope EK proceeds as follows.

Compute-Lower-Envelope

Input: Functions e1, e2, . . . , eK .

Output: Their lower envelope EK .

Step 1 Let L := 1.

Step 2 If L = K +1, then halt. Otherwise, compute EL(t) from EL−1(t) and

eL(t), let L := L + 1 and return to Step 2.

In Step 2, all we have to do is to check how eL affects EL−1(t). We illustrates how to

compute EL(t) from EL−1(t) with an example of Figure 3.6. Assume that EL−1(t) consists

eL

elr∗+1

elr∗

tr∗ tr∗+1 tt
∗

elr∗−1

EL−1

Figure 3.6: An example of the lower envelope

of v (≤ L−1) functions el1 , el2 , . . . , elv , and elr−1 and elr cross at tr (i.e., elr−1(tr) = elr (tr))

for r = 2, 3, . . . , v, where we assume t1 = −∞ and tv+1 = +∞ for convenience. We first

find the largest r = r∗ that satisfy elr (tr) ≤ eL(tr) by scanning the list of tr’s from r = v+1

to 1 and scanning eL from right to left. If r∗ does not exist (i.e., elr (tr) > eL(tr) holds for

all r = 1, 2, . . . , v+1), then EL(t) = eL(t) holds. If r∗ = v+1, then EL(t) = EL−1(t) holds.

Otherwise (i.e., r∗ ∈ [2, v]), eL crosses with elr∗ . In this case, we find the point t∗ where eL

and elr∗ cross by scanning eL from right to left and scanning elr∗ to the left from the linear

piece whose interval includes tr∗+1. Then we compute EL(t) by concatenating EL−1(t) for

t ≤ t∗ and eL(t) for t ≥ t∗. In order to execute the above computation efficiently, we keep

an array that stores tr and elr(tr) for all r, and a pointer to the linear piece of elr−1(t)

whose interval includes tr.

Now we estimate the time complexity of the above algorithm. Note that, once we know

that elr (tr) > eL(tr) holds, we can remove tr from the list, because elr(t) > eL(t) holds for



3.3 Optimal start times of services 49

all t ≥ tr and hence elr(t) is removed from the envelope. This implies that we can keep

the list of tr’s as a stack, and the time complexity of maintaining the stack during the

whole computation of Compute-Lower-Envelope is O(K) because at most K elements are

inserted into the stack and an element is removed from the stack once the element next

to it is scanned. It therefore takes

O

(
K∑

l=1

δ(el) + K

)

= O

(
K∑

l=1

δ(el)

)

time to find r∗ for all L = 2, 3, . . . ,K. For the same reason, in the computation of

finding the point t∗ where eL and elr∗ cross, a linear piece of elr∗ is removed from the

list of the lower envelope and will not be checked again once the linear piece to its left

is scanned. This implies that the total number of linear pieces scanned from EL−1(t)

for all L = 2, 3, . . . ,K is O(
∑K−1

l=1 δ(el)). Hence the total time complexity of algorithm

Compute-Lower-Envelope is O(
∑K

l=1 δ(el)).

Time complexity for the dynamic programming

In order to compute fk
h from fk

h−1 by recursion (3.3.15), we execute the following three

steps:

1. Compute functions e1(t), e2(t), . . . , ebδ(fk
h−1)

(t), where δ̂(fk
h−1) (= K) is the number

of convex intervals of fk
h−1(t).

2. Compute their lower envelope Ebδ(fk
h−1)

(t), which gives mint′{f
k
h−1(t

′)+qh−1,h(t− t′)}

in recursion (3.3.15).

3. Compute ph(t) + Ebδ(fk
h−1)

(t), i.e., fk
h (t).

Time complexity of these three steps is as follows.

1. Since the computation of el takes O(δ(el)) time for each l, it takes O(
∑bδ(fk

h−1)

l=1 δ(el))

time to compute all e1, e2, . . . , ebδ(fk
h−1)

.

2. The lower envelope Ebδ(fk
h−1)

can be computed from e1, e2, . . . , ebδ(fk
h−1)

in O(
∑bδ(fk

h−1)

l=1 δ(el))

time by algorithm Compute-Lower-Envelope.

3. We can add ph to the lower envelope Ebδ(fk
h−1)

in O(δ(ph)+
∑bδ(fk

h−1)

l=1 δ(el)) time, since

the lower envelope Ebδ(fk
h−1)

has at most
∑bδ(fk

h−1)

l=1 δ(el) linear pieces.
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Hence, we can compute fk
h from fk

h−1 in O(δ(ph) +
∑bδ(fk

h−1)

l=1 δ(el)) time. For convenience,

we introduce the following notations,

∆k
p =

∑nk+1
h=1 δ(ph), ∆̂k

p =
∑nk+1

h=1 δ̂(ph) and ∆k
q =

∑nk+1
h=1 δ(qh−1,h).

For the number of convex intervals,

δ̂(fk
h ) ≤ δ̂(fk

h−1) + δ̂(ph)− 1 (3.3.25)

holds, because the number of convex intervals of the lower envelope Ebδ(fk
h−1)

is less than

or equal to δ̂(fk
h−1). For the number of linear pieces of fk

h ,

δ(fk
h ) ≤ δ(ph) +

bδ(fk
h−1)∑

l=1

δ(el)

≤ δ(ph) +

bδ(fk
h−1)∑

l=1

{δ(Fl) + δ(qh−1,h)}

≤ δ(ph) + δ(fk
h−1) + δ̂(fk

h−1)δ(qh−1,h) (3.3.26)

holds. Note that the first inequality holds because δ(Ebδ(fk
h−1)

) ≤
∑bδ(fk

h−1)

l=1 δ(el), and the

second inequality is from Theorem 3.3.3. By applying (3.3.25) recursively, we have δ̂(fk
h ) =

O(∆̂k
p). Similarly, from (3.3.26), we have δ(fk

h ) = O(∆k
p + ∆̂k

p∆
k
q). Consequently, the time

to compute fk
h from fk

h−1 is

O



δ(ph) +

bδ(fk
h−1)∑

l=1

δ(el)



 = O
(
δ(ph) + δ(fk

h−1) + δ̂(fk
h−1)δ(qh−1,h)

)

= O(∆k
p + ∆̂k

p∆
k
q).

Then the time complexity of computing all fk
1 , fk

2 , . . . , fk
nk+1 is O

(
nk(∆

k
p + ∆̂k

p∆
k
q)
)
. Since

all linear pieces of input functions are explicitly given as linked lists, the input size is

∆k
p + ∆k

q . Thus the above time complexity is polynomial in the input size.

In summary, for a give route σk, we can compute the optimal start times of services

at customers in O (nk∆(σk)) time, where

∆(σk) =

nk+1∑

h=1

δ(pσk(h)) +

(
nk+1∑

h=1

δ̂(pσk(h))

)(
nk+1∑

h=1

δ(qσk(h−1),σk(h))

)

. (3.3.27)
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3.4 Local search for finding visiting orders σ

In this section, we describe a framework of our local search (LS) for finding good visiting

orders σ = (σ1, σ2, . . . , σm) that satisfy condition (3.2.6). It starts from an initial solution

σ and repeats replacing σ with a better solution in its neighborhood N(σ) until no better

solution is found in N(σ). We use the standard neighborhoods N(σ) called 2-opt∗, cross

(c) Or-opt(a) 2-opt∗ (b) Cross exchange

Figure 3.7: Neighborhoods in our local search

exchange and Or-opt neighborhoods with slight modifications (see Figure 3.7).

A 2-opt∗ operation removes two edges from two different routes (one from each) to

divide each route into two parts and exchanges the second parts of the two routes (See

Section 2.4.2). A cross exchange operation removes two paths from two routes (one from

each) of different vehicles, whose length (i.e., the number of customers in the path) is at

most Lcross (a parameter), and exchanges them (See Section 2.4.4). The cross exchange and

2-opt∗ operations always change the assignment of customers to vehicles. We also use the

intra-route neighborhood to improve individual routes. An intra-route operation removes a

path of length at most Lintra
path (a parameter) and inserts it into another position of the same

route, where the position is limited within length Lintra
ins (a parameter) from the original

position (See Section 2.4.5). Our LS searches the above intra-route neighborhood, 2-opt∗

neighborhood and cross exchange neighborhood, in this order. Whenever a better solution

is found, we immediately accept it (i.e., we adopt the first admissible move strategy), and

resume the search from the intra-route neighborhood.

As only one execution of LS may not be sufficient to find a good solution, we use the

iterated local search (ILS) [107], which iterates LS many times from those initial solutions

generated by perturbing good solutions obtained by then. We perturb a solution by

applying one random cross exchange operation with no restriction on Lcross (i.e., Lcross =
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n). ILS is summarized as follows:

Algorithm: Iterated Local Search (ILS)

Step 1 Generate an initial solution σ
0. Let σ

seed := σ
0 and σ

best := σ
0.

Step 2 Improve σ
seed by LS and let σ be the improved solution.

Step 3 If σ is better than σ
best then replace σ

best with σ.

Step 4 If some stopping criterion is satisfied, output σ
best and halt; otherwise

generate a solution σ
seed by perturbing σ

best and return to Step 2.

3.5 Efficient implementation of local search

A solution σ is evaluated by dsum(σ) + asum(σ) + (p + q)∗sum(σ), where (p + q)∗sum(σ)

denotes the minimum time window and traveling time cost for σ. For this, it is impor-

tant to see that dynamic programming computation of (p + q)∗sum(σ) for the solutions in

neighborhoods can be sped up by using information from the previous computation. The

efficient neighborhood search method in Section 2.6 can be applied. In this section, for

convenience, we discuss the case in which we use the polynomial time algorithm for OSTP

in Section 3.3.3. But the idea is also applicable to the case of the pseudo polynomial time

algorithm in Section 3.3.2.

3.5.1 Basic idea

Let us consider to compute the minimum cost of a route σk = (σk(0), σk(1), . . . , σk(nk+1))

(where the cost is composed of the distance, the amount of capacity excess, the time

window cost and the traveling time cost) by connecting its former part σk(0)→ σk(1) →

· · · → σk(h) and latter part σk(h + 1)→ σk(h + 2)→ · · · → σk(nk + 1) for some h.

σk(h) σk(h + 1)σk(0) σk(nk + 1)

Figure 3.8: The former and latter parts of a route σk

In this scheme, the distance of route σk is computed in O(1) time, from distances

of its former and latter parts. The amount of capacity excess on route σk is also com-

puted in O(1) time, if both
∑h

i=1 aσk(i) and
∑nk

i=h+1 aσk(i) are known. We therefore store
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∑h
i=1 dσk(i−1),σk(i),

∑nk+1
i=h+1 dσk(i−1),σk(i),

∑h
i=1 aσk(i) and

∑nk

i=h aσk(i) for each customer

σk(h) and vehicle k whenever the current route is updated.

Now we concentrate on the computation of the minimum cost (p + q)∗sum(σk), which is

the sum of time window and traveling time costs on route σk. We define bk
h(t) to be the

minimum sum of the costs for customers σk(h), σk(h+1), . . . , σk(nk), σk(nk +1), provided

that all of them are served after time t and customer σk(h) is served exactly at time t

(i.e., minsσk(h)=t
∑nk+1

i=h pσk(i)(sσk(i))+
∑nk+1

i=h+1 qσk(i−1),σk(i)(sσk(i)− sσk(i−1))). We call this

a backward minimum cost function. Let fk
h (t) be the forward minimum cost function at

the hth customer in route σk, which was discussed in Section 3.3. Then, bk
h(t) can be

computed as follows in a symmetric manner:

bk
nk+1(t) = p0(t)

bk
h(t) = pk

h(t) + min
t′

(
bk
h+1(t

′) + qh,h+1(t
′ − t)

)
, 1 ≤ h ≤ nk.

(3.5.28)

We can then obtain the optimal cost of route σk by

(p + q)∗sum(σk) = min
t

(
fk

h (t) + min
t′

(bk
h+1(t

′) + qh,h+1(t
′ − t))

)
(3.5.29)

for any h (0 ≤ h ≤ nk). If fk
h (t) and bk

h+1(t) are already available for some h, this is

possible in O (∆(σk)) time, because fk
h (t) and bk

h+1(t) consist of O (∆(σk)) linear pieces

and mint′(b
k
h+1(t

′) + qh,h+1(t
′ − t)) can be computed in O (∆(σk)) time as explained in

Section 3.3.3 (for the case of fk
h (t)). To achieve this, we store all functions fk

h (t) and bk
h(t)

for each customer σk(h), when they were computed in the process of LS.

In summary, we can compute the minimum cost of route σk in O (∆(σk)) time, if we

keep the data

h∑

i=1

aσk(i) and

nk∑

i=h

aσk(i), (3.5.30)

h∑

i=1

dσk(i−1),σk(i) and

nk+1∑

i=h+1

dσk(i−1),σk(i), (3.5.31)

fk
h (t) and bk

h(t) (3.5.32)

for all h = 1, 2, . . . , nk and k ∈M .

3.5.2 How to apply the basic idea to the solutions in neighborhoods

Now we explain how to apply the above idea to the solutions in neighborhoods. We only

discuss the sum of time window and traveling costs since other costs can be similarly

treated.
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σk σk′σk σk′

fk
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′

h
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′

h
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′
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Figure 3.9: An example of a 2-opt∗ operation

In Figure 3.9, an example of a 2-opt∗ operation on routes σk and σk′ is shown. The

sum of time window and traveling time costs for σk, after a 2-opt∗ operation is applied,

can be computed by

min
t

(
fk

hk
(t) + min

t′
(bk′

hk′+1(t
′) + qσk(hk),σk′ (hk′+1)(t

′ − t))

)

in O (∆(σk)) time. Similarly the cost for σk′ can be computed in in O (∆(σk′)) time.

Hence we can evaluate the cost of the resulting solution in O (∆(σk) + ∆(σk′)) time, when

a 2-opt∗ operation is applied to routes σk and σk′ .

σk σk′σk σk′

bk

hk

bk
′

h
k′

f̃k

l

f̃k
′

l′

bk

hk bk
′

h
k′+1

f̃k

l

f̃k
′

l′
f̃k

l+1

f̃k
1 f̃k

1f̃k
′

1

(a) (b)

f̃k
′

1

bk
′

h
k′+1

Figure 3.10: An example of the search order in the cross exchange neighborhood

To evaluate solutions in the cross exchange neighborhood efficiently (see Figure 3.7),

we need to search the solutions in the neighborhood in a specific order. To apply cross ex-

change operations on routes σk and σk′ , we start from a solution obtainable by exchanging
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one customer from each route, and then extend lengths of the paths to be exchanged one

by one. Figure 3.10 explains the situation. In Figure 3.10 (a), backward minimum cost

functions bk
hk

, bk
hk′

and bk
hk′+1of the current solution are available, and we have already com-

puted the forward minimum cost functions f̃k
1 , f̃k

2 , . . . , f̃k
l and f̃k′

1 , f̃k′

2 , . . . , f̃k′

l′ , which we

have temporarily computed to evaluate (p+ q)∗sum(σk)+ (p+ q)∗sum(σk′) of Figure 3.10 (a).

(We can obtain (p+ q)∗sum(σk) (resp., (p+ q)∗sum(σk′)) from f̃k
l and bk

hk
(resp., from f̃k′

l′ and

bk′

hk′
)) We then extend the length of the right path by one (Figure 3.10 (b)). For this, we

can compute f̃k
l+1 from f̃k

l by recursion of the dynamic programming in O(∆(σk)) time,

and evaluate (p+q)∗sum(σk)+(p+q)∗sum(σk′) in O (∆(σk) + ∆(σk′)) time. Thus, the change

in the cost after a cross exchange operation (from the current solution to the solution in

Figure 3.10 (b)) is obtained in O (∆(σk) + ∆(σk′)) time.

Similarly, the change in the cost for an intra-route operation of route σk can be com-

puted in O (∆(σk)) time, by searching solutions in a specific order. Actually, this case is

slightly more complicated than the case of cross exchange neighborhood. For details, see

Section 2.6.

3.6 Computational results

We conducted computational experiments to evaluate the proposed algorithm ILS (see

Section 3.4). The algorithm was coded in C language and run on a handmade PC (Intel

Pentium 4, 2.8 GHz, 1 GB memory).

We use the benchmark instances by Solomon [140] which have been widely used in

the literature. The number of customers in each instance is 100, and their locations

are distributed in the square [0, 100]2 in the plane. The distances between customers are

measured by Euclidean distance (in double precision), and the traveling times are the same

as the corresponding distances. Each customer i (including the depot) has one time window

[tri , t
d
i ], an amount of requirement ai and a service time τi. All vehicles have an identical

capacity u. Both time window and capacity constraints are considered hard. For these

instances, the number of vehicles m is also a decision variable, and the objective is to find

a solution with the minimum (m,dsum(σ)) in the lexicographical order. These benchmark

instances consist of six different sets of problem instances called R1, R2, RC1, RC2, C1

and C2, respectively. Locations of customers are uniformly and randomly distributed in

type R and are clustered in groups in type C, and these two types are mixed in type RC.

Furthermore, for instances of type 1, the time window is narrow at the depot, and hence

only a small number of customers can be served by one vehicle. Conversely, for instances

of type 2, the time window is wide, and hence many customers can be served by one

vehicle. Table 3.1 is the best known solutions for these instances (the data was taken as of
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June 2, 2004 from http://www.sintef.no/static/am/opti/projects/top/vrp/bknown.html).

To evaluate our algorithm, we modified those instances by introducing time window

cost function pi and traveling time cost function qij as follows:

pi(t) =






α1(t
r
i − t), t < tri

0, tri ≤ t ≤ tdi

α1(t− tdi ), tdi < t,

qij(t) =






+∞, t < 0.9(τi + tij)

α2(τi + tij − t), 0.9(τi + tij) ≤ t < τi + tij

0, τi + tij ≤ t,

(3.6.33)

where α1 and α2 are positive parameters. For other parameters, we used Lcross = 3,

Lintra
path = 3 and Lintra

ins = 20, and set the time limit of computation to 2000 seconds (in

conformity with the values in [85]). Note that, in this formulation, time window and

traveling time constraints are considered soft, and they can be violated if it is advantageous

from the view point of minimizing the cost functions.

Our results are shown in Tables 3.2 and 3.3. In each table, column “P” denotes

the total deviation of start time of services from the boundaries of time windows (i.e.,

P = psum(s)/α1), and column “Q” denotes the total amount of shortened traveling time

(i.e., Q = qsum(σ, s)/α2). A number in parentheses is the number of customers (resp.,

edges) at which the time window (resp., traveling time) constraint is violated. A mark

“∗” in columns “dsum” and “feasible” means that the value is smaller than or equal to

that of the best known solution. In Table 3.2, we set the number of vehicles to be the

same as the best known solutions in Table 3.1, and set α1 = α2 = 10. We determined α1

and α2 after some preliminary trials so that our solutions do not violate the constraints

too much. Column “feasible” shows the traveling distance of the solution if it is feasible

(i.e., psum(s) = qsum(σ, s) = asum(σ) = 0), otherwise “–” is written, which means that

our algorithm encountered no feasible solution. In Table 3.3, on the other hand, we set

the number of vehicles to be smaller by one than that of the best known solution, and set

α1 = α2 = 100. Column “Pmax” denotes the maximum deviation of start time of services

from time windows (i.e., Pmax = max{pi(si)/α1 | i ∈ V }).

In Table 3.2, we observe that our algorithm could obtain the same quality as the

best known solutions in almost all instances for type C. For types R and RC, there are

many solutions whose P and Q are nonzero. But since the width of the depot’s time

window is 230 for type R1, 240 for type RC1, 1000 for type R2, 960 for type RC2, the

violation of time windows is less than 1% of the whole scheduling period in almost all

instances. Also the percentage of the shortened traveling time against the total of original

traveling times dsum is less than 0.5%. Hence these violations may be acceptable in many



3.6 Computational results 57

Table 3.1: The best known solutions for Solomon’s instances

instance number of vehicles distance instance number of vehicles distance

R101 19 1645.79 R201 4 1252.37

R102 17 1486.12 R202 3 1191.70

R103 13 1292.68 R203 3 939.54

R104 9 1007.24 R204 2 825.52

R105 14 1377.11 R205 3 994.42

R106 12 1251.98 R206 3 906.14

R107 10 1104.66 R207 2 893.33

R108 9 960.88 R208 2 726.75

R109 11 1194.73 R209 3 909.16

R110 10 1118.59 R210 3 939.34

R111 10 1096.72 R211 2 892.71

R112 9 982.14

C101 10 828.94 C201 3 591.56

C102 10 828.94 C202 3 591.56

C103 10 828.06 C203 3 591.17

C104 10 824.78 C204 3 590.60

C105 10 828.94 C205 3 588.88

C106 10 828.94 C206 3 588.49

C107 10 828.94 C207 3 588.29

C108 10 828.94 C208 3 588.32

C109 10 828.94

RC101 14 1696.94 RC201 4 1406.91

RC102 12 1554.75 RC202 3 1365.645

RC103 11 1261.67 RC203 3 1049.62

RC104 10 1135.48 RC204 3 798.41

RC105 13 1629.44 RC205 4 1297.19

RC106 11 1424.73 RC206 3 1146.32

RC107 11 1230.48 RC207 3 1061.14

RC108 10 1139.82 RC208 3 828.14
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Table 3.2: Computational results on Solomon’s instances
instance dsum P Q feasible instance dsum P Q feasible

R101 ∗1616.54 0.57(2) 0.12(1) 1695.80 R201 ∗1252.37 0 0 ∗1252.37

R102 ∗1422.78 1.73(2) 0.54(2) – R202 ∗1183.53 1.11(1) 0 1195.31

R103 ∗1174.57 3.23(2) 1.42(1) – R203 949.80 0.33(1) 0.01(1) 953.89

R104 1018.67 0 0.08(1) 1019.55 R204 847.87 0 0 847.87

R105 ∗1372.18 0 0.10(1) ∗1377.11 R205 1009.83 0 0 1009.83

R106 1257.96 0 0 1257.96 R206 935.90 0 0 935.90

R107 1122.82 0 0.14(1) 1125.62 R207 915.60 0 0 915.60

R108 967.05 0 0.34(1) 989.05 R208 749.56 0 0 749.56

R109 1197.42 0 0 1197.42 R209 945.70 0 0 945.70

R110 1142.81 0 0.58(1) 1150.28 R210 961.10 0 0 961.10

R111 1096.73 0 0 1096.73 R211 934.27 0 0 934.27

R112 986.41 0 0 986.41

C101 ∗828.94 0 0 ∗828.94 C201 ∗591.56 0 0 ∗591.56

C102 ∗828.94 0 0 ∗828.94 C202 ∗591.56 0 0 ∗591.56

C103 ∗828.06 0 0 ∗828.06 C203 ∗591.17 0 0 ∗591.17

C104 ∗824.78 0 0 ∗824.78 C204 601.18 0 0 601.18

C105 ∗828.94 0 0 ∗828.94 C205 ∗588.88 0 0 ∗588.88

C106 ∗828.94 0 0 ∗828.94 C206 ∗588.49 0 0 ∗588.49

C107 ∗828.94 0 0 ∗828.94 C207 ∗588.29 0 0 ∗588.29

C108 ∗828.94 0 0 ∗828.94 C208 ∗588.32 0 0 ∗588.32

C109 ∗828.94 0 0 ∗828.94

RC101 ∗1629.99 0.25(1) 5.70(4) – RC201 1414.59 0.06(1) 0.77(1) 1424.65

RC102 ∗1442.53 8.39(1) 4.93(6) – RC202 ∗1321.07 0.92(2) 0 1397.45

RC103 ∗1261.67 0 0 ∗1261.67 RC203 1058.80 0.01(1) 0 1061.98

RC104 1160.60 0 0 1160.60 RC204 825.24 0 0 825.24

RC105 ∗1506.65 0 4.21(3) – RC205 1297.65 0 0 1297.65

RC106 ∗1382.03 0 1.87(2) – RC206 ∗1146.30 0.10(1) 0 1155.33

RC107 ∗1212.48 0 0.76(1) 1232.20 RC207 1065.74 0 0.47(1) 1071.43

RC108 ∗1133.81 0 0.42(2) ∗1139.82 RC208 862.46 0 0 862.46
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Table 3.3: Computational results with smaller number of vehicles than the best known

solutions
instance dsum P Q asum Pmax

R101 ∗1636.28 0.30(1) 0 0 0.30

R102 ∗1473.77 0 1.65(2) 0 0

R103 ∗1268.77 2.82(1) 1.42(1) 0 2.82

R104 ∗988.16 38.05(14) 145.27(85) 1 11.23

R105 1495.92 0 5.90(4) 0 0

R106 1360.94 4.39(1) 0 0 4.39

R107 ∗1098.82 10.23(4) 41.42(30) 0 7.03

R108 ∗937.96 8.74(6) 99.97(61) 0 4.66

R109 1285.81 0 39.02(25) 0 0

R110 ∗1105.73 5.85(4) 68.30(42) 0 1.86

R111 1134.38 12.11(7) 77.00(50) 0 6.17

R112 ∗948.94 11.91(7) 118.87(70) 3 7.65

C101 1037.42 822.23(46) 685.48(83) 70 103.66

C102 1146.93 0 0 10 0

C103 967.44 0 0 10 0

C104 912.23 0 0 10 0

C105 1019.59 130.44(16) 459.37(58) 80 22.23

C106 1150.63 62.28(6) 366.03(45) 40 20.44

C107 968.71 21.02(3) 125.09(23) 30 9.20

C108 1112.67 2.40(1) 70.12(15) 30 2.40

C109 954.78 0 0 10 0

RC101 1682.87 3.50(3) 15.64(10) 0 2.68

RC102 ∗1497.87 8.39(1) 11.80(9) 0 8.39

RC103 1347.96 0 2.21(1) 0 0

RC104 1150.75 0.06(1) 16.18(12) 12 0.06

RC105 ∗1625.64 0 7.80(5) 0 0

RC106 ∗1350.07 21.29(7) 57.44(32) 1 11.44

RC107 1330.42 0 3.28(4) 0 0

RC108 1153.31 0 29.66(22) 19 0
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practical applications. For those instances with P > 0 or Q > 0, the traveling distance of

the obtained solution tends to be much smaller than that of the best known solution at

the cost of small penalties. This may suggest useful benefits of searching flexible vehicle

schedules with our general solver.

In Table 3.3, we conducted experiments only for type 1 instances. (Since the number

of vehicles of the best known solution is already 2 or 3, reducing vehicles is impractical for

type 2 instances.) We obtained solutions whose traveling distances are much smaller than

that of the best known solutions with little violation of constraints (i.e., with small P and

Q) for some instances such as R101, R102, RC103, RC105 and RC107. As it is usually more

important to reduce the number of vehicles than to reduce traveling distance in practical

applications, it may also be worthwhile to find solutions with moderate violations such as

R103, R105, C102, C103, C104 and C109.

In summary, our algorithm could obtain the same quality as the best known solutions

for 20 instances, implying that the performance of our algorithm is acceptable even for

Solomon’s original instances. Furthermore, we could obtain solutions with smaller number

of vehicles or with much shorter traveling distances than the best known solutions by

allowing a little violation of constraints. These violations should be acceptable in many

practical applications, or at least it provides the information about feasibility bottlenecks.

This kind of information could not be obtained by other standard approaches.

3.7 Conclusion

In this chapter, we generalized the traveling time constraints for the vehicle routing prob-

lem by introducing traveling cost functions. We proved that the subproblem of determining

the optimal start times of services for a given route becomes NP-hard when the travel-

ing time cost functions are general, and proposed a pseudo-polynomial time algorithm of

dynamic programming. Moreover, we proposed an algorithm based on the same dynamic

programming for the subproblem, which runs in polynomial time, when each traveling

time cost function is convex. Then, we proposed an iterated local search algorithm, which

is based on the local search using cross exchange, 2-opt∗ and Or-opt neighborhoods, in

which the dynamic programming algorithm for computing optimal start times of services

is incorporated. Computational experiments on modified Solomon’s benchmark instances

indicate the usefulness of relaxing time window and traveling time constraints.



Chapter 4

The Time-Dependent Vehicle

Routing Problem with Time

Windows

4.1 Introduction

In real situations, traveling times are often dependent on the departure times and they

cannot be treated as constants in such cases (e.g., rush-hour traffic jam). For TSP, the

generalization with time-dependent traveling times is called the time dependent traveling

salesman problem (TDTSP) and is well-studied [71,108,123]. On the contrary, to the best

of our knowledge, not much has been investigated on similar generalizations of VRPTW

except for a few papers. Ichoua et al. [87] considered a formulation in which each customer

has only one time window. Desaulniers et al. [40] presented a branch-and-bound framework

for a very general model that can handle time-dependency and various other issues. In

this chapter, we introduce traveling time and cost functions between each customer, whose

values are dependent on the start time of traveling. These functions can be nonconvex

and/or discontinuous as long as they are piecewise linear. Although we assume some

property for each traveling time function, any functions satisfying the FIFO condition

considered in [87] can still be represented, and the problem is fairly general. Our model

generalizes that of Ichoua et al. in that it can allow more flexible time penalty function for

each customer, and that of Ibaraki et al. [85] in that it can treat time-dependent traveling

time and cost.

In our algorithm, we use local search to determine the routes of vehicles. When we

evaluate a neighborhood solution, we need to solve the problem of determining the optimal

start times on each route. In Ichoua et al., they solve this subproblem approximately (for
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their restricted formulation), but solve it exactly only for the best M approximate neigh-

borhood solutions (M is a parameter). We show that this subproblem can be efficiently

solved with dynamic programming. The time complexity of our dynamic programming

algorithm is the same as that of Ibaraki et al. [85] in spite of its generality if each travel-

ing time and cost are constants. This dynamic programming is incorporated in the local

search algorithm. In our local search, we use the standard neighborhoods called 2-opt∗,

cross exchange and Or-opt with slight modifications. We can evaluate the solutions in

these neighborhoods efficiently by utilizing the information from the past dynamic pro-

gramming recursion. We further propose a filtering method to restrict the search in the

neighborhoods to avoid many solutions having no prospect of improvement. For the 2-opt∗

neighborhood, even with this restriction, we will not miss a better solution in the neigh-

borhood if there is any. We develop an iterated local search algorithm incorporating all

the above ingredients. Finally we report computational results on benchmark instances,

and confirm the effectiveness of the restriction of the neighborhood. We compare the per-

formance of our iterated local search algorithm against existing methods, and discuss the

benefits of the proposed generalization.

4.2 Problem definition

Here we formulate the time-dependent vehicle routing problem with time windows. Let

G = (V,E) be a complete directed graph with vertex set V = {0, 1, . . . , n} and edge set

E = {(i, j) | i, j ∈ V, i 6= j}, and M = {1, 2, . . . ,m} be a vehicle set. In this graph, vertex

0 is the depot and other vertices are customers. Each customer i, each vehicle k and each

edge (i, j) ∈ E are associated with:

i. a fixed quantity ai (≥ 0) of goods to be delivered to i,

ii. a time window cost function pi(t) of the start time t of the service at i (p0(t) is the

time window cost function of the arrival time t at the depot),

iii. a capacity uk (≥ 0) of k,

iv. a traveling time function λij(t) and a traveling cost function qij(t) from i to j when

the start time is t.

We assume a0 = 0 without loss of generality. Each time window cost function pi(t) is

nonnegative, piecewise linear and lower semicontinuous (i.e., pi(t) ≤ limε→0 min{pi(t +

ε), pi(t − ε)} at every discontinuous point t). Note that pi(t) can be non-convex and

discontinuous as long as it satisfies the above conditions. We also assume pi(t) = +∞ for
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t < 0 so that the start time t of the service is nonnegative. We assume that each traveling

cost function qij(t) satisfies the same conditions as pi(t) (i.e., nonnegative, piecewise linear,

lower semicontinuous and qij(t) = +∞ for t < 0 ). We assume that each traveling time

function λij(t) is nonnegative, piecewise linear and lower semicontinuous. The number of

linear pieces of these functions are assumed to be finite. These assumptions ensure the

existence of an optimal solution. We further assume that λij(t) satisfies

t + λij(t) = t′ + λij(t
′)

⇒ t + λij(t) = αt + (1− α)t′ + λij(αt + (1− α)t′), 0 ≤ α ≤ 1 (4.2.1)

unless otherwise stated (see an example in Figure 4.1). In Figure 4.1, s = t + λij(t) is the

arriving time at j when a vehicle departs from i at t. It is known that the FIFO condition

t

s
=

t
+

λ
ij
(t

)

t

s
=

t
+

λ̄
(t

)

Figure 4.1: An example of λij which satisfies condition (4.2.1), and a function λ̄ which

does not satisfy condition (4.2.1)

in [87] (i.e., t ≤ t′ ⇒ t + λij(t) ≤ t′ + λij(t
′)) implies condition (4.2.1). In our problem,

the linear pieces of each piecewise linear function are given explicitly (i.e, the number of

linear pieces is a part of the input size).

Let σk denote the route traveled by vehicle k, where σk(h) denotes the hth customer

in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by vehicle k

exactly once. We denote by nk the number of customers in σk. For convenience, we define

σk(0) = 0 and σk(nk + 1) = 0 for all k (i.e., each vehicle k ∈ M departs from the depot

and comes back to the depot). Moreover, let si be the start time of service at customer i
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(by exactly one of the vehicles) and sa
k be the arrival time of vehicle k at the depot, and

let

s = (s1, s2, . . . , sn, sa
1, s

a
2, . . . , s

a
m).

We assume s0 = 0 for convenience of explanation. Let ti be the departure time of a vehicle

from customer i and tlk be the departure time of vehicle k from the depot, and let

t = (t1, t2, . . . , tn, tl1, t
l
2, . . . , t

l
m).

Note that each vehicle is allowed to wait at customers before starting services and before

traveling.

Let us introduce 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V \ {0} and k ∈M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 if and only if vehicle k visits customer i. Then the total traveling cost

qsum traveled by all vehicles, the total time window cost psum for start times of services,

and the total amount asum of capacity excess are expressed as follows:

psum(s) =
∑

i∈V \{0}

pi(si) +
∑

k∈M

p0(s
a
k),

qsum(σ, t) =
∑

k∈M

q0,σk(1)(t
l
k) +

∑

k∈M

nk∑

h=1

qσk(h),σk(h+1)(tσk(h)),

asum(σ) =
∑

k∈M

max

{
∑

i∈V

aiyik(σ)− uk, 0

}
.

Then the problem we consider in this chapter is formulated as follows:

minimize cost(σ, s, t) = psum(s) + qsum(σ, t) + asum(σ) (4.2.2)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0} (4.2.3)

si ≤ ti, i ∈ V \ {0} (4.2.4)

tlk + λ0,σk(1)(t
l
k) ≤ sσk(1), k ∈M (4.2.5)

tσk(i) + λσk(i),σk(i+1)(tσk(i)) ≤ sσk(i+1),

1 ≤ i ≤ nk − 1, k ∈M (4.2.6)

tσk(nk) + λσk(nk),0(tσk(nk)) ≤ sa
k, k ∈M (4.2.7)

yik(σ) ∈ {0, 1}, i ∈ V \ {0}, k ∈M. (4.2.8)

Constraint (4.2.3) means that every customer i ∈ V \ {0} must be served exactly once

by a vehicle. Constraint (4.2.4) requires that each vehicle must depart from customer i
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after the service and constraints (4.2.5)–(4.2.7) require that each vehicle cannot serve a

customer before arriving at the customer. The time window and capacity constraints are

treated as soft, and their violation is evaluated as the costs psum(s) and asum(σ) in the

objective function. Note that, for any solution with a finite cost, tlk ≥ 0 holds because of

the assumptions, and hence s, t ≥ 0 hold.

Although we assume that each service takes no time, we can treat the case with positive

constant service times by defining each traveling time and cost functions as λij(t) =

b̃i + λ̃ij(t+ b̃i) and qij(t) = q̃ij(t+ b̃i) if the given traveling time and cost functions between

customer i and j are λ̃ij and q̃ij, and the service time of customer i is b̃i. In our formulation,

a traveling cost function can be a constant function such as distance, which is a major

objective function in traditional formulations, and hence our problem is a generalization

of VRPSTW and the model of Ibaraki et al. [85].

This problem is separated into m scheduling problems of finding the optimal start

times if vehicle routes σ are fixed. Hence our algorithm searches σ by local search and

solve the corresponding m scheduling problems for each σ generated during the search.

In Section 4.3, we discuss this scheduling problem. How to search σk will be discussed in

Section 4.4.

4.3 Optimal start time problem

In this section, we consider the problem of determining the optimal start times for a given

route σk so that the total cost is minimized. Since the route is given, the objective function

we have to consider is the sum of the time window costs and traveling costs. We call this

subproblem the TOSTP (time-dependent optimal start time problem) in this chapter.

For convenience, throughout this section, we assume that vehicle k visits customers

1, 2, . . . , nk in this order. Let customer 0 represent the departure from the depot (i.e.,

t0 = tlk and q0,1(t0) = q0,1(t
l
k)), and let customer nk + 1 represent the arrival at the depot

(i.e., snk+1 = sa
k and pnk+1(snk+1) = p0(s

a
k)).

Then, the TOSTP is described as follows:

minimize

nk+1∑

h=1

ph(sh) +

nk∑

h=0

qh,h+1(th)

subject to sh ≤ th, 1 ≤ h ≤ nk

th + λh,h+1(th) ≤ sh+1, 0 ≤ h ≤ nk.

We can solve the TOSTP by a dynamic programming algorithm in polynomial time

as will be explained in Section 4.3.1.
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4.3.1 Dynamic programming

We will show that the TOSTP is solvable in polynomial time by using dynamic program-

ming.

Let fh(t) be the minimum sum of the time window costs for customers 0, 1, . . . ,

h and the traveling costs between them under the condition that they are all

served before time t.

We call fh(t) as a forward minimum cost function. Then it can be computed by the

following recurrence formula of dynamic programming:

f0(t) =

{
+∞, t < 0

0, t ≥ 0

fh(t) = min
sh≤t

{
ph(sh) + min

th−1: th−1+λh−1,h(th−1)≤sh

{fh−1(th−1) + qh−1,h(th−1)}

}
,

1 ≤ h ≤ nk + 1,−∞ < t < +∞. (4.3.9)

The optimal cost of the TOSTP for a route σk is given by mint fnk+1(t).

4.3.2 Algorithm and time complexity

In this subsection, we consider the data structure and algorithm for computing forward

minimum cost functions fh in the recurrence formula (4.3.9). Since all functions of the

input are piecewise linear, each fh is also piecewise linear. We can therefore store all

functions in linked lists; each cell stores the interval and the linear function of the corre-

sponding piece, and the cells are linked according to the order of intervals. For example,

Figure 4.2 shows a piecewise linear function g and the corresponding linked list.

Let δ(g) be the sum of the number of linear pieces and the number of discontinuous

points of a piecewise linear function g (i.e., the number of pieces of the polygonal line

of g). For example, the function g in Figure 4.2 has seven pieces and two discontinuous

points, and hence δ(g) = 9. Then it is straightforward to see that the summation g + g′

of two piecewise linear functions g and g′ can be computed in O(δ(g) + δ(g′)) time and

the resulting function satisfies δ(g + g′) ≤ δ(g) + δ(g′). It is also easy to see that function

φ(t) = minx≤t g(x) can be computed in O(δ(g)) time and the resulting function φ satisfies

δ(φ) ≤ δ(g). When g is an increasing (resp., decreasing) piecewise linear function, i.e,

t < t′ ⇒ g(t) < g(t′) (resp., t < t′ ⇒ g(t) > g(t′)), we can compute the composite function

g′ ◦g (i.e., g′ ◦g(t) = g′(g(t))) for a piecewise linear function g′ in O(δ(g)+δ(g′)) time since

we can compute g′(g(t)) by increasing g(t) gradually. In this case, the resulting function

satisfies δ(g′ ◦ g) ≤ δ(g) + δ(g′). We can also compute the inverse of g in O(δ(g)) time,

and the inverse g−1 satisfies δ(g−1) = δ(g).
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g(t)

1 2 3 4 5 6 7 8 9 10 11 12 13 140

1

2

3

4

t

init (−∞, 1] y = −2x + 2 y = 0 y = 2x − 6 y = − 4
3
x + 28

3

y = 2
3
x − 14

3
y = 0 y = 4x − 52

[1, 3] [3, 4] (4, 7]

[7, 10) [10, 13] [13,+∞)

Figure 4.2: A function g and the linked list that represents g

We define

γh(s) =






min{fh−1(t) + qh−1,h(t) | t + λh−1,h(t) = s},

if {t | t + λh−1,h(t) = s} 6= ∅,

∞ otherwise,

and reformulate the above recurrence formula (4.3.9) as

fh(t) = min
sh≤t

{
ph(sh) + min

s≤sh

γh(s)

}
. (4.3.10)

To compute fh by the recurrence formula (4.3.10), we must compute the function γh(s)

first. Let us consider the plane whose horizontal axis corresponds to the start time th−1

of traveling and the vertical axis corresponds to the arriving time s = th−1 +λh−1,h(th−1).

This is illustrated in Figure 4.3. Then γh(s′) for a fixed s = s′ is the minimum value of

fh−1(th−1) + qh−1,h(th−1) among the points that satisfy

th−1 + λh−1,h(th−1) = s′, (4.3.11)

if such a point exists. In order to compute γh(s), we split the domain of th−1 into increasing,

constant and decreasing continuous parts and denote the closures of split intervals as

D1,D2, . . . ,DL (see D1,D2, . . . ,D5 in Figure 4.3). Then, for each l = 1, 2, . . . , L, function

t + λij(t) on domain Dl admits the inverse or is a constant function. Let Rl be the range

of t + λij(t) on domain Dl (i.e., Rl = {t + λij(t) | t ∈ Dl}). By condition (4.2.1) and the

definition of Dl, Rl ∩Rl′ contains at most one point for any l 6= l′. Hence we can compute
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th−1

s = s′

s = th−1 + λh−1,h(th−1)

s

D1 D2 D3 D4 D5

R1

R2

R3

R4

R5

Figure 4.3: The relationship between the departure time th−1 and the arriving time s =

th−1 + λh−1,h(th−1)

γh(s) partially for each domain Dl except for s ∈ ∪l 6=l′Rl ∩ Rl′ . Then γh(s) is completed

by merging them and taking the minimums for s ∈ ∪l 6=l′Rl ∩Rl′ . Note that if s /∈ ∪L
l=1Rl,

we define γh(s) =∞. We have to arrange all Rl’s in the increasing order when we merge

them, because the order of the appearance of Rl may be different from that of Dl. In

Figure 4.3, the order of the appearance of Rl is (R1, R2, R3, R5, R4). However, the order

of Rl’s can be determined by λij alone and need be computed only once before a search.

This computation is negligible in comparison with the whole computation time. Hence we

assume that the order of Rl’s for each λij is given as a part of input.

We can now compute γh(s) by the following steps:

i. Compute γh|Rl
for each domain R1, R2, . . . , RL by increasing th−1 gradually and

computing the corresponding γh(s).

ii. Merge γh|Rl
for l = 1, 2, . . . , L and add linear pieces for the intervals with s /∈ ∪L

l=1Rl.

For computing each γh|Rl
for l = 1, 2, . . . , L, we need either to take the minimum (i.e.,

γh(s) = min{fh−1(th−1)+qh−1,h(th−1) | th−1 ∈ Dl}), or to calculate the composite function

(i.e., γh(s) = fh−1(th−1) + qh−1,h(th−1) where th−1 + λh−1,h(th−1) = s holds. We can

compute th−1 from s by taking the inverse of th−1 +λh−1,h(th−1)). In both cases, the time

complexity is linear to the number of the corresponding linear pieces of fh−1, qh−1,h and

λh−1,h. During the whole computation of (i), we need to scan (the linked lists representing)
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the functions λh−1,h(th−1) and fh−1(th−1) + qh−1,h(th−1) only once from left to right. For

completing γh by merging γh|Rl
for l = 1, 2, . . . , L in (ii), it is straightforward to see that

the time complexity is O(L). Hence the time complexity of computing function γh(s) is

O(δ(fh−1) + δ(qh−1,h) + δ(λh−1,h)), and δ(γh) ≤ δ(fh−1) + δ(qh−1,h) + δ(λh−1,h) holds.

Now we can compute fh by the recurrence formula (4.3.10) in O(δ(ph) + δ(γh)) time,

where the number of pieces of fh is at most δ(ph)+ δ(γh). Hence we can compute fh from

fh−1 in

O (δ(fh−1) + δ(qh−1,h) + δ(λh−1,h)) + O (δ(ph) + δ(γh)))

= O (δ(fh−1) + δ(ph) + δ(qh−1,h) + δ(λh−1,h))

time and we have

δ(fh) ≤ δ(ph) + δ(γh)

≤ δ(fh−1) + δ(ph) + δ(qh−1,h) + δ(λh−1,h).

Hence we have

δ(fh) ≤
h∑

h′=1

δ(ph′) + δ(qh′−1,h′) + δ(λh′−1,h′).

Using this, the time complexity of computing fh from fh−1 is evaluated as

O

(
h∑

h′=1

δ(ph′) + δ(qh′−1,h′) + δ(λh′−1,h′)

)
.

In summary, given a route σk, we can compute the forward minimum cost function of

a customer from that of the previous customer in O (∆(σk)) time, where

∆(σk) =

nk+1∑

h=1

δ(pσk(h)) + δ(qσk(h−1),σk(h)) + δ(λσk(h−1),σk(h)).

We can then obtain the optimal cost of σk in O(nk∆(σk)) time by computing the forward

minimum cost functions of nk customers in σk, and taking the minimum of the forward

minimum cost function of the depot. Note that ∆(σk) is the same as the input size of

the TOSTP. If traveling cost and time functions are constant functions (i.e., if there is no

time-dependency), this time complexity of the dynamic programming algorithm becomes

the same as that of Ibaraki et al. [85].

4.3.3 Remarks for the case in which condition (4.2.1) does not hold

Even if condition (4.2.1) does not hold, we can compute γh(s) in a similar manner as in

Section 4.3.2. Figure 4.4 shows the same situation as Figure 4.3 in which condition (4.2.1)



70 The Time-Dependent VRPTW

th−1

s
=

t h
−

1
+

λ
h
−

1
,h

(t
h
−

1
)

s′

D1 D2 D3 D4

Figure 4.4: An example of λij which does not satisfy condition (4.2.1)

does not hold. In order to compute γh(s), we split the domain of th−1 into the intervals

D1,D2, . . . ,DL as before, compute the functions

γ̃l
h(s) = fh−1(th−1) + qh−1,h(th−1),

where th−1 +λh−1,h(th−1) = s and th−1 ∈ Dl, for each Rl, l = 1, 2, . . . , L, and complete γh

by taking the lower envelope of them.

In general, the complexity of the lower envelope of n segments is θ(α(n)n), where α

denotes the inverse of Ackermann’s function [73]. Using this fact, letting ∆ = δ(fh−1) +

δ(qh−1,h)+ δ(λh−1,h), the complexity of γh is bounded by O(α(∆)∆). However, this upper

bound is not small enough to prove that the complexity of fh is of polynomial order.

Hence our dynamic programming algorithm may require exponential time. Whether the

algorithm runs in polynomial time or not, and whether the TOSTP itself is NP-hard or

not are both open.

4.3.4 Historical notes

The TOSTP without time-dependency (i.e., qh,h+1(t) and λh,h+1(t) are constant func-

tions) has been intensively studied in the literature especially when the time window cost

functions ph(s) are convex. Below is a brief summary of such results.

Special cases of convex time window cost functions were considered in the literature

of VRPSTW and scheduling problems. In Taillard et al. [142], the time window cost for

each customer is +∞ for earliness and linear for tardiness, and an O(1) time algorithm

to approximately compute the optimal time window cost of a solution in the neighbor-
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hood was proposed. In Desrosiers et al. [42], the time window cost for each customer

is linear in the time window and +∞ otherwise, and an O(nk) time algorithm was pre-

sented. In Davis and Kanet [37], Koskosidis, Powell and Solomon [97], Tamaki, Komori

and Abe [144], Tamaki, Sugimoto and Araki [145], the time window cost is linear for

both of earliness and tardiness, and an O(n2
k) time algorithm was proposed in Davis and

Kanet [37] and Tamaki, Sugimoto and Araki [145]. If the time window cost function for

each customer is the absolute deviation from a specified time, this problem becomes the

isotonic median regression problem, which has been extensively studied. To our knowl-

edge, the best time complexity for this problem is O(nk log nk) (Ahuja and Orlin [7], Garey,

Tarjan and Wilfong [54], Hochbaum and Queyranne [77]). In Ibaraki et al. [86], the time

window cost function for each customer is a piecewise linear convex function. They pro-

posed an O (∆(σk) log(∆(σk))) time algorithm to solve the problem from scratch, and an

O (log(maxk ∆(σk))) amortized time algorithm to compute the optimal cost of a solution

in the neighborhood. In Dumas, Soumis and Desrosiers [44], general convex time window

cost functions were considered for the VRPHTW, and they proposed an algorithm whose

time complexity is of the order of nk basic operations on the functions called unidimen-

sional minimizations. Very fast algorithms for general convex functions are also known

(Ahuja and Orlin [7], Hochbaum and Queyranne [77]).

For the case without time-dependency and with non-convex time window costs, Ibaraki

et al. [85] proposed an O(nk∆(σk)) time algorithm to solve the problem from scratch, and

an O(maxk ∆(σk)) amortized time algorithm to compute the optimal cost of a solution

in the neighborhood. Sexton and Bodin [136] considered an TOSTP for the pickup and

delivery problem and proposed a linear-time algorithm. In their formulation of TOSTP, a

linear cost function on the duration between the pickup and delivery of each request is also

considered, while the cost for each customer is linear for earliness and +∞ for tardiness,

and time-dependency is not considered.

4.4 Local search for finding visiting orders σ

In this section, we describe the framework of our local search (LS) for finding good visiting

orders σ = (σ1, σ2, . . . , σm) that satisfy condition (4.2.3). It starts from an initial solution

σ and repeats replacing σ with a better solution in its neighborhood N(σ) until no

better solution is found in N(σ). As N(σ) we use the standard neighborhoods called 2-

opt∗, cross exchange and Or-opt with slight modifications (see Figure 4.5). In this figure,

squares represent the depot (which is duplicated at each end) and small circles represent

customers in the routes. A thin line represents a route edge and a thick line represents a

path (i.e., more than two customers may be included).
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(c) Or-opt(a) 2-opt∗ (b) Cross exchange

Figure 4.5: Neighborhoods in our local search

A 2-opt∗ operation removes two edges from two different routes (one from each) to

divide each route into two parts and exchanges the second parts of the two routes (See

Section 2.4.2). A cross exchange operation removes two paths from two routes (one from

each) of different vehicles, whose length (i.e., the number of customers in the path) is at

most Lcross (a parameter), and exchanges them (See Section 2.4.4). The cross exchange and

2-opt∗ operations always change the assignment of customers to vehicles. We also use the

intra-route neighborhood to improve individual routes. An intra-route operation removes a

path of length at most Lintra
path (a parameter) and inserts it into another position of the same

route, where the position is limited within length Lintra
ins (a parameter) from the original

position (See Section 2.4.5). Our LS searches the above intra-route neighborhood, 2-opt∗

neighborhood and cross exchange neighborhood, in this order. Whenever a better solution

is found, we immediately accept it (i.e., we adopt the first admissible move strategy), and

resume the search from the intra-route neighborhood.

As only one execution of LS may not be sufficient to find a good solution, we use

the iterated local search (ILS), which iterates LS many times from those initial solutions

generated by perturbing good solutions obtained by then. We perturb a solution by

applying one random cross exchange operation with no restriction on Lcross (i.e., Lcross =

n). ILS is summarized as follows:

Algorithm: Iterated Local Search (ILS)

Step 1 Generate an initial solution σ
0. Let σ

seed := σ
0 and σ

best := σ
0.

Step 2 Improve σ
seed by LS and let σ be the improved solution.

Step 3 If σ is better than σ
best, then replace σ

best with σ.
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Step 4 If some stopping criterion is satisfied, output σ
best and halt; otherwise

generate a solution σ
seed by perturbing σ

best and return to Step 2.

4.5 Efficient implementation of local search

A solution σ is evaluated by (p + q)∗sum(σ) + asum(σ), where (p + q)∗sum(σ) denotes the

minimum time window and traveling time cost for computed σ by dynamic programming

in Section 4.3. (Actually in our algorithm, we split each traveling cost function into the

constant part and the time-dependent part, and compute them separately to improve

the efficiency.) For this, it is important to see that dynamic programming computation of

(p+q)∗sum(σ) for the solutions in neighborhoods can be sped up by using information from

the previous computation. The efficient neighborhood search method in Section 2.6 can

be applied. Below we will denote by 〈σk(h1)→ σk(h2)〉 the path from the h1-th customer

to the h2-th customer in route σk, and by 〈σk(h1) → σk(h2)〉–〈σk′(h3) → σk′(h4)〉 the

path constructed by connecting two paths 〈σk(h1) → σk(h2)〉 and 〈σk′(h3) → σk′(h4)〉

from routes σk and σk′ .

4.5.1 Basic idea

Consider the computation of the minimum cost (including the amount of capacity excess,

the time window cost and the traveling time cost) for a given route σk = (σk(0), σk(1), . . . ,

σk(nk + 1)) when it is obtained by connecting its former part 〈0→ σk(h)〉 and the latter

part 〈σk(h + 1) → 0〉 for some h as illustrated in Figure 4.6. The amount of capacity

σk(h) σk(h + 1)σk(0) σk(nk + 1)

Figure 4.6: The former and latter parts of a route σk

excess for route σk is computed in O(1) time, if both
∑h

i=1 aσk(i) and
∑nk

i=h+1 aσk(i) are

known. We therefore store
∑h

i=1 aσk(i) and
∑nk

i=h aσk(i) for each customer σk(h) and vehicle

k whenever the current route is updated.

Now we concentrate on the computation of (p + q)∗sum(σk), which is the minimum sum

of time window and traveling time costs on route σk.

Let bk
h(t) be the minimum sum of the time window costs for customers σk(h), σk(h+
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1), . . . , σk(nk + 1) and the traveling costs between them provided that all of

them are served after time t.

We call this a backward minimum cost function. Then, bk
h(t) can be computed as follows,

which is symmetric to the forward minimum cost computation discussed in Section 4.3:

bk
nk+1(t) = mins≥t p0(s),

bk
h(t) = mins≥t{pσk(h)(s)

+ mint′≥s{b
k
h+1(t

′ + λσk(h),σk(h+1)(t
′)) + qσk(h),σk(h+1)(t

′)}},

1 ≤ h ≤ nk.

(4.5.12)

Let fk
h (t) be the forward minimum cost function at the hth customer in route σk. We can

then obtain the optimal cost (p + q)∗sum(σk) by

min
t

{

bk
h(t) + min

t′+λσk(h−1),σk(h)(t′)≤t
fk

h−1(t
′) + qσk(h−1),σk(h)(t

′)

}

(4.5.13)

for any h (1 ≤ h ≤ nk + 1). If fk
h−1(t) and bk

h(t) are already available for some h, this is

possible in O (∆(σk)) time (since the computation of (4.5.13) is similar to that of (4.3.9)).

To achieve this, we store all functions fk
h (t) and bk

h(t) for each customer σk(h), when these

were computed in the process of LS.

In summary, we can compute the minimum cost of route σk in O (∆(σk)) time, if we

keep the data
∑h

i=1 aσk(i),
∑nk

i=h aσk(i), fk
h (t) and bk

h(t) for all h = 1, 2, . . . , nk and k ∈M .

In our algorithm, the number of pieces in forward and backward minimum cost func-

tions is closely linked to the speed of our algorithm. Hence we consider its reduction.

Since fk
h (t) (resp., bk

h(t)) is nonincreasing (resp., nondecreasing), there are usually many

pieces with considerably large values in fk
h (t) (resp., in bk

h(t)) for small (resp., large) t.

Such pieces will not be used in evaluating improved solutions. We therefore shrink those

pieces whose minimum values over their intervals are larger than the objective value of

the current solution, into one piece.

4.5.2 How to apply the basic idea to the solutions in neighborhoods

We now explain how to apply the above idea to evaluate solutions in the neighborhoods

efficiently. We only discuss the sum of time window and traveling costs, since the amount

of capacity excess can be similarly treated. Recall that we can compute the forward

minimum cost function (resp., the backward minimum cost function) of a customer from

that of the previous customer (resp., the next customer) in O(∆(σk)) time, and that we can

evaluate the route cost by connecting the forward and backward minimum cost functions

in O(∆(σk)) time.



4.5 Efficient implementation of local search 75
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Figure 4.7: An example of a 2-opt∗ operation

In Figure 4.7, an example of a 2-opt∗ operation on routes σk and σk′ is shown. We

denote by σnew
k and σnew

k′ the resulting two routes (i.e., σnew
k = 〈0 → σk(hk)〉–〈σk′(hk′ +

1) → 0〉 and σnew
k′ = 〈0 → σk′(hk′)〉–〈σk(hk + 1) → 0〉). Then, the sum of time window

and traveling time costs for σnew
k can be computed by

min
t

{
bk′

hk′+1(t) + min
t′+λσk(hk),σ

k′
(h

k′
+1)(t′)≤t

fk
hk

(t′) + qσk(hk),σk′ (hk′+1)(t
′)

}

in O (∆(σnew
k )) time. Similarly the cost for σnew

k′ can be computed in O
(
∆(σnew

k′ )
)

time.

Hence, when a 2-opt∗ operation is applied to routes σk and σk′ , we can evaluate the cost

of the resulting solution in O
(
∆(σnew

k ) + ∆(σnew
k′ )

)
time.
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Figure 4.8: An example of the search order in the cross exchange neighborhood

To evaluate solutions in the cross exchange neighborhood efficiently, we need to search

the solutions in the neighborhood in a specific order. To apply cross exchange operations
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on routes σk and σk′ , we start from a solution obtainable by exchanging one customer from

each route, and then extend lengths of the paths to be exchanged one by one. Figure 4.8

explains the situation. We denote by σtmp
k and σtmp

k′ the routes obtained by applying a

cross exchange operation on the current routes σk and σk′ (see Figure 4.8 (a)) and by

σnew
k and σnew

k′ the routes generated next (see Figure 4.8 (b)). In Figure 4.8 (a), backward

minimum cost functions bk
hk

, bk′

hk′
and bk′

hk′+1 of the current routes σk and σk′ are available,

and we have already computed the forward minimum cost functions f̃k
1 , f̃k

2 , . . . , f̃k
l (resp.,

f̃k′

1 , f̃k′

2 , . . . , f̃k′

l′ ) on the partial paths in σtmp
k (resp., σtmp

k′ ) in the process of computing

(p+q)∗sum(σtmp
k ) (resp., (p+q)∗sum(σtmp

k′ )). We then compute f̃k
l+1 from f̃k

l by recursion of the

dynamic programming in O(∆(σnew
k )) time, and evaluate (p+q)∗sum(σnew

k )+(p+q)∗sum(σnew
k′ )

in O
(
∆(σnew

k ) + ∆(σnew
k′ )

)
time (Figure 4.8 (b)). Thus, we can compute the change in the

cost after a cross exchange operation in O
(
∆(σnew

k ) + ∆(σnew
k′ )

)
time.

Similarly, the change in the cost for an intra-route operation of route σk can be com-

puted in O (∆(σnew
k )) time, by searching solutions in a specific order, where σnew

k denotes

the route generated by an intra-route operation. Actually, this case is slightly more com-

plicated than the case of cross exchange neighborhood, but the search order described in

Section 2.6 also works for our problem.

4.5.3 Restriction of neighborhoods

In searching neighborhoods, we find that there are many solutions which have no prospects

of improvements. In order to avoid evaluating such solutions, we propose a rule to restrict

the search.

For a constant U , let

F k
h (U) =

{
min{t | fk

h (t) ≤ U}, if mint fk
h (t) ≤ U

+∞, otherwise.

This F k
h (U) gives the earliest departure time of vehicle k from customer σk(h) in order

to keep the sum of the time window cost of customers σk(1), σk(2), . . ., σk(h) and the

traveling cost between them below U . In other words

t ≥ F k
h (U) ⇐⇒ fk

h (t) ≤ U

holds. As mentioned in Section 4.3.2, we store fk
h (t) in a linked list; however, we can

also store fk
h (t) in an array without sacrificing the time complexity. Using this the array

data structure, we can compute F k
h (U) for a given U in O(log(δ(fk

h ))) time because fk
h

is a nonincreasing function. (In our program, however, we did not implement the array

structure, and use O(δ(fk
h )) time to compute F k

h (U), because this does not seem to be a

bottle neck of computation.)
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Similarly let

Bk
h(U) =

{
max{t | bk

h(t) ≤ U}, if mint bk
h(t) ≤ U

−∞, otherwise.

Bk
h(U) is the latest arrival time of vehicle k at customer σk(h) in order to keep the time

window cost of customers σk(h), σk(h + 1), . . . , σk(nk + 1) and the traveling cost between

them below U . Note also that

t ≤ Bk
h(U) ⇐⇒ bk

h(t) ≤ U

holds, because bk
h is a nondecreasing function, and we can compute Bk

h(U) in O(log(δ(bk
h)))

time. Then, if

F k
h−1(U) + λmin

k,h > Bk
h(U)

holds for λmin
k,h = mint λσk(h−1),σk(h)(t), the cost of route σk must be larger than U . This

fact is utilized to restrict the search in the 2-opt∗ and cross exchange neighborhoods, whose

details are explained in Sections 4.5.3 and 4.5.3.

Furthermore, for any nonnegative nonincreasing function f and any nonnegative non-

decreasing function b, we can obtain lower and upper bounds of mint{f(t)+b(t)} by the fol-

lowing observation. Let a point t̂ satisfy that t ≥ t̂⇒ b(t) ≥ f(t̂) and t ≤ t̂⇒ f(t) ≥ b(t̂),

and we call this the switch point of f and b. Then the switch point t̂ satisfies

max{f(t̂), b(t̂)} ≤ min
t
{f(t) + b(t)} ≤ f(t̂) + b(t̂) ≤ 2max{f(t̂), b(t̂)}.

If there is no switch point, either f(t) > b(t) or f(t) < b(t) holds for all t. In this case if

f(t) > b(t) holds for all t, then

f(t̃) ≤ min
t
{f(t) + b(t)} ≤ f(t̃) + b(t̃) ≤ 2f(t̃)

holds, where t̃ = arg mint f(t). When f and b are continuous, the switch point is the

intersecting point of f and b.1 From this property, for any h ∈ {1, 2, . . . , nk + 1}, if

λσk(h−1),σk(h)(t) is a constant function and qσk(h−1),σk(h) = 0, we can obtain a lower

bound on the TOSTP from the switch point of fk
h−1(t) and bk

h(t + λσk(h−1),σk(h)(t)),

and the schedule induced by the switch point becomes a 2-approximate schedule for

σk (i.e., the cost of the schedule is at most 2(p + q)∗sum(σk)), where cost can be com-

puted in O
(
log(δ(fk

h−1)) + log(δ(bk
h))
)

= O(log(∆(σk))) time. Even if λσk(h−1),σk(h) and

qσk(h−1),σk(h) are time-dependent, the switch point of fk
h−1(t) and bk

h(t+λmin
k,h ) gives a lower

bound on the optimal cost. Hence we can skip solving the TOSTP optimally in the search

of neighborhoods if its lower bound tells that it cannot improve the current σ.

1In our implementation, we just took an intersecting point instead of a switch point, because all functions

of the tested instances are continuous.
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2-opt∗ neighborhood

Consider to evaluate a solution in the 2-opt∗ neighborhood obtained by reconnecting two

routes σk and σk′ (see Figure 4.7). We set a threshold U , and avoid evaluating the routes

if we can conclude (p + q)∗sum(σnew
k )+ (p + q)∗sum(σnew

k′ ) > U . As our purpose is to obtain a

better solution than the current one, we can set U as the total cost of the current routes σk

and σk′ . Our first idea is based on the following fact: The solution obtained by connecting

σk(hk) and σk′(hk′ + 1) will have a cost larger than U if F k
hk

(U) > Bk′

hk′+1(U) holds. Let

P kk′

valid(U) =
{
(σk(hk), σk′(hk′)) | F k

hk
(U) ≤ Bk′

hk′+1(U) and F k′

hk′
(U) ≤ Bk

hk+1(U)
}

.

Then we can compute P kk′

valid(U) in O(nk+nk′+|P kk′

valid(U)|) time if F k
hk

(U), Bk
hk

(U), F k′

hk′
(U)

and Bk′

hk′
(U) are available for all hk and hk′ . It takes O(nk∆(σk) + nk′∆(σk′)) time for

the preprocessing (O(nk log(∆(σk)) + nk′ log(∆(σk′))) time if we use the array structure).

Such preprocessing is necessary only when the current solution is changed (i.e., when an

improved solution is found or a perturbation is applied), and is usually dominated by the

evaluation time of solutions.

Let

Pvalid(U) =
⋃

k 6=k′

P kk′

valid(U).

Then we can compute Pvalid(U) in O(nm + |Pvalid(U)|) time. Any solution cannot be

better than the current solution unless it is induced from Pvalid(U).

Hence we restrict the 2-opt∗ neighborhood only to the solutions induced from Pvalid(U).

Although the size of the 2-opt∗ neighborhood is reduced from O(n2) to O(|Pvalid(U)|) by

this modification, we miss no better solution in the 2-opt∗ neighborhood.

Cross exchange neighborhood

Consider the search in the cross exchange neighborhood. The size of the cross exchange

neighborhood is O(n2(Lcross)2), and is largest in the standard neighborhoods used in this

chapter. Here we consider a restriction of the cross exchange neighborhood. In order

to keep the change in the time window costs and traveling time costs small, it seems

preferable to keep the arriving times at customers in the generated solution close to those

of the current solution. Based on this intuition, we restrict the paths to be exchanged to

those which satisfy (σk(h
k
1), σk′(hk′

1 )) ∈ P k,k′

valid(U), where σk(h
k
1) and σk′(hk′

1 ) are the first

customers of the paths. Note that, different from the case of 2-opt∗ neighborhood, this

restriction has a possibility of missing a better solution in the cross exchange neighborhood.
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4.6 Computational results

We conducted computational experiments to evaluate the proposed algorithm ILS. The

algorithm was coded in C language and run on a handmade PC (Intel Pentium 4, 2.8 GHz,

1 GB memory). We used Lcross = 3, Lintra
path = 3 and Lintra

ins = 15 in the experiments.

4.6.1 Effect of the restriction of the neighborhoods

We first consider the effect of the restriction of the neighborhoods discussed in Sec-

tion 4.5.3. We run our local search algorithm with the 2-opt∗ neighborhood only, from a

random solution and a locally optimum solution, both with and without restriction. We

use the same random solution and the same locally optimal solution for the initial solu-

tions of the runs with and without restriction. In a similar manner, we also test our local

search algorithm with the cross exchange neighborhood only. For these tests, we used the

instance r201 in Solomon’s benchmark list, whose details will be described in Section 4.6.2.

Figures 4.9 shows the results with the 2-opt∗ neighborhood without (left) and with

(right) restriction, respectively, whose the vertical axis gives the total cost of every two

routes constructed as neighborhood solutions, while the horizontal axis shows the cost

before the neighborhood operation is applied (i.e., the current solution). Namely, each

point in the figure corresponds to the two route cost of a neighborhood solution. Similarly,

Figure 4.10 shows the results with the cross exchange neighborhood.

Figure 4.9: The distribution of two route cost in the 2-opt∗ neighborhood without (left)

and with (right) restriction

From these figures, we observe that the proposed restriction succeeds in avoiding the

evaluations of solutions whose costs are much larger than that of the current solutions. We

can also observe that the restriction becomes more effective when the cost of the current

solution is small.
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Figure 4.10: The distribution of two route cost in the cross exchange neighborhood without

(left) and with (right) restriction

Table 4.1: Number of evaluations with and without restriction of neighborhood

neighborhood 2-opt∗ cross exchange

initial solution random locally optimal random locally optimal

without restriction 227746(11016.59) 4035(1253.23) 333321 (1607.82) 24875(1253.23)

with restriction 146440(17906.10) 164(1253.23) 139771 (1518.22) 111(1253.23)

Then Table 4.1 shows the number of cost evaluations needed to obtain a locally optimal

solution, with and without restriction of neighborhood. Column “random” (resp., “locally

optimal”) shows the number of evaluations during the local search when the initial solution

is a random (resp., locally optimal) solution. Note that, in the case of the locally optimal

initial solution, no improvement is achieved as a result of local search. The two rows

correspond to the cases with and without restriction, respectively, where the values in

parenthesis are the objective values of the obtained locally optimal solutions.

From Table 4.1, we can confirm the effectiveness of the restriction. In the neighborhood

of a random solution we can reduce the number of evaluations to almost a half, and in

the neighborhood of a locally optimal solution, we can reduce it to only a few percent.

In our restriction of 2-opt∗ neighborhood, the solution quality is basically the same since

the restriction is guaranteed not to miss any improved neighborhood solution. However,

the objective values are different in the table, because we use random numbers when we

determine the search order in neighborhood. Although we may miss improved solutions in

the case of the cross exchange neighborhood with restriction, the output solution happens

to be slightly better than that obtained without restriction in this particular case. Since

each run of local search resumes from a solution generated by applying a small perturbation
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on a good locally optimal solution in our ILS algorithm, the effect of the restriction is

expected to be significant.

4.6.2 The vehicle routing problem with hard time windows

We used Solomon’s benchmark instances [140] and Gehring and Homberger’s benchmark

instances [80], which have been widely used in the literature. We first explain Solomon’s

instances. The number of customers in each instance is 100, and their locations are

distributed in the square [0, 100]2 in the plane. The distances between customers are

measured by Euclidean distances (in double precision), and the traveling times are the

same as the corresponding distances. Each customer i (including the depot) has one time

window [ri, di], an amount of requirement ai and a service time bi. All vehicles have an

identical capacity u. Both time window and capacity constraints are considered hard. For

these instances, the number of vehicles m is also a decision variable, and the objective is

to find a solution with the minimum vehicle number and the total traveling distance in the

lexicographical order. These benchmark instances consist of six different sets of problem

instances called R1, R2, RC1, RC2, C1 and C2, respectively. Locations of customers are

uniformly and randomly distributed in type R and are clustered into groups in type C,

and these two types are mixed in type RC. Furthermore, for the instances of type 1, the

time window is narrow at the depot, and hence only a small number of customers can be

served by one vehicle. On the contrary, for the instances of type 2, the time window at the

depot is wide, and many customers can be served by one vehicle. Recently, 300 instances

with larger number of customers are added by Gehring and Homberger [80], which are

divided into five groups by the number of customers, 200, 400, 600, 800 and 1000, where

each group has 10 instances for each of six types (i.e., R1, R2, RC1, RC2, C1 and C2).

In order to handle the above instances by our algorithm, we define time window cost

function pi, traveling cost functions qij and traveling time functions λij as follows:

pi(t) =






α(ri − t), t < ri

0, ri ≤ t ≤ di

α(t− di), di < t,

qij(t) = cij ,

λij(t) = bi + cij ,

where α is a positive parameter and cij is the distance (as well as the traveling time)

between customers i and j. Note that, in this formulation, the time window constraint

is considered as soft, and can be violated if it is advantageous from the view point of

minimizing the cost function. We set the number of vehicles in each instance to what is

used in [86].
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We first conduct preliminary experiments to determine parameter value α for each

instance. We run the algorithm with some values of α from {1, 5, 10, 50, 100, 500, . . .} in

the manner of binary search, where the time limit for each α was within 10% of the time

limit reported in the tables in this section. Then we use the best α among them and the

adjacent values in both directions (e.g., if the best results was obtained with α = 50, we

use 10, 50 and 100 for α), run the algorithm by using the three values of α with 100%

of the time limit, and report the best result below. If we cannot find a feasible solution,

which satisfies the hard time window and capacity constraints, even with α = 1000000,

we increase the number of vehicles by one. Actually we could find a feasible solution for

every instance except for six instances, and, for the six instances, we could find feasible

solutions with one more vehicle.

We then compare the solutions obtained by our experiments with those obtained by

existing methods. For Solomon’s instances, the time limit of our algorithm is 1000 seconds

for each instance. The results are shown in Table 4.2. In this table, “CNV” represents

the cumulative number of vehicles, and “CTD” represents the cumulative total distance,

which are usually used in the literature to compare the results on Solomon’s instances. The

upper (resp., lower) part of each cell in the table shows the mean number of vehicles (resp.,

the mean total distance) with respect to all instances for the type. Columns “IIKMUY”,

“HG99”, “GH02”, “BBB”, “B”, “BVH”, “HG03”, “IINSUY” and “ILS” are the results of

Ibaraki et al. [85], Homberger and Gehring [79], Gehring and Homberger [58], Berger et

al. [18], Bräysy [22], Bent and Van Hentenryck [15], Homberger and Gehring [80], Ibaraki

et al. [86] and our ILS algorithm, respectively. The bottom rows describe the computer,

the average CPU time and the number of independent runs for each method reported by

the author, where “P” and “SU” mean Pentium and SUN Ultra, respectively. The row

“Computer” contains the clock frequency of the computer (e.g., “P 200” means a computer

whose CPU is Pentium 200MHz). Computation time of “HG03” is not clearly stated

in [80]. To make a fair comparison of the performance of various algorithms, we estimate

the total computation time for each experiment by using the SPEC data presented in the

web page of SPEC (http://www.specbench.org/). The row “Estimated time” represents

this estimated time. An asterisk “∗” in rows of the mean number of vehicles indicates that

the value is the best among all the algorithms in the table and there is no tie. When there

are ties for the number of vehicles, we give an asterisk “∗” on the corresponding distance

value that is the smallest among those ties. In the row CNV, all results with the smallest

value get “∗”.

The results for Gehring and Homberger’s instances are given in Tables 4.3–4.7. The

time limit of our algorithm for 200, 400, 600, 800 and 1000-customer instances are 2000,

4000, 6000, 8000 and 10000 seconds, respectively. Columns “GH99”, “GH01”, “BVH”,
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“LL”, “LC”,“BHD” “MB” and “IINSUY” are the results by Gehring and Homberger [56],

Gehring and Homberger [58], Bent and Van Hentenryck [15], Li and Lim [104], Le Bouthillier

and Crainic [102], Bräysy et al. [25], Mester and Bräysy [110] and Ibaraki et al. [86] re-

spectively. “AMD” in the row “Computer” means Advanced Micro Devices and “n/a” in

the row “CPU(min)“ and “Runs” means that the data is not available.

In Table 4.2, our ILS obtained CNV 405 and the smallest CTD among all the tested al-

gorithms. According to a recent survey by Bräysy and Gendreau [24], not many algorithms

achieved CNV 407 or less, and only those algorithms cited in Table 4.2 achieved CNV 405.

In Tables 4.3–4.7, we could also obtain the smallest CNV among the tested algorithms.

The computation time of our ILS is reasonable compared to others especially for larger

instances. These results indicate that our ILS is highly efficient to solve the vehicle routing

problem with time windows, in spite of its high generality. As for the Solomon’s instances,

the results are shown in Table 4.8. As for the Gehring and Homberger’s instances, the

results are shown in Tables 4.9, 4.10, 4.11, 4.12 and 4.13. Each row of these tables rep-

resents a problem instance. “m” represents the number of vehicles, “dsum” represents the

total travel distance value, and “LS” represents the total number of local search proce-

dure called in our iterated local search algorithm. Here it should be noted that we had to

determine parameter α by preliminary experiments to achieve the above results, since the

performance is crucially dependent on the value. Though the time spent for such tuning

was not so large, it is one of the important directions of our future research to develop a

mechanism to find a good value of α automatically.

4.6.3 Time-dependent VRPSTW

Our algorithm ILS is designed for more general problem than the standard VRPSTW,

i.e., time-dependent VRPSTW. In order to test the performance of ILS, we generated 56

instances of time-dependent VRPSTW by modifying Solomon’s instances, as suggested by

Ichoua et al. [87].

In these instances, all traveling between customers are categorized into three types, and

the scheduling horizon (i.e., the time window at the depot) consists of morning, daytime

and evening. The travel speed of a vehicle depends on the category and the period of

scheduling horizon, which is further classified into three scenarios as shown in Table 4.14.

Time-dependency is small, medium and large in scenarios 1, 2 and 3, respectively. Note

that the average speed in each scenario is approximately 1, and the difficulty of time

windows constraints is similar to Solomon’s instances. We define the time window cost
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Table 4.2: The results for 100-customer benchmark instances

IIKMUY HG99 GH02 BBB B BVH HG03 IINSUY ILS

C1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

828.38* 828.38* 828.63 828.48 828.38* 828.38* 828.38* 828.38* 828.38*

C2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

589.86* 589.86* 590.33 589.93 589.86* 589.86* 589.86* 589.86* 589.86*

R1 11.92 11.92 12.00 11.92 11.92 11.92 11.92 12.00 11.92

1217.40 1228.06 1217.57 1221.10 1222.12 1213.25 1212.73* 1217.99 1213.18

R2 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73

959.11 969.95 961.29 975.43 975.12 966.37 955.03* 967.97 955.61

RC1 11.50 11.63 11.50 11.50 11.50 11.50 11.50 11.63 11.50

1391.03 1392.57 1395.13 1389.89 1389.58 1384.22* 1386.44 1384.67 1384.25

RC2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

1122.79 1144.43 1139.37 1159.37 1128.38 1141.24 1123.17 1128.77 1120.50*

CNV 405* 406 406 405* 405* 405* 405* 407 405*

CTD 57444 57876 57641 57952 57710 57567 57309 57545 57282*

Computer P 1GHz P 200 P400 P 400 P 200 SU 10 unknown P 2.8GHz P2.8GHz

CPU (min) 250.0 13.8 4×20.9 30.0 87.0 120.0 n/a 16.7 16.7

Runs 1 10 5 3 1 5 n/a 1 3

Estimated time 108.7 6.0 43.6 9.4 3.8 104.3 n/a 16.7 16.7

Table 4.3: The results for 200-customer benchmark instances

GH99 GH01 BVH LL LC BHD MB IINSUY ILS

C1 18.9 18.9 18.9 19.1 18.9 18.9 18.8* 18.9 18.9

2782 2842.08 2726.63 2728.6 2743.66 2749.83 2717.21 2732.03 2721.94

C2 6 6 6 6 6 6 6 6 6

1846 1856.99 1860.17 1854.9 1836.1 1842.65 1833.57* 1834.83 1835.96

R1 18.2 18.2 18.2 18.3 18.2 18.2 18.2 18.2 18.2

3705 3855.03 3677.96 3736.2 3676.95 3718.3 3618.68* 3665.77 3690.34

R2 4 4 4.1 4.1 4 4 4 4 4

3055 3032.49 3023.62 3023 2986.01 3014.28 2942.92* 2965.64 2943.88

RC1 18 18.1 18 18.3 18 18 18 18 18

3555 3674.91 3279.99 3385.8 3449.71 3329.62 3221.34* 3287.61 3345.01

RC2 4.3 4.4 4.5 4.9 4.3 4.4 4.4 4.3 4.3

2675 2671.34 2603.08 2518.7 2613.75 2585.89 2519.79 2562.56* 2564.68

CNV 694* 696 697 707 694* 695 694* 694* 694*

CTD 176180 179328 171715 172472 173061 172406 168573* 170484 171018

Computer P 200 P 400 SU 10 P 545 P 933 AMD 700 P 2GHz P 2.8GHz P 2.8GHz

CPU (min) 4×10 4×2.1 n/a 182.1 5×10 2.4 8 33.3 33.3

Runs 1 3 n/a 3 1 3 1 1 3

Estimated time 2.4 3.8 n/a 112.4 21.7 2.1 5.9 33.0 33.0
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Table 4.4: The results for 400-customer benchmark instances

GH99 GH01 BVH LL LC BHD MB IINSUY ILS

C1 38 38 38 38.7 37.9 37.9 37.9 37.7 37.6*

7584 7855.82 7220.96 7181.4 7447.09 7230.48 7148.27 7282.15 7444.06

C2 12 12 12 12.1 12 12 12 12 11.8*

3935 3940.19 4154.4 4017.1 3940.87 3894.48 3840.85 3851.96 3982.50

R1 36.4 36.4 36.4 36.6 36.5 36.4 36.3* 36.4 36.4

8925 9478.22 8713.37 8912.4 8839.28 8692.17 8530.03 8746.94 8998.63

R2 8 8 8 8 8 8 8 8 8

6502 6650.28 6959.75 6610.6 6437.68 6382.63 6209.94* 6269.9 6258.00

RC1 36.1 36.1 36.1 36.5 36 36 36 36 36

8763 9294.99 8330.98 8377.9 8652.01 8305.55 8066.44* 8405.32 8572.11

RC2 8.6 8.8 8.9 9.5 8.6 8.9 8.8 8.6 8.5*

5518 5629.43 5631.7 5466.2 5511.22 5407.87 5243.06 5337.5 5355.59

CNV 1390 1392 1393 1414 1390 1391 1389 1387 1383*

CTD 412270 428489 410112 405656 408281 399132 390386 398938 406109

Computer P 200 P 400 SU 10 P 545 P 933 AMD 700 P 2GHz P 2.8GHz P 2.8GHz

CPU (min) 4×20 4×7.1 n/a 359.8 5×20 7.9 17 66.6 66.6

Runs 1 3 n/a 3 1 3 1 1 3

Estimated time 4.8 13.0 n/a 221.8 43.3 6.8 12.5 66.6 66.6

Table 4.5: The results for 600-customer benchmark instances

GH99 GH01 BVH LL LC BHD MB IINSUY ILS

C1 57.9 57.7 57.8 58.2 57.9 57.8 57.8 57.5 57.5

14792 14817.25 14357.11 14267.30 14205.58 14165.90 14003.09 14116.97* 14296.96

C2 17.9 17.8 17.8 18.2 17.9 18 17.8 17.4 17.4

7787 7889.96 8259.04 8202.60 7743.92 7528.73 7455.83 7945.56* 7960.138

R1 54.5 54.5 55 55.2 54.8 54.5 54.5 54.5 54.5

20854 21864.47 19308.62 19744.80 19869.82 19081.18 18358.68* 19844.39 20363.15

R2 11 11 11 11.1 11.2 11 11 11 11

13335 13656.15 14855.43 13592.40 13093.97 13054.83 12703.52 12539.78* 13047.18

RC1 55.1 55 55.1 55.5 55.2 55 55 55 55

18411 19114.02 17035.91 17320.00 17678.13 16994.22 16418.63* 17278.81 17764.33

RC2 11.8 11.9 12.4 13 11.8 12.1 12.1 11.6 11.5*

11522 11670.29 11987.89 11204.90 11034.71 11212.36 10677.46 10791.70 11315.28

CNV 2082 2079 2091 2112 2088 2084 2082 2070 2069*

CTD 867010 890121 858040 843320 836261 820372 796172 825172 847470

Computer P 200 P 400 SU 10 P 545 P 933 AMD 700 P 2GHz P 2.8GHz P 2.8GHz

CPU (min) 4×30 4 × 12.9 n/a 399.8 5× 30 16.2 40 100 100

Runs 1 3 n/a 3 1 3 1 1 3

Estimated time 7.1 23.5 n/a 246.4 65.0 13.9 29.4 100.0 100.0
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Table 4.6: The results for 800-customer benchmark instances

GH99 GH01 BVH LL LC BHD MB IINSUY ILS

C1 76.7 76.1 76.1 77.4 76.3 76.3 76.2 75.7 75.6*

26528 26936.68 25391.67 25337.02 25668.82 25170.88 25132.27 25487.55 25915.59

C2 24 23.7 24.4 24.4 24.1 24.2 23.7 23.4 23.4

12451 11847.92 14253.83 11956.60 11985.11 11648.92 11352.29 11860.90* 11942.54

R1 72.8 72.8 72.7* 73 73.1 72.8 72.8 72.8 72.8

34586 34653.88 33337.91 33806.34 33552.40 32748.06 31918.47 33275.72 34095.04

R2 15 15 15 15.1 15 15 15 15 15

21697 21672.85 24554.63 21709.39 21157.56 21170.15 20295.28 20209.92* 20810.51

RC1 72.4 72.3 73 73.2 72.3 73 73 72.4 72.3

38509 40532.35 30500.15 31282.54 37722.62 30005.95 30731.07 34621.63 34358.45*

RC2 16.1 16.1 16.6 17.1 15.8 16.3 15.8 15.7 15.6*

17741 17941.23 18940.84 17561.22 17441.60 17686.65 16729.18 16666.76 17173.59

CNV 2770 2760 2778 2802 2766 2776 2765 2750 2747*

CTD 1515120 1535849 1469790 1416531 1475281 1384306 1361586 1421225 1442957

Computer P 200 P 400 SU 10 P 545 P 933 AMD 700 P 2GHz P 2.8GHz P 2.8GHz

CPU (min) 4×40 4×23.2 n/a 512.9 5×40 26.2 145 133.3 133.3

Runs 1 3 n/a 3 1 3 1 1 3

Estimated time 9.5 42.3 n/a 316.1 86.6 22.5 106.5 133.3 133.3

Table 4.7: The results for 1000-customer benchmark instances

GH99 GH01 BVH LL LC BHD MB IINSUY ILS

C1 96 95.4 95.1 96.3 95.3 95.8 95.1 94.5 94.4*

43273 43392.59 42505.35 42428.50 43283.92 42086.77 41569.67 42459.35 43066.89

C2 30.2 29.7 30.3 30.8 29.9 30.6 29.7 29.4 29.4

17570 17574.72 18546.13 17294.90 17443.50 17035.88 16639.54 16986.46 16822.82*

R1 91.9 91.9 92.8 92.7 92.2 92.1 92.1 91.9 91.9

57186 58069.61 51193.47 50990.80 55176.95 50025.64 49281.48 53366.10* 54149.50

R2 19 19 19 19 19.2 19 19 19 19

31930 31873.62 36736.97 31990.90 30919.77 31458.23 29860.32 29546.19* 30626.04

RC1 90 90.1 90.2 90.4 90 90 90 90 90

50668 50950.14 48634.15 48892.40 49711.36 46736.92 45396.41* 48275.20 49378.71

RC2 19 18.5 19.4 19.8 18.5 19 18.7 18.3 18.3

27012 27175.98 29079.78 26042.30 26001.11 25994.12 25063.51 24904.08* 26428.81

CNV 3461 3446 3468 3490 3451 3465 3446 3431 3430*

CTD 2276390 2290367 2266959 2176398 2225366 2133376 2078110 2155374 2204728

Computer P 200 P 400 SU 10 P 545 P 933 AMD 700 P 2GHz P 2.8GHz P 2.8GHz

CPU (min) 4×50 4×30.1 n/a 606.3 5×50 39.6 600 166.7 166.7

Runs 1 3 n/a 3 1 3 1 1 3

Estimated time 11.9 54.9 n/a 373.5 108.3 34.0 440.8 166.7 166.7
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Table 4.8: The detailed results for 100-customer benchmark instances

bknown bknown

Inst m α dsum LS m dsum Inst m α dsum LS m dsum

c101 10 5 828.94 26577 10 828.94 c201 3 5 591.56 5715 3 591.56

c102 10 5 828.94 30171 10 828.94 c202 3 5 591.56 5046 3 591.56

c103 10 5 828.06 33544 10 828.06 c203 3 5 591.17 5244 3 591.17

c104 10 5 824.78 36223 10 824.78 c204 3 5 590.60 7976 3 590.60

c105 10 5 828.94 24613 10 828.94 c205 3 5 588.88 7101 3 588.88

c106 10 5 828.94 27728 10 828.94 c206 3 5 588.49 7098 3 588.49

c107 10 5 828.94 28134 10 828.94 c207 3 5 588.29 7554 3 588.29

c108 10 5 828.94 31400 10 828.94 c208 3 5 588.32 8937 3 588.32

c109 10 5 828.94 36113 10 828.94

r101 19 100 1650.80 35156 19 1645.79 r201 4 5 1253.23 6720 4 1252.37

r102 17 100 1486.12 30962 17 1486.12 r202 3 10 1191.80 3401 3 1191.70

r103 13 50 1292.68 28086 13 1292.68 r203 3 1 943.27 5566 3 939.54

r104 9 50000 1007.31 24758 9 1007.24 r204 2 1 832.76 2579 2 825.52

r105 14 5 1377.11 29396 14 1377.11 r205 3 10 994.43 5965 3 994.42

r106 12 5 1252.03 25695 12 1251.98 r206 3 1 906.14 6214 3 906.14

r107 10 50 1104.66 22944 10 1104.66 r207 2 5 898.16 2509 2 893.33

r108 9 10 963.99 25944 9 960.88 r208 2 1 730.54 5620 2 726.75

r109 11 10 1205.36 25423 11 1194.73 r209 3 1 915.06 5279 3 909.16

r110 10 10 1129.47 23971 10 1118.59 r210 3 5 939.37 5818 3 939.34

r111 10 50 1096.73 23646 10 1096.72 r211 2 5 906.96 2538 2 892.71

r112 9 100 991.85 28919 9 982.14

rc101 14 100 1696.95 32400 14 1696.94 rc201 4 5 1406.94 7387 4 1406.91

rc102 12 100 1554.75 28893 12 1554.75 rc202 3 500 1367.00 3604 3 1365.64

rc103 11 10 1262.02 31070 11 1261.67 rc203 3 10 1058.33 6260 3 1049.62

rc104 10 5 1135.83 27181 10 1135.48 rc204 3 5 798.46 11137 3 798.41

rc105 13 100 1629.44 31288 13 1629.44 rc205 4 1 1297.65 6838 4 1297.19

rc106 11 100 1424.73 31523 11 1424.73 rc206 3 5 1146.32 5099 3 1146.32

rc107 11 50 1230.48 36141 11 1230.48 rc207 3 1 1061.14 4658 3 1061.14

rc108 10 50 1139.82 34620 10 1139.82 rc208 3 1 828.14 7816 3 828.14
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Table 4.9: The detailed results for 200-customer benchmark instances

bknown bknown

Inst m α dsum LS m dsum Inst m α dsum LS m dsum

c101 20 5 2704.57 22870 20 2704.57 c201 6 5 1931.44 4168 6 1931.44

c102 18 10 2917.89 11949 18 2917.89 c202 6 5 1863.16 5011 6 1863.16

c103 18 1 2707.35 14031 18 2708.08 c203 6 1 1786.39 5869 6 1775.11

c104 18 1 2649.99 14891 18 2644.61 c204 6 5 1733.40 7505 6 1720.09

c105 20 5 2702.05 18817 20 2702.05 c205 6 1 1878.85 6071 6 1878.85

c106 20 5 2701.04 20996 20 2701.04 c206 6 1 1857.35 7177 6 1857.35

c107 20 5 2701.04 20453 20 2701.04 c207 6 1 1849.46 6975 6 1849.46

c108 19 50 2793.58 17304 18 2769.19 c208 6 1 1820.53 8309 6 1820.59

c109 18 10 2693.99 14666 18 2642.82 c209 6 1 1832.43 7834 6 1830.18

c110 18 5 2647.92 16678 18 2649.26 c210 6 1 1806.58 9139 6 1806.60

r101 20 1000 4795.04 17905 19 5024.65 r201 4 1000000 4520.81 1389 4 4501.80

r102 18 1000 4157.01 13533 18 4054.44 r202 4 100 3667.70 1949 4 3645.38

r103 18 50 3458.01 12306 18 3382.65 r203 4 1000 2891.23 3010 4 2932.44

r104 18 50 3088.56 12037 18 3067.93 r204 4 1 1988.23 4373 4 1981.29

r105 18 100 4190.21 11595 18 4112.88 r205 4 5 3367.53 2354 4 3367.55

r106 18 50 3719.57 12072 18 3599.84 r206 4 10 2914.76 2754 4 2914.56

r107 18 50 3195.05 13352 18 3151.42 r207 4 50 2456.05 4100 4 2453.62

r108 18 1 2982.37 9881 18 2963.90 r208 4 5 1849.98 6700 4 1849.87

r109 18 50 3909.27 12480 18 3784.33 r209 4 10 3115.72 2722 4 3111.41

r110 18 50 3408.31 13821 18 3307.78 r210 4 50 2666.82 3506 4 2657.00

rc101 18 100 3769.86 11424 18 3691.99 rc201 6 100 3125.75 5693 6 3103.48

rc102 18 50 3379.01 12974 18 3298.68 rc202 5 500 2829.45 4029 5 2827.45

rc103 18 50 3110.69 14202 18 3025.90 rc203 4 500 2618.23 3056 4 2617.90

rc104 18 5 2917.42 12541 18 2879.40 rc204 4 1 2103.47 3528 4 2055.97

rc105 18 100 3685.57 13026 18 3419.81 rc205 4 5 2933.33 2103 4 2912.57

rc106 18 50 3474.90 13496 18 3393.09 rc206 4 100 2889.42 2315 4 3138.02

rc107 18 10 3471.25 12592 18 3266.48 rc207 4 5 2557.40 3247 4 2550.56

rc108 18 10 3259.56 13221 18 3115.82 rc208 4 1 2361.34 3348 4 2317.80

rc109 18 10 3251.53 13826 18 3083.41 rc209 4 5 2198.52 4182 4 2175.61

rc110 18 5 3130.30 12097 18 3038.85 rc210 4 5 2029.88 4841 4 2015.60
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Table 4.10: The detailed results for 400-customer benchmark instances

bknown bknown

Inst m α dsum LS m dsum Inst m α dsum LS m dsum

c101 40 1 7152.06 11893 40 7152.02 c201 12 5 4116.14 3296 12 4116.05

c102 36 5000 7856.66 6817 37 7357.45 c202 12 1 3930.45 4605 12 3930.29

c103 36 5 7363.31 6264 36 7151.17 c203 12 1 3779.77 4978 12 3739.72

c104 36 1 6869.50 6508 36 6822.18 c204 11 1000000 4350.20 3120 12 3535.99

c105 40 5 7152.06 9751 40 7152.02 c205 12 1 3938.69 5564 12 3939.42

c106 40 1 7153.45 10622 40 7153.41 c206 12 1 3875.94 6480 12 3875.94

c107 39 5000 7505.24 8914 39 8043.18 c207 12 10 3897.70 6325 12 3894.13

c108 37 10000 7882.36 8587 38 7113.40 c208 12 1 3798.66 6732 12 3787.08

c109 36 1000 8086.45 7491 36 7524.32 c209 12 10 3879.83 6728 12 3876.10

c110 36 5 7419.52 6683 36 6907.26 c210 11 5000 4257.64 4662 12 3684.89

r101 40 5000 10547.11 9961 38 11084.00 r201 8 50 9319.21 1860 8 9257.92

r102 36 500 9610.16 5937 36 9161.26 r202 8 1000 7662.25 2408 8 7674.90

r103 36 500 8513.14 5744 36 7941.53 r203 8 1000 6044.85 2811 8 5988.02

r104 36 10 7649.41 4952 36 7332.93 r204 8 5 4348.34 4269 8 4331.07

r105 36 50 10270.00 5412 36 9512.25 r205 8 10 7191.03 2733 8 7143.55

r106 36 100 9197.03 5940 36 8534.05 r206 8 10 6246.39 2917 8 6163.81

r107 36 50 8089.12 5630 36 7710.41 r207 8 5 5140.19 3631 8 5082.10

r108 36 5 7701.29 4659 36 7398.68 r208 8 5 4124.64 5357 8 4068.97

r109 36 10 9660.98 5075 36 8878.19 r209 8 5 6486.50 2795 8 6493.13

r110 36 50 8748.10 5799 36 8227.49 r210 8 10 6016.55 3598 8 5895.93

rc101 36 1000 9769.63 6505 36 8960.82 rc201 11 50 6770.44 3784 11 7019.89

rc102 36 50 8820.22 6916 36 8174.27 rc202 9 10000 6419.16 1990 10 5924.84

rc103 36 50 7973.35 7037 36 7737.99 rc203 8 5 5048.38 2590 8 5114.76

rc104 36 10 7551.31 5666 36 7411.02 rc204 8 10 3700.01 5338 8 3648.64

rc105 36 100 8948.55 7427 36 8499.15 rc205 9 50 6047.21 2712 9 6063.46

rc106 36 10 8873.07 6521 36 8304.99 rc206 8 50 5998.19 2102 8 6054.21

rc107 36 10 8898.66 6386 36 8051.71 rc207 8 100 5570.20 3172 8 5519.25

rc108 36 5 8493.26 5002 36 7917.68 rc208 8 1 4916.86 2885 8 4854.16

rc109 36 5 8282.77 5030 36 7890.45 rc209 8 50 4657.48 4810 8 4628.26

rc110 36 50 8110.30 7046 36 7716.32 rc210 8 5 4427.98 4326 8 4316.36
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Table 4.11: The detailed results for 600-customer benchmark instances

bknown bknown

Inst m α dsum LS m dsum Inst m α dsum LS m dsum

c101 60 5 14095.64 7222 60 14095.64 c201 18 1 7774.16 3407 18 7774.16

c102 56 500 14209.47 4840 56 14325.96 c202 17 1000 8784.11 2208 18 7486.88

c103 56 5 13934.96 4264 56 13898.99 c203 17 50 7977.15 2401 17 8371.07

c104 56 10 13864.79 4479 56 13610.66 c204 17 5 7474.75 3129 17 7216.45

c105 60 10 14085.72 6278 60 14085.70 c205 18 5 7576.44 4415 18 7576.35

c106 60 50 14089.66 6616 60 14089.70 c206 18 1 7479.48 5428 18 7478.63

c107 59 10000 14580.31 6403 59 14659.74 c207 18 10 7535.05 4797 18 7560.53

c108 56 10000 15437.77 6056 57 14976.88 c208 17 100 8169.53 4031 18 7352.42

c109 56 100 14543.28 4332 56 13733.56 c209 17 1000 9168.68 3193 18 7350.94

c110 56 1 14127.95 4164 56 13758.19 c210 17 1 7662.03 3967 17 7523.34

r101 59 1000 21857.78 6509 59 21131.09 r201 11 50 19060.46 1242 11 18325.60

r102 54 1000 21734.84 5076 54 19603.70 r202 11 500 15473.66 1465 11 15346.42

r103 54 50 19475.54 3600 54 17400.60 r203 11 100 12045.89 1728 11 11663.06

r104 54 50 17391.78 2954 54 15993.80 r204 11 10 8503.38 2299 11 8386.64

r105 54 1000 22962.20 4538 54 20395.00 r205 11 100 15871.96 1791 11 15640.60

r106 54 100 21178.18 3578 54 18620.26 r206 11 50 13565.21 1775 11 12937.47

r107 54 50 18857.78 3460 54 17107.91 r207 11 50 10565.35 2120 11 10536.84

r108 54 50 17033.88 2912 54 15725.86 r208 11 10 8254.00 2700 11 8023.64

r109 54 1000 22315.90 4404 54 19372.96 r209 11 50 14245.68 1839 11 13567.84

r110 54 50 20823.64 3557 54 18235.57 r210 11 100 12886.16 2303 11 12607.09

rc101 55 1000 19365.42 4426 55 17454.39 rc201 14 100 13753.35 2216 15 13275.93

rc102 55 500 17752.43 4475 55 16208.24 rc202 12 100 11756.29 1789 12 12071.40

rc103 55 10 16461.69 4178 55 15524.33 rc203 11 50 10248.58 1409 11 9978.25

rc104 55 10 15546.46 3652 55 15180.72 rc204 11 10 7894.73 2070 11 7349.88

rc105 55 500 18828.10 4433 55 17468.57 rc205 12 10000 12757.40 2071 13 11919.72

rc106 55 100 18583.52 4331 55 17248.87 rc206 11 1000 13396.83 1202 12 11411.08

rc107 55 100 18167.54 4495 55 16454.79 rc207 11 100 11808.20 1709 11 11687.04

rc108 55 50 17863.08 4216 55 16462.49 rc208 11 10 10978.22 1784 11 10474.95

rc109 55 50 17653.90 4004 55 16153.00 rc209 11 10 10593.09 2094 11 10113.82

rc110 55 10 17421.19 3584 55 16030.86 rc210 11 5 9966.14 1987 11 9339.41
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Table 4.12: The detailed results for 800-customer benchmark instances

bknown bknown

Inst m α dsum LS m dsum Inst m α dsum LS m dsum

c101 80 5 25184.38 5074 80 25030.36 c201 24 1 11662.08 3248 24 11654.72

c102 74 1000000 26114.66 4387 75 25518.17 c202 23 10000 12773.63 2326 24 11422.34

c103 72 5 26213.54 2472 72 25438.60 c203 23 100 12503.37 2195 23 11554.18

c104 72 1 24719.93 2225 72 24040.47 c204 23 1 11342.56 2615 23 10963.49

c105 80 100 25166.28 4669 80 25166.30 c205 24 1 11434.03 4187 24 11432.92

c106 80 100 25160.85 4728 80 25160.90 c206 24 1 11348.43 4624 24 11357.86

c107 79 500 25538.54 3758 79 25518.85 c207 24 50 11468.03 4474 24 11397.54

c108 75 10000 26243.46 4762 76 25379.85 c208 23 10000 12195.91 4542 24 11206.32

c109 72 1000 27827.13 3729 73 24713.38 c209 23 10000 13069.53 3364 24 11249.00

c110 72 10 26987.10 2845 72 29536.81 c210 23 5 11627.82 3785 23 11284.46

r101 80 1000000 38056.29 4884 79 39612.20 r201 15 100 29206.74 1784 15 28440.28

r102 72 5000 35999.87 3367 72 33548.54 r202 15 10 24088.01 1517 15 23335.67

r103 72 100 32529.49 2361 72 30151.90 r203 15 10 18286.82 1935 15 17992.25

r104 72 10 30303.52 1990 72 26838.04 r204 15 5 13929.80 2422 15 13625.25

r105 72 50 38055.58 2496 72 34741.53 r205 15 50 25349.89 2135 15 24611.39

r106 72 10 34546.53 2321 72 31737.47 r206 15 10 21397.18 1868 15 20697.06

r107 72 10 31537.02 2196 72 29538.40 r207 15 10 17249.67 2134 15 17058.30

r108 72 5 29662.64 1892 72 28342.64 r208 15 10 13396.06 2769 15 13053.31

r109 72 100 35986.98 2505 72 34231.38 r209 15 10 23252.47 2147 15 22588.02

r110 72 10 34272.51 2299 72 31730.45 r210 15 5 21948.49 2080 15 21551.26

rc101 73 100 33711.89 3387 73 31590.23 rc201 19 10000 20716.21 3238 20 19989.12

rc102 72 50 35112.82 3455 72 39696.20 rc202 16 10000 19129.08 1660 17 18099.68

rc103 72 100 33015.08 3261 72 35577.87 rc203 15 100 15346.72 1823 15 15116.26

rc104 72 10 30085.34 2717 72 32654.10 rc204 15 5 11604.53 2374 15 11392.25

rc105 73 100 32344.49 3481 73 30454.15 rc205 16 100 19321.34 2195 16 19105.75

rc106 73 50 32782.06 3286 73 29674.68 rc206 15 10 19945.66 1617 15 18882.30

rc107 72 500 39643.15 3244 72 43829.43 rc207 15 5 17547.91 1713 15 17461.44

rc108 72 100 36512.04 3059 72 43694.60 rc208 15 5 16752.84 1998 15 16529.24

rc109 72 50 35660.83 3038 72 41816.70 rc209 15 5 16329.70 2180 15 15823.50

rc110 72 10 34716.75 2504 72 41182.44 rc210 15 10 15041.86 2804 15 14892.29
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Table 4.13: The detailed results for 1000-customer benchmark instances

bknown bknown

Inst m α dsum LS m dsum Inst m α dsum LS m dsum

c101 100 5 42478.95 5050 100 42478.95 c201 30 5 16879.24 2797 30 16879.24

c102 90 1000 45854.82 2666 92 42920.70 c202 29 50 17473.93 2307 29 17228.82

c103 90 5 42218.92 2401 90 40934.87 c203 29 50 17043.13 2626 29 16367.59

c104 90 1 41575.26 2112 90 40410.58 c204 29 5 16896.99 2624 29 17153.19

c105 100 100 42469.18 4984 100 42469.20 c205 30 5 16568.73 3692 30 16586.46

c106 100 100 42471.28 5135 100 42471.30 c206 30 5 16348.20 4508 30 16371.65

c107 99 1000 42821.17 3984 99 42711.39 c207 30 10000 16827.81 4416 31 16578.42

c108 94 10000 43555.1 4238 96 42170.31 c208 29 1 16532.88 3500 29 18662.10

c109 91 1000 42755.59 3254 91 45386.93 c209 29 10000 17462.68 4022 30 16651.96

c110 90 100 44468.65 3344 90 40894.38 c210 29 1 16194.56 3545 29 16178.26

r101 100 1000 55922.77 3756 100 54145.31 r201 19 500 43554.40 1779 19 42922.56

r102 91 1000 56975.89 2929 91 56367.45 r202 19 50 35416.79 1562 19 34918.49

r103 91 100 51259.61 2645 91 46621.19 r203 19 50 26396.47 1787 19 25689.62

r104 91 50 47116.49 2306 91 43461.84 r204 19 5 19026.43 2214 19 18858.24

r105 91 50 61437.30 2672 91 70838.01 r205 19 100 38162.84 2040 19 37265.32

r106 91 50 55707.67 2783 91 49059.80 r206 19 100 31990.34 1745 19 30725.20

r107 91 100 50834.66 2640 91 45847.84 r207 19 50 24603.46 1942 19 24363.83

r108 91 50 46612.45 2290 91 42767.77 r208 19 5 18950.37 2220 19 18185.38

r109 91 500 59344.93 2652 91 51391.80 r209 19 10 35737.18 1939 19 33777.76

r110 91 50 56283.20 2731 91 49348.36 r210 19 5 32422.07 2046 19 31599.84

rc101 90 100 52084.03 2572 90 47143.90 rc201 21 100 30585.71 2440 22 30320.41

rc102 90 500 49503.47 2435 90 44906.58 rc202 18 1000000 29525.90 746 19 26592.40

rc103 90 100 46038.46 2488 90 43782.57 rc203 18 500 22185.99 1217 18 20588.38

rc104 90 5 43998.71 1883 90 41917.14 rc204 18 10 17645.94 1478 18 16480.17

rc105 90 50 51822.47 2569 90 47632.31 rc205 18 100 30231.94 1116 18 29383.27

rc106 90 500 51377.57 2518 90 46391.60 rc206 18 50 29668.22 1225 18 27003.30

rc107 90 500 50657.17 2489 90 46391.60 rc207 18 50 27928.74 1341 18 26161.91

rc108 90 10 50099.58 2175 90 45585.08 rc208 18 5 26631.77 1113 18 24995.00

rc109 90 5 50320.45 2004 90 45405.54 rc209 18 50 25381.34 1716 18 23582.89

rc110 90 10 47885.23 2208 90 45041.64 rc210 18 5 24502.58 1319 18 22481.03
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function as

pi(t) =






ri − t, t < ri

0, ri ≤ t ≤ di

t− di, di < t,

and we construct each traveling time function λij(t) from the distance and travel speed in

Table 4.14. We then define qij(t) = λij(t).

Table 4.14: Travel speed matrices for scenarios 1–3

scenario1 scenario2 scenario3

morning daytime evening morning daytime evening morning daytime evening

category 1 0.54 0.81 0.54 0.33 0.67 0.33 0.12 0.46 0.12

category 2 0.81 1.22 0.81 0.67 1.33 0.67 0.46 1.92 0.46

category 3 1.22 1.82 1.22 1.33 2.67 1.33 0.96 3.84 0.96

Table 4.15 shows the computational results of our algorithm ILS for these instances.

Column “time-dependent” represents the results of our algorithm devised for the time-

dependent instances. Column “const” represents the results obtained by the following

method, which was tested for comparison purposes: We solved the instances with our

algorithm after replacing the time-dependent traveling time with the fixed constant de-

termined by taking the average of the traveling time in the whole periods. Note that, in

the case of “const”, even though the constant traveling times were used during the search,

the final costs output by this method were evaluated exactly under the time-dependent

environment, and the table shows the results under the exact evaluation. Each row gives

the instance type, and the average values of psum and qsum with respect to all instances of

the same type. We omitted asum, since asum were always 0.

In Table 4.15, we can observe that both psum and qsum in column “time-dependent”

are smaller than those in column “const”. The deference becomes larger as the instances

become more time-dependent (i.e., from scenarios 1 to 3). This indicates the usefulness of

our algorithm that can accept time-dependency.

4.7 Conclusion

We generalized the standard vehicle routing problem with time windows by allowing both

traveling times and traveling costs to be time-dependent functions, and proposed an iter-

ated local search algorithm. Our generalization can treat time-dependent traveling times
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Table 4.15: The results for time-dependent VRPSTW

scenario1 scenario2 scenario3

time-dependent const time-dependent const time-dependent const

psum qsum psum qsum psum qsum psum qsum psum qsum psum qsum

C1 20.35 855.27 35.47 984.26 90.80 885.66 183.30 1301.37 342.45 1137.45 1312.33 2356.09

C2 2.31 669.94 0.00 712.52 7.43 763.61 54.25 919.15 325.91 1038.11 1554.59 1680.48

R1 32.47 1061.93 50.60 1188.67 43.41 921.41 94.92 1260.24 109.90 946.06 462.54 1378.72

R2 5.04 904.40 19.62 1021.33 3.00 809.01 77.37 1139.08 17.70 873.04 954.12 1562.06

RC1 50.10 1103.62 59.50 1298.58 55.23 967.13 96.89 1295.63 90.90 1023.89 486.02 1568.13

RC2 19.69 976.53 25.09 1140.38 12.40 877.58 106.79 1263.43 49.99 948.67 803.88 1640.06

and costs such as rush-hour traffic jam, and includes various interesting problems such as

parallel machine scheduling problems as its special cases.

In our local search procedure, for each vehicle route generated during the search, we

must compute an optimal schedule for the route. We showed that this subproblem can be

efficiently solved by dynamic programming. We further proposed a filtering method that

restricts the size of neighborhoods, based on the fact that there are many solutions having

no prospect of improvement. We developed an iterated local search algorithm incorpo-

rating all the above ingredients. The computational results on representative benchmark

instances indicate that the proposed algorithm is highly efficient. Artificially generated in-

stances of the time-dependent vehicle routing problem with time windows were also solved

to show the usefulness of our algorithm having high generality.



Chapter 5

Path Relinking Approach with an

Adaptive Mechanism to Control

Parameters for the Vehicle

Routing Problem with Time

Windows

5.1 Introduction

We propose a path relinking approach for the VRPTW. The path relinking [67, 68] is an

evolutionary mechanism that generates new solutions by combining two or more reference

solutions. Our algorithm invokes a path relinking operation for generating new candidate

solutions, which are then improved by a local search whose neighborhood consists of slight

modifications of the representative neighborhoods called 2-opt∗, cross exchange and Or-

opt. To reduce the computation time for searching these neighborhoods, we propose a

neighbor list that prunes the neighborhood search heuristically. In our algorithm, infeasi-

ble solutions are allowed to be visited during the search, while the amount of violation is

penalized. The amount of violation for the capacity constraint is estimated by the amount

of capacity excess. To estimate the amount of violation of time window constraints of

each route, we consider the total amount of traveling time to be shortened to satisfy the

constraints. We also incorporate in our algorithm a frequency-based penalty, in which a

customer who often appears in an infeasible route of locally optimal solutions is penalized

to direct the search to make those routes with many heavily penalized customers feasi-
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ble. As the evaluation of these penalties takes time if naively implemented, we propose

an efficient algorithm, which enables us to evaluate each neighborhood solution in O(1)

time. We also propose an adaptive mechanism to control the weights of these penalties.

Finally we report computational results on well-studied benchmark instances with up to

1000 customers. The results show the high competence of our algorithm against exist-

ing methods; it updates 41 best known results among 356 instances within a reasonable

amount of computation time.

The chapter is organized as follows. In Section 5.2, we give the formulation of the

vehicle routing problem with time windows. In Section 5.3, our local search, the neighbor

list, and the neighborhoods are discussed. Section 5.4 describes the criterion we adopted

to evaluate vehicle routes, and an efficient algorithm to evaluate solutions in the neigh-

borhood. In Section 5.5, we will discuss an adaptive mechanism to control the penalty

weights. Then, in Section 5.6, our path relinking approach is explained. Finally, in Sec-

tion 5.7, we report the computational results of our algorithm and compare them against

existing methods.

5.2 Problem definition

Here we formulate the vehicle routing problem with time windows. Let G = (V,E) be a

complete directed graph with vertex set V = {0, 1, . . . , n} and edge set E = {(i, j) | i, j ∈

V, i 6= j}, and M = {1, 2, . . . ,m} be a vehicle set. In this graph, vertex 0 is the depot

and other vertices are customers. Each customer i and each edge (i, j) ∈ E are associated

with:

i. a fixed quantity ai (≥ 0) of goods to be delivered to i,

ii. a time window [ei, li],

iii. a traveling time tij(≥ 0) and a traveling distance cij(≥ 0) from i to j.

We assume a0 = 0 and e0 = 0 without loss of generality. Each vehicle has an identical

capacity u.

Let σk denote the route traveled by vehicle k, where σk(h) denotes the hth customer

in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by vehicle k

exactly once. We denote by nk the number of customers in σk. For convenience, we define

σk(0) = 0 and σk(nk + 1) = 0 for all k (i.e., each vehicle k ∈ M departs from the depot

and comes back to the depot). Moreover, let si be the start time of service at customer i
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(by exactly one of the vehicles) and sa
k be the arrival time of vehicle k at the depot. Note

that each vehicle is allowed to wait at customers before starting services.

Let us introduce 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V \ {0} and k ∈M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 holds if and only if vehicle k visits customer i. The traveling distance

of a vehicle k is expressed as d(σk) =
∑nk

h=0 cσk(h),σk(h+1). Then the problem we consider

in this chapter is formulated as follows:

minimize
∑

k∈M

d(σk) (5.2.1)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0} (5.2.2)

∑

i∈V \{0}

aiyik(σ) ≤ u, k ∈M (5.2.3)

t0,σk(1) ≤ sσk(1), k ∈M (5.2.4)

sσk(i) + tσk(i),σk(i+1) ≤ sσk(i+1), 1 ≤ i ≤ nk − 1, k ∈M (5.2.5)

sσk(nk) + tσk(nk),0 ≤ sa
k ≤ l0, k ∈M (5.2.6)

ei ≤ si ≤ li, i ∈ V \ {0} (5.2.7)

yik(σ) ∈ {0, 1}, i ∈ V \ {0}, k ∈M. (5.2.8)

Constraint (5.2.2) means that every customer i ∈ V \ {0} must be served exactly once

by a vehicle. Constraint (5.2.3) means a capacity constraint for vehicle k. Constraints

(5.2.4)–(5.2.6) require that each vehicle cannot serve a customer before arriving at the

customer. Constraint (5.2.7) is a time window constraint for each customer. Note that

essential decision variables in this formulation are routes σk, since the values of yik(σ) are

automatically determined from σ, and finding appropriate values for si and sa
k, if any, is

easy when σ is fixed.

5.3 Local search

In this section, we describe our local search (LS). Our LS searches a visiting order σ =

(σ1, σ2, . . . , σm), which can be infeasible with respect to the capacity and time window

constraints. The algorithm evaluates each route σk by a function p(σk), which is the

sum of its traveling distance d(σk) and the penalty for violation of constraints if σk is

infeasible, and it evaluates a solution σ by
∑

k∈M p(σk). The details of function p(σk) will

be discussed in Section 5.4. Our LS starts from an initial solution σ and repeats replacing
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σ with a better solution (with respect to
∑

k∈M p(σk)) in its neighborhood N(σ) until

no better solution is found in N(σ). To define the neighborhood N(σ), we use the 2-

opt∗, cross exchange and Or-opt neighborhoods with slight modifications. For the 2-opt∗

and cross exchange neighborhoods, we propose a neighbor list to prune the neighborhood

search heuristically. A similar technique was successfully applied to the traveling salesman

and vehicle routing problems [88, 122], in which the list is determined only on the basis

of distance; therefore it is not appropriate to apply the existing method directly to the

VRPTW. In Section 5.3.1, we describe the neighbor lists that take into account the time

windows, and in Section 5.3.2, the details of the neighborhoods are described.

5.3.1 Neighbor list

We consider a neighbor list for each customer i, which is a set of customers preferable to

visit immediately after i. Each customer j that can be visited after i (i.e., ei + tij ≤ lj)

is evaluated by max{tij , ej − li}. When a vehicle visits j immediately after i, it takes at

least max{tij , ej− li} time between the start times of i and j. Hence, if this value is small,

it is preferable to visit j immediately after i. The algorithm computes these values once

at the beginning and stores the best Nnlist (a parameter) customers as a neighbor list of

i. We set Nnlist = 20 in the experiments.

5.3.2 Neighborhoods

We use the 2-opt∗, cross exchange and Or-opt neighborhoods with slight modifications,

wherein we restrict the 2-opt∗ and cross exchange neighborhoods by using the neighbor

lists.

A 2-opt∗ operation removes two edges from two different routes (one from each) to

divide each route into two parts and exchanges the second parts of the two routes (See

Section 2.4.2). Our algorithm searches only those solutions obtainable by a 2-opt∗ oper-

ation in which at least one of the newly added edges is in the neighbor list. The size of

this neighborhood is O(Nnlistn).

A cross exchange operation removes two paths from two routes (one from each) of

different vehicles, whose length (i.e., the number of customers in the path) is at most Lcross

(a parameter), and exchanges them (See Section 2.4.4). Our algorithm searches only those

solutions obtainable by a cross exchange operation in which a newly added edge linking

the former part of a route and the path from another route is in the neighbor list. The

size of this neighborhood is O((Lcross)2Nnlistn). We set Lcross = 3 in the experiments.

The cross exchange and 2-opt∗ operations always change the assignment of customers

to vehicles. We also use an intra-route neighborhood to improve individual routes. An
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intra-route operation removes a path of length at most Lintra
path (a parameter) and inserts it

into another position of the same route, where the position is limited within length Lintra
ins

(a parameter) from the original position (See Section 2.4.5). The size of the intra-route

neighborhood is O(Lintra
pathLintra

ins n). We set Lintra
path = 3 and Lintra

ins = 10 in the experiments.

(c) Intra-route(a) 2-opt∗ (b) Cross exchange

Figure 5.1: Neighborhoods in our local search

Figure 5.1 is an illustration of the neighborhoods. In Figure 5.1, squares represent

the depot (which is duplicated at each end) and small circles represent customers in the

routes. A thin line represents a route edge and a thick line represents a path (i.e., more

than two customers may be included). The dotted boxes mean that edges in them are in

the neighbor lists.

Our LS searches the above intra-route, 2-opt∗ and cross exchange neighborhoods, in

this order. Whenever a better solution is found, the LS immediately accepts it (i.e., we

adopt the first admissible move strategy) and resumes the search from the intra-route

neighborhood.

5.4 Evaluation function p(σk)

We first define the function p(·) to evaluate a route σk. For convenience, throughout

this section, we assume that vehicle k visits customers 1, 2, . . . , nk in this order and let

customer nk + 1 represent the arrival at the depot (i.e., snk+1 = sa
k). The function we

adopt is

p(σk) =





d(σk), if σk is feasible

d(σk) + αpc(σk) + βpt(σk) +
∑nk

h=1 γh, otherwise,
(5.4.9)
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where pc(σk) is the amount of capacity excess (i.e., pc(σk) = max {0,
∑nk

i=1 ai − u}) and

pt(σk) is the minimum total amount of traveling times to be shortened to satisfy the

constraints; i.e.,

pt(σk) = min






nk+1∑

h=1

τh

∣∣∣∣
s0 ≥ 0, sh−1 + th−1,h − τh ≤ sh,

τh ≥ 0, eh ≤ sh ≤ lh, h = 1, . . . , nk + 1




 .

In function p, α, β and γi for each i ∈ V are parameters, which are controlled adaptively

(see Section 5.5). In this estimation, each traveling time can be shortened by an arbitrary

amount (i.e., the resulting traveling time th−1,h−τh can be negative) to satisfy time window

constraints while the shortened amount is penalized as pt(σk). This idea of defining pt

was proposed by Nagata [112]. The algorithm computes p(σk) by each term separately.

In the rest of this section, we focus on the computation of pt(σk), since the other terms

can be efficiently computed by using standard data structures (e.g., [74,75,85,86]).

A key observation to the efficient computation is that each route σk of a neighborhood

solution is a recombination of a few paths of the current solution. Hence we consider

a speeding up approach that stores some useful information of paths from the depot to

customers and those from customers to the depot, among those paths of the current routes.

For each customer h in a new route σk, let Fh (resp., Bh) be some data structure that

contains the information of the path (of σk) from the depot to h (resp., from h to the

depot). Note that Fh and Bh signify the information of the paths of the new route σk.

For example, if σk is generated by a 2-opt∗ operation, and the path from the depot to h

and the path from h+ 1 to the depot are from the current solution, then Fh and Bh+1 are

available from the stored information when they are used to compute p(σk). On the other

hand, for the cross exchange and intra-route neighborhoods, Fh and Bh for customers h in

inserted paths need to be computed, because in the new route σk the path from the depot

to such an h and that from h to the depot are different from those in the current route.

What is important in this approach is to execute the followings efficiently for a given σk:

1. construction of Fh+1 from Fh (the forward computation),

2. construction of Bh from Bh+1 (the backward computation), and

3. computation of pt(σk) from Fh and Bh+1.

It is not hard to show that each neighborhood solution can be evaluated in O(T ) time,

if the above operations can be done in O(T ) time for any h (0 ≤ h ≤ nk). However, to

accomplish this, the neighborhood need to be searched in an appropriate search order. The

detailed description of such a search order is explained in Section 2.6. Below we show that

the forward and backward computation can be done in O(1) time and the computation of
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pt(σk) from Fh and Bh+1 can also be done in O(1) time. Hence the algorithm can evaluate

each neighborhood solution in O(1) time.

Let fh be the minimum total amount of traveling times to be shortened to satisfy the

time window constraints for customers 1, 2, . . . , h when vehicle k visits them along the

route. Let sf
h be the start time of service at h that attains fh together with sf

1, . . . , s
f
h−1,

and let Fh = (fh, sf
h). Then the forward computation can be done by:

sf
h+1 = min

{
lh+1,max{sf

h + th,h+1, eh+1}
}

(5.4.10)

fh+1 = fh + max{sf
h + th,h+1, eh+1} − sf

h+1. (5.4.11)

In (5.4.10), if lh+1 < max{sf
h+th,h+1, eh+1} holds, the traveling time is shortened to satisfy

the time window constraint and this amount is added to fh+1 in (5.4.11).

The backward computation can be done similarly. Let bh be the minimum total amount

of traveling times to be shortened to satisfy the time window constraints for customers

h, h+ 1, . . . , nk + 1 when vehicle k starts from h and returns to the depot along the route.

Let sb
h be the start time of service at h that attains bh together with sb

h+1, . . . , s
b
nk+1, and

let Bh = (bh, sb
h). Then the backward computation can be done by:

sb
h = max

{
min{lh, sb

h+1 − th,h+1}, eh

}
(5.4.12)

bh = bh+1 + sb
h −min{lh, sb

h+1 − th,h+1}. (5.4.13)

We can compute pt(σk) from Fh = (fh, sf
h) and Bh+1 = (bh+1, s

b
h+1) by

sf
h+1 = min

{
lh+1,max{sf

h + th,h+1, eh+1}
}

(5.4.14)

pt(σk) = fh + bh+1 + max{0, sf
h+1 − sb

h+1}. (5.4.15)

5.5 Adaptive mechanism to control parameters

In this section, we describe an adaptive mechanism to control the parameters α, β and

γi for each customer i. The algorithm (in which the local search (LS) is executed many

times) updates these parameters whenever the LS outputs a locally optimal solution. We

set their initial values to α = 1000, β = 1000 and γi = 100 in the experiments.

5.5.1 Update of the parameters α and β

Let psum
c (σ) =

∑
k∈M pc(σk) and psum

t (σ) =
∑

k∈M pt(σk), and let pmin
c (resp., pmin

t ) be the

minimum psum
c (σ) (resp., psum

t (σ)) of the solutions in the current reference set R of good

solutions, where rules for maintaining R are described in Section 5.6. Let Pc (resp., Pt) be

the number of moves, during the last call to the LS, to a solution σ whose psum
c (σ) (resp.,
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psum
t (σ)) is less than pmin

c (resp., pmin
t ) or equals to 0. Let Ntotal be the total number of

moves during the last call to LS, and let Nc = Ntotal − Pc and Nt = Ntotal − Pt. We use

parameters δinc, δdec, δcust
inc and δcust

dec , and in the experiments, we set δinc = 0.05, δdec = 0.1,

δcust
inc = 0.1 and δcust

dec = 0.01. If the LS found, during last call, a solution σ that satisfied

psum
c (σ) < pmin

c and psum
t (σ) < pmin

t , the parameters α and β are decreased by

α :=

(
1−

Pc

max{Pc, Pt}
δdec

)
α, β :=

(
1−

Pt

max{Pc, Pt}
δdec

)
β.

Even if the LS did not find such a solution, if Nc = 0 (resp, Nt = 0) holds, α (resp., β) is

decreased by the same equation. Otherwise they are increased by

α :=

(
1 +

Nc

max{Nc, Nt}
δinc

)
α, β :=

(
1 +

Nt

max{Nc, Nt}
δinc

)
β.

5.5.2 Update of the parameters γi for each customer i

In the locally optimal solution, if a route violates the capacity or time window constraint,

γi of each customer i in the route is increased by γi := (1 + δcust
inc )γi. For each customer i

who is in a feasible route, γi is decreased by γi := (1− δcust
dec )γi.

5.6 Path relinking approach

5.6.1 Reference set

Let R be a reference set of solutions. Initially R is prepared by applying the LS to

randomly generated solutions. Then it is updated by reflecting outcome of the LS. During

the search, the algorithm always keeps the size of R to ρ (a parameter). We set ρ = 10 in

the experiments. Good solutions with respect to p are kept in R, excluding at most two

solutions: One which achieves pmin
c and the other which achieves pmin

t . After a feasible

solution is found (i.e., pmin
c = 0 and pmin

t = 0), the best feasible solution is always stored as

a member of R. Other solutions in R are maintained as follows. Whenever the LS stops,

the locally optimal solution σlopt is exchanged with the worst (with respect to p) solution

σworst in R (excluding the above solutions), provided that σlopt is not worse than σworst

and is different from all solution in R.

5.6.2 Path relinking operation

A path relinking operation is applied to two solutions σA (initiating solution) and σB

(guiding solution) randomly chosen from R, where a random perturbation is applied to

σB with probability 1/2 before applying the path relinking (for the purpose of keeping the

diversity of the search), and the resulting solution is redefined to be σB. We use a cyclic
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operation, which exchanges partial paths between different routes cyclically, as a random

perturbation. Note that a cyclic operation with more than two routes is different from

any neighborhood operation we use for the LS, and hence the local search does not get the

solution back by one move. In the path relinking operation, we focus on route edges which

are used in vehicle routes of a solution. Let dist(σ,σ′) be the number of different route

edges between two solutions σ and σ
′. It is not difficult to see that the distance dist(σ,σ′)

between two different solutions σ and σ
′ can be shortened at least one by applying an

appropriate 2-opt∗ operation or intra-route operation to σ. The path relinking operation

generates a sequence of solutions (σA = σ1,σ2, . . . ,σq, . . . ,σB) by repeating the following

procedure starting from q = 1 until σq = σB holds: Let σq+1 be the best solution with

respect to p among those that satisfy dist(σq+1,σB) < dist(σq,σB) and obtainable from

σq by a 2-opt∗ or intra-route operation, and then let q := q + 1.

We call a solution σq locally minimal in the sequence if p(σq) < min{p(σq−1),

p(σq+1)} holds. Let S be the best π (a parameter) solutions among the locally minimal

solutions in the sequence. Every solution in S is used as an initial solution of the LS. We

set π = 20 in the experiments. The next path relinking is initiated whenever all solutions

in S are exhausted as the starting solutions for the local search.

The proposed algorithm is summarized in Algorithm 16. The algorithm stops when

it reaches a given time limit. In Algorithm 16, a call to the local search starting from a

solution σ is denoted by LS(σ), whose output is the obtained locally optimal solution.

5.7 Computational experiments

We conducted computational experiments to evaluate the proposed algorithm. The algo-

rithm was coded in C and run on a PC (Xeon, 2.8 GHz, 1 GB memory).

We used Solomon’s benchmark instances [140] and Gehring and Homberger’s bench-

mark instances [80]. There are 356 instances in total, and all of them have been widely

used in the literature. In Solomon’s instances, the number of customers is 100, and in

Gehring and Homberger’s instances, which are the extended instances from Solomon’s

instances, the number of customers is from 200 to 1000. The customers are distributed in

the plane and the distances between customers are measured by Euclidean distances. For

these instances, the number of vehicles m is also a decision variable, and the objective is

to find a solution with the minimum vehicle number and the total traveling distance in

the lexicographical order (i.e., a solution is better than another (1) if its vehicle number

is smaller or (2) if the vehicle numbers are the same but the distance is smaller).

As our algorithm deals with the problem with a fixed number of vehicles, we first set

the number of vehicles in each instance to the known smallest number to the best of our
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Algorithm 16 Path relinking approach for the vehicle routing problem with time windows

1: Construct the neighbor lists.

2: Let R be ρ randomly generated solutions. For each σ ∈ R, let σlopt := LS(σ) and

then let R := (R \ {σ}) ∪ σlopt.

3: Let S := ∅.

4: while the stopping criterion is not satisfied do

5: while S = ∅ do

6: Randomly choose two solutions σA and σB from R (σA 6= σB).

7: With probability 1/2, apply a cyclic operation to σB.

8: Apply the path relinking operation to σA and σB, and then let S be the set of

best π locally minimal solutions in the generated sequence.

9: end while

10: Randomly choose σ ∈ S, and let S := S \ {σ} and σlopt := LS(σ).

11: Update the penalty weights.

12: Choose the worst σworst ∈ R among those that satisfy (1) σworst is not the unique

feasible solution in R, (2) ∃σc ∈ R \ {σworst}, psum
c (σc) ≤ psum

c (σworst) and (3)

∃σt ∈ R \ {σworst}, psum
t (σt) ≤ psum

t (σworst).

13: if p(σlopt) ≤ p(σworst) and σlopt is different from all solutions in R then

14: R := (R \ {σworst}) ∪ σlopt

15: end if

16: end while

17: Output the incumbent solution and stop.

knowledge, and repeat the followings. If the algorithm found a feasible solution and the

number of vehicles is larger than a lower bound
⌈∑

i∈V ai/u
⌉
, we run the algorithm again

after decrementing the number of vehicles by one. On the other hand, if the algorithm

was not able to find a feasible solution, we run the algorithm again after incrementing

the number of vehicles by one. Among the 356 instances, the algorithm found a feasible

solution in the first run for every instance except for six instances. Among the remaining

six instances, it was able to find feasible solutions with one more vehicle for five instances

and with two more vehicles for the one. The time limit for each run of the algorithm for

100, 200, 400, 600, 800 and 1000-customer instances are 1000, 2000, 4000, 6000, 8000 and

10000 seconds, respectively. This setting of the time limit is the same with [75,86].

Table 5.1 shows the comparison of our results with those obtained by existing methods.

A number in the first row shows the number of customers. Our results are denoted by

“Ours.” For each method, we provide the cumulative number of vehicles (CNV), the

cumulative total distance (CTD), the CPU, and the average computation time in minutes
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Table 5.1: Comparison of our results with the existing methods for benchmark instances

References 100 200 400 600 800 1000

Hashimoto et al. CNV 405 692 1381 2069 2746 3430

(in press) [75] CTD 57,282 171,223 406,646 847,470 1,444,513 2,204,728

P4 2.8GHz 17 33 67 100 133 167

Ibaraki et al. CNV 407 694 1387 2070 2750 3431

(in press) [86] CTD 57,545 170,484 398,938 825,172 1,421,225 2,155,374

P4 2.8GHz 17 33 67 100 133 167

Bräysy et al. CNV – 695 1391 2084 2776 3465

(2004) [25] CTD – 172,406 399,132 820,372 1,384,306 2,133,376

AMD 700MHz – 3×2 3×8 3×16 3×26 3×40

Prescott-Gagnon et al. CNV 405 694 1385 2071 2745 3432

(2007) [127] CTD 57,240 168,556 389,011 800,797 1,391,344 2,096,823

Opt 2.3GHz 5×30 5×53 5×89 5×105 5×129 5×162

Pisinger and Ropke CNV 405 694 1385 2071 2758 3438

(2007) [124] CTD 57,322 169,042 393,210 807,470 1,358,291 2,110,925

P4 3GHz 10×2 10×8 5×16 5×18 5×23 5×27

Mester and Bräysy CNV – 694 1389 2082 2765 3446

(2005) [110] CTD – 168,573 390,386 796,172 1,361,586 2,078,110

P 2GHz – 8 17 40 145 600

Le Bouthillier et al. CNV 405 694 1389 2086 2761 3442

(2005) [103] CTD 57,360 169,959 396,612 809,494 1,443,400 2,133,645

5×P 850MHz 12 10 20 30 40 50

Le Bouthillier and Crainic CNV 407 694 1390 2088 2766 3451

(2005) [102] CTD 57,412 173,061 408,281 836,261 1,475,281 2,225,366

5×P 850MHz 12 10 20 30 40 50

Gehring and Homberger CNV 406 696 1392 2079 2760 3446

(2001) [57] CTD 57,641 179,328 428,489 890,121 1,535,849 2,290,367

4×P 400MHz 5×14 3×2 3×7 3×13 3×23 3×30

Gehring and Homberger CNV 415 694 1390 2082 2770 3461

(1999) [56] CTD 56,946 176,180 412,270 867,010 1,515,120 2,276,390

4×P 200MHz 5 10 20 30 40 50

Homberger and Gehring CNV 408 699 1397 2088 2773 3459

(2005) [80] CTD 57,422 180,602 431,089 890,293 1,516,648 2,288,819

P 400MHz 5×17 3×2 3×5 3×10 3×18 3×31

Ours CNV 405 694 1383 2068 2737 3420

CTD 57,484 169,070 392,507 800,982 1,367,971 2,085,125

Xeon 2.8GHz 17 33 67 100 133 167

for solving an instance. In the notation of the CPU, “P,” “P4,” and “Opt” mean Pentium,

Pentium 4 and Opteron, respectively. Marks “×” in the second column mean the number

of CPUs (e.g., “4×P 200MHz” means four CPUs of Pentium 200MHz), and those in other

columns mean the number of runs (e.g., “5×30” means five runs each with 30 minutes of

computation time). A number in bold in rows CNV indicates that the value is the best

among all the algorithms in the table and there is no tie. When there are ties for the best
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CNV, the corresponding distance value that is the smallest among those ties is indicated

by boldface.

From Table 5.1, the CNV obtained by our algorithm is much smaller than those of the

other methods for large instances with 600 customers or more, and the computation time

spent by our algorithm seems to be reasonable; e.g., for instances with n = 1000, the com-

putation times spent by recent algorithms by Hashimoto, Yagiura and Ibaraki [75], Ibaraki

et al. [86], Prescott-Gagnon, Desaulniers and Rousseau [127], Pisinger and Ropke [124],

and Mester and Bräysy [110] are similar to or sometimes larger than ours even if the

difference of CPUs are taken into consideration. Moreover, our algorithm updated 41

best known solutions among the 356 instances.1 Tables 5.2 and 5.3 show the solution

values obtained by our algorithm for Solomon’s benchmark instances and Gehring and

Homberger’s benchmark instances. A value in boldface is a new best known solution.

This indicates that our algorithm is highly efficient.

5.8 Conclusion

We proposed a path relinking approach for the vehicle routing problem with time windows

with an adaptive mechanism to control parameters. The generated solutions in the path

relinking are improved by a local search. In the local search, each neighborhood solution

is evaluated in O(1) time and the neighborhood search is pruned heuristically by the

neighbor list. During the search, infeasible solutions are allowed to be visited while the

amount of violation is penalized. We also proposed an adaptive mechanism to control

the penalty weights. The computational results on representative benchmark instances

indicate that the proposed algorithm is highly efficient, and furthermore, the algorithm

updated 41 best known solutions among 356 instances.

1We compared our solutions with those reported in the papers [16, 75, 86, 102, 112, 127] and on the

SINTEF website (www.top.sintef.no/vrp/benchmarks.html) [138], as of November 11, 2007. (Note that

the SINTEF website includes the results of [57,110,124].)
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Table 5.2: The detailed results of our algorithm for the 100–400-customer instances

r1/100 r2/100 c1/100 c2/100 rc1/100 rc2/100

01/19/1650.80 01/4/1253.23 01/10/828.94 01/3/591.56 01/14/1696.95 01/4/1413.52

02/17/1486.12 02/3/1191.70 02/10/828.94 02/3/591.56 02/12/1554.75 02/3/1367.00

03/13/1292.68 03/3/949.66 03/10/828.06 03/3/591.17 03/11/1261.67 03/3/1068.60

04/9/1007.31 04/2/844.63 04/10/824.78 04/3/590.60 04/10/1135.48 04/3/816.33

05/14/1377.11 05/3/994.43 05/10/828.94 05/3/588.88 05/13/1629.44 05/4/1297.65

06/12/1252.03 06/3/929.49 06/10/828.94 06/3/588.49 06/11/1424.73 06/3/1207.75

07/10/1109.88 07/2/911.14 07/10/828.94 07/3/588.29 07/11/1230.48 07/3/1094.95

08/9/969.30 08/2/727.69 08/10/828.94 08/3/588.32 08/10/1139.82 08/3/841.18

09/11/1194.73 09/3/913.32 09/10/828.94

10/10/1131.27 10/3/966.90

11/10/1096.73 11/2/891.89

12/9/1032.47

r1/200 r2/200 c1/200 c2/200 rc1/200 rc2/200

01/20/4784.11 01/4/4504.88 01/20/2704.57 01/6/1931.44 01/18/3667.40 01/6/3102.30

02/18/4045.33 02/4/3655.26 02/18/2917.89 02/6/1863.16 02/18/3249.65 02/5/2827.43

03/18/3395.72 03/4/2945.24 03/18/2707.35 03/6/1777.56 03/18/3011.09 03/4/2623.02

04/18/3080.53 04/4/2025.06 04/18/2644.42 04/6/1716.20 04/18/2870.29 04/4/2164.55

05/18/4123.47 05/4/3400.49 05/20/2702.05 05/6/1878.85 05/18/3379.51 05/4/2911.46

06/18/3642.30 06/4/2954.85 06/20/2701.04 06/6/1857.35 06/18/3367.31 06/4/2880.06

07/18/3152.45 07/4/2476.50 07/20/2701.04 07/6/1849.46 07/18/3215.33 07/4/2563.62

08/18/3009.65 08/4/1887.98 08/19/2775.48 08/6/1820.53 08/18/3104.40 08/4/2325.73

09/18/3773.41 09/4/3125.55 09/18/2687.83 09/6/1830.05 09/18/3088.57 09/4/2270.31

10/18/3321.50 10/4/2694.35 10/18/2645.08 10/6/1806.58 10/18/3015.06 10/4/2057.02

r1/400 r2/400 c1/400 c2/400 rc1/400 rc2/400

01/40/10407.99 01/8/9297.61 01/40/7152.06 01/12/4116.14 01/36/8925.01 01/11/6682.37

02/36/9198.06 02/8/7662.52 02/36/7921.43 02/12/3930.05 02/36/8073.32 02/9/6407.92

03/36/7921.12 03/8/6190.56 03/36/7072.47 03/12/3774.30 03/36/7631.08 03/8/5054.14

04/36/7368.95 04/8/4329.59 04/36/6803.26 04/11/3939.40 04/36/7428.82 04/8/3648.30

05/36/9554.74 05/8/7160.08 05/40/7152.06 05/12/3943.03 05/36/8312.17 05/9/6005.94

06/36/8623.44 06/8/6215.73 06/40/7153.45 06/12/3875.94 06/36/8297.14 06/8/6045.96

07/36/7719.15 07/8/5153.95 07/39/7461.24 07/12/3894.16 07/36/8093.52 07/8/5558.01

08/36/7391.15 08/8/4113.46 08/37/7419.34 08/12/3792.76 08/36/7876.78 08/8/4946.25

09/36/8977.98 09/8/6500.77 09/36/7107.59 09/12/3870.80 09/36/7853.69 09/8/4569.14

10/36/8285.40 10/8/5999.98 10/36/6889.23 10/11/3964.56 10/36/7687.41 10/8/4350.64
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Table 5.3: The detailed results of our algorithm for the 600–1000-customer instances

r1/600 r2/600 c1/600 c2/600 rc1/600 rc2/600

01/59/21713.75 01/11/18774.60 01/60/14095.64 01/18/7774.16 01/55/17586.75 01/14/13691.04

02/54/19493.96 02/11/15106.93 02/56/14604.33 02/17/8347.09 02/55/16233.10 02/12/11763.41

03/54/17471.73 03/11/11599.34 03/56/13850.66 03/17/7666.95 03/55/15413.87 03/11/9807.61

04/54/16037.12 04/11/8285.24 04/56/13628.62 04/17/6983.26 04/55/15000.79 04/11/7377.47

05/54/20681.01 05/11/15486.82 05/60/14085.72 05/18/7575.20 05/55/17045.97 05/12/12405.59

06/54/18616.76 06/11/12779.53 06/60/14089.66 06/18/7479.48 06/55/17136.28 06/11/12491.87

07/54/17114.55 07/11/10389.22 07/58/15069.55 07/18/7517.63 07/55/16511.30 07/11/10928.52

08/54/15884.43 08/11/7969.11 08/56/14797.70 08/17/7694.69 08/55/16237.07 08/11/10436.44

09/54/19837.64 09/11/13871.90 09/56/13735.89 09/17/8465.73 09/55/16325.51 09/11/10096.96

10/54/18383.25 10/11/12527.23 10/56/13677.35 10/17/7280.70 10/55/16034.97 10/11/9413.25

r1/800 r2/800 c1/800 c2/800 rc1/800 rc2/800

01/80/37400.64 01/15/28839.78 01/80/25184.38 01/24/11662.08 01/72/34551.38 01/18/21154.34

02/72/33573.64 02/15/23157.11 02/72/27012.87 02/23/12460.76 02/72/31308.67 02/16/18799.25

03/72/30349.76 03/15/18265.81 03/72/24558.69 03/23/11770.80 03/72/29152.99 03/15/14939.88

04/72/28459.74 04/15/13759.46 04/72/23959.50 04/23/11160.68 04/72/27449.31 04/15/11410.24

05/72/34855.19 05/15/24779.24 05/80/25166.28 05/24/11428.66 05/72/34173.25 05/15/19497.33

06/72/31798.47 06/15/20775.72 06/80/25160.85 06/23/12673.80 06/72/32434.12 06/15/18769.39

07/72/29655.26 07/15/17102.33 07/78/26003.16 07/24/11370.84 07/72/32064.83 07/15/17196.55

08/72/28349.07 08/15/13059.96 08/74/25844.26 08/23/11363.96 08/72/31042.27 08/15/16239.34

09/72/33468.43 09/15/23017.30 09/72/24793.22 09/23/11835.04 09/72/30910.06 09/15/15556.86

10/72/31871.25 10/15/21074.60 10/72/24522.58 10/23/11163.36 10/72/30348.47 10/15/14726.07

r1/1000 r2/1000 c1/1000 c2/1000 rc1/1000 rc2/1000

01/100/54955.74 01/19/43054.76 01/100/42478.95 01/30/16879.24 01/90/48248.59 01/20/30912.50

02/91/52208.39 02/19/34293.42 02/90/43355.70 02/29/17452.36 02/90/45344.22 02/19/26597.14

03/91/46574.96 03/19/25934.52 03/90/40548.32 03/28/17519.99 03/90/43261.35 03/18/20698.99

04/91/43696.02 04/19/18629.76 04/90/39908.25 04/28/16783.84 04/90/42625.25 04/18/16402.21

05/91/55002.93 05/19/37357.94 05/100/42469.18 05/30/16563.10 05/90/47247.58 05/18/27715.20

06/91/50124.16 06/19/30879.06 06/100/42471.28 06/29/17491.11 06/90/46651.17 06/18/28256.73

07/91/46193.38 07/19/24075.04 07/97/43867.54 07/29/18727.92 07/90/46061.01 07/18/25763.52

08/91/43264.54 08/19/18229.89 08/93/43120.86 08/28/16839.40 08/90/45524.59 08/18/24454.85

09/91/53848.20 09/19/34224.22 09/90/42731.02 09/29/16680.50 09/90/45508.55 09/18/23802.84

10/91/50639.84 10/19/31390.03 10/90/40624.36 10/28/16584.54 10/90/44918.74 10/18/22365.07



Chapter 6

Conclusion

Throughout this thesis, we have considered local search-based algorithms for vehicle rout-

ing and scheduling problems. The results in this thesis are summarized as follows.

First, in Chapter 1, we described background of vehicle routing and scheduling prob-

lems and their underlying complexities. Vehicle routing and scheduling problems are

difficult to obtain exact optimal solutions, and hence heuristic algorithms are important

in practice. We reviewed recent research results for local search and gave brief descriptions

of some representative metaheuristics.

In Chapter 2, we explained several basic techniques for solving the standard vehicle

routing and scheduling problems. These techniques use the characteristics specific to each

problem and cannot be applied to other problems directly. To deal with wider range of

problems under a unified framework, we proposed a general formulation that includes the

standard vehicle routing and scheduling problems. Under this general model, we proposed

an efficient neighborhood search method for the standard neighborhoods called 2-opt∗,

cross exchange and Or-opt. The neighborhood search method was then incorporated in

the algorithms of the following chapters.

In Chapter 3, we described the generalization of the standard vehicle routing problem

by allowing soft time window and soft traveling time constraints, where both constraints

can be violated and the amounts of violation are penalized by cost functions. In the

algorithm, we used the neighborhood search method which was described in Chapter 2.

In order to apply the method, we need to solve the problem of determining the optimal

start times of services at visited customers after fixing the route of each vehicle. We showed

that this subproblem is NP-hard when cost functions are general, but can be efficiently

solved with dynamic programming when traveling time cost functions are convex even

if time window cost functions are non-convex. The computational results on benchmark

instances confirmed the benefits of the proposed generalization.
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In Chapter 4, we considered another generalization of the standard vehicle routing

problem with time windows by allowing both traveling times and traveling costs to be

time-dependent functions. We showed that the subproblem of asking an optimal time

schedule of a route can be efficiently solved and the algorithm could be applied in the

neighborhood search method. We further proposed a filtering method that restricts the

search in the neighborhoods to a small portion by avoiding solutions having no prospect

of improvement. The computational results of our algorithm compared against existing

methods confirmed the effectiveness of the restriction of the neighborhoods and the benefits

of the proposed generalization.

In Chapter 5, we described a path relinking approach for the vehicle routing problem

with time windows. The path relinking is an evolutionary mechanism that generates new

solutions by combining two or more reference solutions. In our algorithm, those solutions

generated by path relinking operations are improved by a local search. To make the

search more efficient, we proposed a neighbor list that prunes the neighborhood search

heuristically. We proposed an adaptive mechanism for parameters which control the search

direction. In the mechanism, those parameters are updated using information from the last

call to the local search. The computational results on well-studied benchmark instances

with up to 1000 customers revealed that our algorithm is highly efficient especially for

large instances. Moreover, it updated 41 best known solutions among 356 instances.

Vehicle routing and scheduling problems are fundamental issues in human society. As

information tools related to vehicle routing and scheduling (e.g., GIS, demand forecasting)

have recently been enhanced, an efficient algorithm may immediately make an improve-

ment on these issues. The author hopes that the study in this thesis will be helpful for

the developments of such fabulous algorithms.
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[82] H. H. Hoos and T. Stützle. Stochastic local search: foundations and applications.

Morgan Kaufmann, 2005.

[83] T. Ibaraki. Enumerative Approaches to Combinatorial Optimization: part I, vol-

ume 10 of Annals of Operations Research. J.C. Baltzer AG, 1987.



118 Bibliography

[84] T. Ibaraki. Enumerative Approaches to Combinatorial Optimization: part II, vol-

ume 11 of Annals of Operations Research. J.C. Baltzer AG, 1987.

[85] T. Ibaraki, S. Imahori, M. Kubo, T. Masuda, T. Uno, and M. Yagiura. Effective local

search algorithms for routing and scheduling problems with general time-window

constraints. Transportation Science, 39(2):206–232, 2005.

[86] T. Ibaraki, S. Imahori, K. Nonobe, K. Sobue, T. Uno, and M. Yagiura. An iterated

local search algorithm for the vehicle routing problem with convex time penalty

functions. Discrete Applied Mathematics, In press.

[87] S. Ichoua, M. Gendreau, and J.-Y. Potvin. Vehicle dispatching with time-dependent

travel times. European Journal of Operational Research, 144:379–396, 2003.

[88] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study

in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in

Combinatorial Optimization, pages 215–310. John Wiley and Sons, 1997.

[89] D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How easy is local search?

Journal of Computer and System Sciences, 37:79–100, 1988.

[90] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-

natorica, 4(4):373–395, 1984.

[91] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[92] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.

Bell System Technical Journal, 49:291–307, 1970.

[93] S. Khuller, R. Bhatia, and R. Pless. On local search and placement of meters in

networks. SIAM Journal on Computing, 32(2):470–487, 2003.

[94] G. A. P. Kindervater and M. W. P. Savelsbergh. Vehicle routing: handling edge ex-

changes. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial

Optimization, pages 337–360. John Wiley and Sons, 1997.

[95] V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor,

Inequalities III, pages 159–175. Academic Press, 1972.

[96] J. Könemann and R. Ravi. A matter of degree: improved approximation algorithms

for degree-bounded minimum spanning trees. In Proceedings of the Thirty-Second

Annual ACM symposium on Theory of Computing, pages 537–546, New York, NY,

USA, 2000. ACM.



Bibliography 119

[97] Y. A. Koskosidis, W. B. Powell, and M. M. Solomon. An optimization-based heuristic

for vehicle routing and scheduling with soft time window constraints. Transportation

Science, 26(2):69–85, 1992.

[98] M. W. Krentel. Structure in locally optimal solutions. In Proceedings of Thirti-

eth Annual IEEE Symposium on Foundations of Computer Science, pages 216–221,

1989.

[99] M. W. Krentel. On finding and verifying locally optimal solutions. SIAM Journal

on Computing, 19(4):742–749, 1990.

[100] G. Laporte. Vehicle routing. In M. Dell’Amico, F. Maffioli, and S. Martello, editors,

Annotated Bibliographies in Combinatorial Optimization, chapter 14, pages 223–240.

John Wiley and Sons, 1997.

[101] G. Laporte and I. H. Osman. Routing problems: A bibliography. Annals of Opera-

tions Research, 61:227–262, 1995.

[102] A. Le Bouthillier and T. G. Crainic. A cooperative parallel meta-heuristic for the

vehicle routing problem with time windows. Computers and Operations Research,

32:1685–1708, 2005.

[103] A. Le Bouthillier, T. G. Crainic, and P. Kropf. A guided cooperative search for the

vehicle routing problem with time windows. IEEE Intelligent Systems, 20(4):36–42,

2005.

[104] H. Li and A. Lim. Local search with annealing-like restarts to solve the VRPTW.

European Journal of Operational Research, 150:115–127, 2003.

[105] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical

Journal, 44:2245–2269, 1965.

[106] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, 21(2):498–516, 1973.

[107] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In F. Glover and
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