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Abstract Tunnel excavation at Äspö Island, Sweden, has caused severe groundwater 
disturbance, gradually extending deeper into the tunnel as present-day Baltic seawater 
intrudes through fractures connecting to the surface. However, the 
paleo-hydrogeochemical conditions have remained in the deep highly saline waters that 
have avoided mixing. A correlation has been observed between dissolved 4He 
concentration and chloride ion concentration, measured every two years from 1995 to 
2001 at Äspö. Groundwater mixing conditions can be examined by the correlations 
between 1/Cl, 36Cl/Cl, and tritium concentrations. Subsurface production is responsible 
for the majority of the 36Cl and excess dissolved 4He of interstitial groundwater in 
fractures. The secular equilibrium ratio of 36Cl/Cl in rock was theoretically estimated to 
be (5.05 ± 0.82) × 10–14 based on the neutron flux intensity, a value comparable to the 
measured 36Cl/Cl ratio in rock and groundwater. The degassing crustal 4He flux was 
estimated to be 2.9 × 10-8 ~ 1.3 ×10-6 (ccSTP/cm2y) using the HTO diffusion coefficient 
for the Äspö diorite. The 4He accumulation rate ranges from 6.8×10-10 (for the in situ 
accumulation rate) to 7.0 × 10-9 (ccSTP/(gwater·y) considering both 4He in situ production 
and the degassing flux, assuming 4He is accumulated constantly in groundwater. By 
comparing the subsurface 36Cl increase with 4He concentrations in groundwater, the 4He 
accumulation rate was determined from data for groundwater arriving at the secular 
equilibrium of 36Cl/Cl. The 4He accumulation rate was found to be (1.83 ± 0.72) × 10–8 
ccSTP/(gwater·y) without determining the magnitude of degassing 4He flux. 
 
Keywords: Groundwater mixing, excavation, 36Cl/Cl ratio, subsurface production, 
secular equilibrium, excess 4He, crustal 4He flux  
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1. INTRODUCTION 

Dissolved 4He can be used to estimate groundwater residence time if the 4He 

accumulation rate can be determined and is constant (Lehmann et al., 1993). In a 

pioneering study, Marine (1979) predicted groundwater flow velocity and residence time 

using only the in situ 4He production rate. The results overestimated the residence time 

because the addition of 4He from external sources was neglected. The mechanism of 4He 

accumulation in groundwater is complex, and it has been variously discussed in terms of 

sources and accumulation processes. Some researchers have considered the crustal 4He 

flux to be an external source for 4He in flowing groundwater (Heaton, 1981; O’Nions and 

Oxburgh, 1983; Torgersen and Clarke, 1985; Martel  et al., 1989; Stute et al., 1992; Marty 

et al., 1993; Ballentine et al., 2002), while others have argued that a sufficient 

concentration can be supplied from accumulated and produced 4He in aquifer minerals 

(Tolstikhin et al., 1996; Solomon et al., 1996). 

Ballentine et al. (2002) stated that a very long groundwater residence time cannot be 

determined from the 4He flux from the crust into aquifers because regional 4He 

accumulation rates vary greatly. Furthermore, the magnitude of the 4He crustal flux has 

not been directly measured, but has only been indirectly estimated from the vertical 4He 

profile using the 4He diffusion coefficient in water and a suitable tortuosity parameter for 

rock (Osenbrück et al., 1998; Ballentine et al., 2002; Mahara and Igarashi, 2003). On the 

other hand, Andrews and Lee (1979) estimated a groundwater residence time of up to 

30,000 years for the Bunter Sandstone in England using excess 4He concentrations 

calibrated by 14C ages. Lehmann et al. (2003) estimated the 4He accumulation rate using 

only four groundwater samples, collected in the Great Artesian Basin of Australia, which 

were dated to more than 500 ka and calibrated using 81Kr ages. However, these latter 
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authors calibrated the 4He accumulation rate using cosmogenic radionuclides only, 

assuming constant 4He accumulation.  

Lippmann et al. (2003) also estimated the residence time of very old (1~168 Ma) 

groundwater in several deep gold mines in South Africa using 4He, 40Ar, 134Xe and 136Xe 

accumulation models, which consisted of in situ production and in situ production plus 

crustal flux. It was concluded that the in situ production model produced better 

estimations for the study basin than did the in situ production plus crustal flux model. 

In this study, we discuss the correlation among dissolved 4He concentration, 

chloride ion concentration and 36Cl/Cl ratio under dramatic disturbances in groundwater 

caused by tunnel excavation. We try to reconstruct the correlation between dissolved 

4He concentration and the secular 36Cl/Cl ratio using groundwater data that avoided 

severe mixing for the estimation of 4He accumulation rate. 

 

2. STUDY AREA AND GEOHYDROLOGICAL SETTING 

The study area was the spiral tunnel of the Äspö Hard Rock Laboratory (HRL) 

constructed beneath Äspö Island, which is located about 400 km south of Stockholm on 

the eastern (Baltic Sea-facing) side of Sweden (Fig. 1). The tunnel was constructed 

between 1991 and 1995. Its total length is 3600 m, and its maximum depth is 460 m 

below sea level. Äspö Island itself is composed of Precambrian basement rock dated 

between 1.76 and 1.84 billion years by the U–Pb method (Stanfors et al., 1999). Major 

outcropping rocks are Småland granite and Äspö diorite, which are highly fractured and 

saturated. The Äspö site is characterized by swarms of fractures forming major fracture 

zones (Stanfors et al., 1999) which control the groundwater flow through the site.  

Determination of the origin of groundwater is important for estimating residence 
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time and mixing among various end members. Although Laaksoharju et al. (1999) 

described the effects of prolonged water–rock interaction at Äspö, Louvat et al. (1999) 

estimated the addition of chlorine from rock to groundwater to be small. By comparing 

the changes in the Cl-/Br- ratios (e.g. the evolution indicator log(Cl-/Br-): 2.24 for 

KA2862A, 2.08 ~ 2.16 for KAS03, 2.08 ~ 2.17 for Lax-02, 2.59 for present-day Baltic 

seawater, and 2.46 for ocean water) in the evolution process of sea water and quoting 

Savoye’s (1998) chlorine mass balance between dissolution from granite and salinity of 

deep groundwater, it was concluded that the origin of chlorine in these highly saline water 

was marine. Consequently, Louvant et al. predicted that the chlorine in the Äspö 

groundwater was supplied from marine derived water intruded into the Baltic shield at a 

time too ancient to estimate by the 36Cl secular equilibrium method. 

Quoting from Laaksoharju et al. (1999), present-day groundwater on the island is the 

result of mixing of five different end members: glacial meltwater, meteoric water, Baltic 

seawater, altered marine Baltic seawater, and brine. “Brine”, with a very high chloride 

concentration (47000 mg/L) and thought to be extremely old, is found at the deepest 

location of a borehole at Laxemar (Lax-02, Fig. 1), located on the opposite shore of Äspö 

Island from the HRL tunnel. “Glacial meltwater” is cold-climate recharge, based on 

stable isotope values, and is 31,365 years old as determined by 14C dating ([Cl–], 0.5 

mg/L). “Baltic seawater” refers to the modern Baltic seawater ([Cl–], 3760 mg/L and 42 

TU measured in 1992), while “altered marine Baltic seawater” ([Cl–], 4490 mg/L) is 

Baltic seawater affected by bacterial sulfate reduction, and is found within marine 

sediments. “Meteoric water” is non-saline water (chloride concentration, 5 mg/L), the 

tritium concentration in which was 59 TU measured in 1991. 

Cyclic glacial activity in the study area has influenced long-term chemical 
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conditions for more than 1 million years. Although a dramatic local drawdown of the 

groundwater table (of approximately 80 m) has occurred in the past 15 years, due to the 

tunnel excavation as opposed to long-term natural events such as cyclic glaciation, 

hydrogeochemical changes in groundwater have been greater than could be caused by 

water–rock interactions. Therefore, mixing is an important factor for evaluating the 

chemical composition of groundwater under conditions of dramatic, local turbulent flow 

in an area where there has been significant regional and local fracturing. 

Fractures and fracture zones are also critical because these control groundwater 

flow through Äspö Island (Laaksoharju et al., 1999). Based on detailed hydrogeological 

investigations (Stanfors et al., 1999), the water-bearing fracture zones are characterized 

by high hydraulic conductivity (in excess of 1 × 10–3 m/s). And, according to Mahara et al. 

(2001), the 17 major fracture zones probably control the dynamic flow via which 

present-day Baltic seawater and meteoric water intrude or mix with groundwater of 

different origins. Significant change in dissolved substance concentration in the short 

term is mainly controlled by dramatic changes in a geo-hydraulic condition. Stability of 

the groundwater chemistry depends on the extent of connectivity in the fracture network 

and the magnitude of the groundwater gradient, although some local dramatic changes in 

the groundwater environment have occurred through major fracture zones.  

 

3. GROUNDWATER AND ROCK SAMPLING 

At the Äspö site, major boreholes (HA and KA series) drilled in the tunnel were 

packed off at each fractured section. In order to monitor the effect of excavation on 

groundwater flow, groundwater hydraulic pressure has been continuously and 

automatically measured at each packed-off section since tunnel construction began. The 
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hydraulic pressure decreased by approximately 0.3 MPa between 1995 and 2001. The 

average difference from static hydraulic pressure since tunnel construction began in 1991 

was approximately 0.6 MPa. The rate of decrease depends on the depths and locations of 

the boreholes. In general, the decrease in hydraulic pressure in shallow boreholes (e.g., 

HA1327B, KA2162B) has been greater than that in deep boreholes (e.g., KA2858A, 

KA3510A).  

Groundwater samples were collected from the packed-off sections of the 13 boreholes 

in the tunnel every second year from 1995 to 2001 (Fig. 2) and, where possible, from 

other boreholes for reference. The groundwater samples were carefully collected to 

prevent degassing due to a reduction in water pressure and contamination by atmospheric 

air. A sampling head arrangement with control valves was used to maintain a hydraulic 

pressure of up to 25 MPa. The water pressure in the section was first gauged, and then an 

annealed copper tube, which had the sampling head arrangement opposite the opening, 

was connected to Teflon tubing coming out of the borehole. The copper tube was used to 

maintain the same pressure as that inside the packed-off borehole section while 

groundwater was drained directly from the isolated borehole section. Monitoring of the 

pressure gauge of the sampling head arrangement during sampling was conducted to 

ensure that the hydraulic pressure of the packed-off sections of the boreholes had been 

maintained throughout. After the pressure valve was opened, the borehole was purged of 

approximately three times the volume of groundwater in the isolated section while field 

parameters (electrical conductivity, pH, redox potential, dissolved oxygen content, and 

water temperature) were measured. Once there had been sufficient flushing to eliminate 

air bubbles from the inside wall of the copper tube, as visually confirmed by viewing the 

wall through the sampling head arrangement’s observation window, approximately 15 ml 
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of groundwater was pinched off in the annealed copper tube. This would be used for the 

analysis of dissolved noble gases. 

One liter of groundwater was used for the analyses of the 36Cl/Cl ratio and tritium, 

stable isotope and dissolved anion and cation concentrations. An attempt was also made 

to measure the 14C concentration of high-salinity water samples (from boreholes 

SA2718A, KA2858A, KA2862A, and KA3010A) without detecting tritium. However, 

insufficient usable precipitation was collected from a 5-L groundwater sample; SrCO3 

was not visibly precipitated due to very low concentrations of bicarbonate ions (HCO3
-) 

and pH values of 6.33 to 8.2 during the sampling time. 

Six rock samples, approximately 15 to 20 cm long, were cut from the stored drill 

cores collected at KA2862A, KA3010A, KA3067A, KA3105A, KA3385A, and 

KA3510A. These included the section from which the groundwater samples were 

collected. These rock samples were used to estimate the intensity of the in situ neutron 

flux and subsurface 36Cl production rate. Each rock sample was pulverized using an iron 

ball mill, and only rock powder that would pass through a 100-mesh sieve was retained. 

The powder was then repeatedly washed using super-pure distilled water, taking care to 

avoid AgCl precipitation originating from the residual saline water in rock mass 

micro-fractures. The powder was dried at room temperature in a clean room. 

The analytical methods employed for determining the dissolved 4He and tritium 

concentration and 36Cl/Cl ratios in groundwater, and U and Th content in rock, are 

described in the Appendix.  

 

4. RESULTS AND DISCUSSION 

Noble gas, chloride, 36Cl, and tritium concentrations for the collected groundwater 
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samples are presented in Table 1. Some groundwater samples had high excess Ne values; 

whether the mechanisms of partitioning were artificial or natural is not clear. The original, 

non-corrected data are used in the following discussion, since the concentrations of the 

heavier noble gases (i.e., Ar, Kr and Xe) could not be determined because of missing 

preparation. The 40Ar/36Ar ratio was measured, however, to confirm its increase in older 

groundwater (Davis and Bentley,1982; Rauber et al., 1991). 

 

4.1 Correlation between dissolved 4He concentration and chloride concentration 

The dissolved 4He concentration increases as the groundwater sampling depth 

increases at the Äspö site (Fig. 3), although the rate of increase is not linear. In particular, 

the dissolved 4He concentration varied greatly at –350 to –425 m depth, the result of 

intrusion directly into this deep location through fractures connecting to the surface zone 

by either shallow groundwater and/or modern Baltic seawater with low 4He 

concentrations (Mahara et al., 2001). The 4He concentration gradually decreased with an 

increase in time elapsed since the tunnel excavation, except in certain deep wells. The 

change in dissolved 4He concentration from 1995 to 2001 can be attributed to the mixing 

of intruded modern Baltic seawater with the groundwater or of deep glacial brine that rose 

as a result of the deep turbulence caused by tunnel excavation. 

Excavation in the deepest area of the site had just been completed in 1995, so the 

distribution of the 4He concentrations observed in 1995 might closely reflect the virgin 

distribution before tunnel excavation. The correlation between the 4He concentration 

(cm3STP/m3) in 1995 and sampling depth is expressed by the following exponential 

function: 

4 5 24.26 10 exp( 0.016 ) ( 0.92) (1)He z r−= × ⋅ − × =  
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where z is the depth (m) from the ground surface to the sampling depth in the sampling 

well and has a negative value.  

The dissolved 4He concentration, which we can consider as a proxy for the sampling 

depth of groundwater, does not constantly increase with the chloride ion concentration; 

instead the relationship is a sigmoidal curve (Fig. 4). These disturbances in the 4He 

concentration appear to be caused by the rise of deep saline groundwater, considered to be 

glacial brine (Laaksoharju et al., 1999), as a consequence of the complex water 

circulation that occurred during the tunnel excavation process. The relationship between 

the dissolved 4He concentration and chloride ion concentration observed in 1995 

probably reflects the original distribution, before tunnel excavation, in consideration of 

the low level of disturbance in the 4He concentration in the high salinity zone (Fig. 4).  

 

4.2 Origin of 36Cl and estimation of the equilibrium ratio of 36Cl/Cl in groundwater 

and the Äspö granite 

At the Äspö site, the increase in 36Cl/Cl ratio in the groundwater showed a strong 

positive correlation with the increase in the chloride concentration (Fig. 5). Figure 5 also 

shows the relationships between the 36Cl/Cl ratio and chloride concentrations of Japanese 

and European commercial mineral waters, which mainly contain cosmogenic and/or 

bomb pulse 36Cl, from around the world, and of ocean water collected from the Japan Sea 

(Mahara et al., 2004).  

Consider two cases of simple mixing: commercial mineral water (Cl–, 10 mg/L; 

36Cl/Cl, 1 × 10–13) with Japan Sea ocean water (Cl–, 18000 mg/L; 36Cl/Cl, 3 × 10–16) and 

with present-day Baltic seawater (Cl–, 3760 mg/L; 36Cl/Cl, 1.8 × 10–15), respectively. If all 

36Cl atoms in the water are cosmogenic, then the mixing lines showing the relationship 
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between the 36Cl/Cl ratio and chloride concentration in the water are described by the 

formula 36Cl/Cl = 1 × 10–12/Cl- + 2.4 × 10–16 for the ocean water and 36Cl/Cl = 9.85 × 

10–13/Cl- + 1.53 × 10–15 for present-day Baltic seawater (Fig. 5). However, the Äspö 

groundwater samples do not lie on either mixing line, indicating that the 36Cl contained in 

groundwater at the Äspö site has a different origin from that of present-day Baltic 

seawater, ocean water, and commercial mineral waters.  

According to Andrews et al. (1986), the maximum amount of excess 36Cl atoms 

available via fallout from the bomb pulse is 1.4 × 109 n/L. If this was input into modern 

Baltic seawater, the apparent 36Cl/Cl ratio would reach 2.19 × 10-14. However, the 

observed 36Cl/Cl ratio was only (1.8 ± 1.8) × 10-15. Furthermore, if 1.4 × 109 n/L of excess 

36Cl atoms from the bomb pulse was added to shallow groundwater with the lowest 

chloride ion concentration of 4.51–42.02 meq/L at well KR0013B, the apparent 36Cl/Cl 

ratio would range from 5.53 × 10-14 to 5.16 × 10-13. In fact, however, the ratio changed 

only from a minimum of (4.7 ± 1.2) × 10-15 in 1995 to a maximum of (2.40 ± 0.4) × 10-14 

in 1997. In other words, the contribution of airborne 36Cl atoms from the bomb pulse or 

cosmic ray irradiation can be ignored in both shallow and deep groundwater. 

In water samples with chloride concentrations of 5000 to 8000 mg/L, the 36Cl/Cl 

ratio increased linearly from 1.8 × 10-15 to 4.0 × 10-14 as the number of 36Cl atoms per liter 

of groundwater increased (Fig. 6). In samples with chloride concentrations above 10000 

mg/L (Field “A” in Fig.6), the ratios were randomly distributed from 4.0 × 10-14 to 5.7 × 

10-14 and were no longer linearly correlated with the number of 36Cl atoms; instead, the 

ratios were closer to those of the brine samples from the Lax-02 borehole. This finding 

also indicates that 36Cl was produced in situ in the subsurface and that the ratio had 

already reached secular equilibrium in groundwater with chloride concentrations greater 
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than 10000 mg/L, provided that most of chlorine originated in the intrusion of ancient 

seawater into the Baltic Shield as suggested by Louvant et al. (1999) and Savoye (1998). 

To confirm the equilibrium ratio of 36Cl/Cl in granite, we measured the 36Cl/Cl 

ratios of six rock-matrix samples collected at KA2862A, KA3010A, KA3067A, 

KA3105A, KA3385A, and KA3510A. Since the Äspö granite is very old, if 36Cl is 

generated in the rock then the 36Cl/Cl ratios in its matrix should have reached secular 

equilibrium. The 36Cl/Cl ratios measured in the rock matrix samples were (5.10 ± 0.60) × 

10–14 at KA2862A; (8.60 ± 0.60) × 10–14 at KA3010A; (9.70 ± 0.80) × 10–14 at KA3067A; 

(1.52 ± 0.54) × 10–14 at KA3105A; (1.27 ± 0.42) × 10–14 at KA3385A; and (2.06 ± 0.22) × 

10–14 at KA3510A. The measured ratios varied greatly among the six rock samples, 

perhaps because of the different rock types and the heterogeneous distribution of U and 

Th in the very small rock pieces sampled. The 36Cl/Cl ratio in rock depends on the 

distribution and density of fissures and microfractures, where these neutron sources are 

concentrated (Moran et al., 1995). Trace elements, which absorb neutrons, also have a 

heterogeneous distribution in small rock pieces.  

The secular equilibrium ratio can be theoretically calculated from the intensity of 

the estimated neutron flux in a rock matrix (Feige et al., 1968; Andrews et al., 1986) as 

follows: 
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where σ is the cross section for the neutron capture of 35Cl (44 barns); Φ is the neutron 

flux produced by spontaneous fission and the (α,n) reaction induced by α particles 
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emitted from U and Th in the rock; Cl and 35Cl are the total numbers of target nuclide 

atoms of 35+37Cl and 35Cl in the rock, respectively, calculated from the chloride 

concentration ([Cl], ppm per 1 g of rock), a relative 35Cl abundance of 0.758, and rock 

density ρrock; λ36 is the decay constant of 36Cl (7.30 × 10–14 s). Using the measured 

concentrations of U, Th, and light and trace elements in Äspö granite, the neutron flux 

intensity was estimated to be (1.11 ± 0.18) × 10–4 n cm–2s–1. 

The average 36Cl/Cl secular equilibrium ratio was subsequently calculated to be 

(5.05 ± 0.82) × 10–14, whereas the average measured ratio in the six rock samples 

examined was (4.71 ± 3.72) × 10–14. Furthermore, the measured 36Cl/Cl ratios of seven 

groundwater samples that had high chloride concentrations (more than 10000 mg/L) 

averaged (4.94 ± 0.19) × 10–14. These three secular equilibrium ratios, which were 

obtained by different methods, are consistent within approximately 10%. Consequently, 

we can accept (5.05 ± 0.82) × 10–14 as the 36Cl/Cl secular equilibrium ratio for the Äspö 

granite.  

 

4.3 Groundwater mixing caused by intrusion of present-day Baltic seawater 

According to Banwart et al. (1994), Laaksoharju et al. (1999), and Mahara et al. 

(2001), tunnel excavation caused large-scale intrusion of modern Baltic seawater, which 

penetrated deeply via fractures into the bedrock. To characterize the effect this intrusion 

would have on Äspö groundwater, mixing between modern Baltic seawater (Cl-, 3760 

mg/L; 36Cl/Cl, 1 × 10-15) and waters with different salinities and different 36Cl/Cl ratios 

was examined. For the latter, waters with a Cl- concentration of 47000 mg/L and a 36Cl/Cl 

ratio of 5.05 × 10-14 were considered to be brine; those with respective values of 16000 
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mg/L and 5.05 × 10-14 to be high-salinity water, found in the deepest part of the Äspö site; 

those with values of 10000 mg/L and 5.05 × 10-14 to be high-salinity glacial brine; those 

with values of 5000 mg/L and 5.05 × 10-14 to be low-salinity glacial brine; those with 

values of 1000 mg/L and 5.05 × 10-14 to be relatively high salinity, shallow groundwater; 

those with values of 100 mg/L and 1 × 10-13 to be relatively low salinity, shallow 

groundwater; and those with values of 10 mg/L and 1 × 10-13 to be meteoric water. Figure 

7 shows the relationships between 1/Cl and 36Cl/Cl ratios that would result from the 

mixing of present-day Baltic seawater with such waters.  

Most groundwater samples with 36Cl/Cl ratios greater than 2.5 × 10-14 are distributed in 

the mixing zone between present-day Baltic seawater and water with chloride 

concentrations higher than 10000 mg/L; tritium is not detectable in these waters. On the 

other hand, water with relatively low 36Cl/Cl ratios, in which tritium is detectable, is 

distributed in the mixing zone between modern Baltic seawater and low-salinity water, 

with chloride concentrations of less than 5000 mg/L. When groundwater was mixed with 

present-day Baltic seawater (Fig. 7), the mixing indicator employed was the detection 

limit of tritium (0.3 TU, see Appendix).  Tritium concentrations in seawater and in the 

shallow groundwater surrounding the Äspö site have remained relatively high. The origin 

of the tritium is global fallout from nuclear weapons testing before the early 1960s and 

other artificial sources such as release from nuclear facilities. Although it is not clear 

whether artificial contributions have maintained tritium at a relatively high level in 

present-day Baltic seawater, there are nuclear power plants and spent-fuel storage 

facilities near the Äspö site. 

Since Baltic seawater in 1992 and shallow groundwater in 1991 had tritium 

concentrations of 42 TU and 60 TU, respectively (Banwart et al., 1994), in 2001 the 
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tritium detection limit in a mixture was equivalent to the inclusion of approximately 

1.14% of present-day Baltic seawater. Therefore, if the groundwater has mixed 

homologously with modern Baltic seawater, it should be possible to detect tritium in all of 

the samples. However, in several water samples, tritium was not detected (Fig. 7, solid 

squares). Most groundwaters lacking tritium are aligned with mixing lines between 

present-day Baltic seawater and brine or high-salinity water with more than 10000 mg/L 

of chloride. Although these waters, based on their location on the plot, contain at least 

50% modern Baltic seawater, tritium was not detected in them. This finding is 

inconsistent with the relationship between the tritium detection limit and the mixing rate 

with modern Baltic seawater. This contradiction led us to infer that these waters at the 

time of sampling had not yet become mixed with modern Baltic seawater as a result of 

tunnel excavation.  

Alternatively, mixing between ancient Baltic seawater (with maximum chloride 

concentrations of 8300 mg/L and a 36Cl/Cl ratio of 1 × 10-15) and water with various 

salinities and 36Cl/Cl ratios was investigated (Fig. 8). Ancient Baltic seawater has a 

maximum salinity of about twice that of modern Baltic seawater (Ekman, 1953). The 

salinity (S) of ancient Baltic seawater, estimated as 10–15‰, was approximately 

converted to 5500–8300 mg/L of chloride ions using the equation S = 1.80655 × Cl (g/L) 

(Clesceri et al., 1989). Most of the samples from areas in which tritium was undetectable 

and with a salinity of more than 10000 mg/L were aligned with one of these mixing lines. 

Thus, the high-salinity groundwater samples that strayed greatly away from the mixing 

lines between present-day Baltic seawater (Fig. 7) possibly preserve ancient 

hydrogeochemical conditions produced by subsurface paleo-mixing at the Äspö site. 

It can therefore be concluded that great changes in hydrogeochemical conditions were 
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caused by the dramatic drawdown of the water table resulting from tunnel excavation, but 

that at the time of sample collection several waters had not yet been affected by mixing 

with modern Baltic seawater. Moreover, we cannot exclude the possibility that some 

waters have preserved their ancient hydrogeochemical characteristics.  

 

4.4 Estimated magnitude of the crustal degassing flux of 4He and the 4He 

accumulation rate in groundwater 

The magnitude of the crustal degassing flux of 4He was estimated using the 

following equation (Andrews, 1985):  

2 (He
He

D TJ G
π

= 5)  

where G is the production rate of He in rock (3.4 × 10-12 ccSTP/(cm3.y)rock), T is the age of 

the rock formation (1.8 × 109 years), and DHe is the 4He diffusion coefficient in the granite 

matrix, where fractures and microfractures are assumed to be the main routes of 4He 

transport.  

Although a typical diffusion coefficient of dissolved 4He has not yet been 

determined for Äspö granite, Holgersson et al. (1998) reported (6.5–25) × 10-14 m2/s to be 

the diffusion coefficient of HTO (titrated water) in Äspö diorite, which is one of the 

typical granites at the Äspö site. However, 4He transport in the crust might best be 

explained by using one 4He diffusion coefficient for the matrix and another for the 

water-filled micropores, as in the wet-sponge model described by Andrews et al. (1989b). 

In the present case, a larger value for the diffusion coefficient for dissolved 4He was used 

than found for HTO, because the diffusion of dissolved 4He is greater than HTO. When 

the crustal 4He flux was estimated using 4He diffusion coefficients of 1 × 10-13 and 1 × 
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10-12 m2/s, the 4He flux ranged from 2.9 × 10-8 to 9.1 × 10-8 cm3(STP) cm-2 y-1 at the Äspö 

site.  

The magnitude of the 4He degassing flux (JHe) was also estimated, using the 4He 

profile (Eq. 1 and Fig. 3), the 4He diffusion coefficient values reported for the Äspö 

diorite, and Fick’s analogous equation: 

               (6)He He
dHeJ D
dZ

= − ⋅   

The gradient of the 4He concentration (m3STP·m-3
water·m-1) was calculated using Eqs. (1) 

and (6) as 76.8 10 exp( 0.016 )dHe Z
dZ

−= − × ⋅ − ⋅ . The magnitude of the 4He degassing flux 

at a depth of Z = –400 m was predicted to be between 1.3 × 10-7 and 1.3 × 10-6 

(ccSTP/(cm2 y)), using the two 4He diffusion coefficients 1 × 10-13 and 1 × 10-12 m2·s–1, 

respectively.   

The crustal 4He fluxes estimated in these two different ways range from 2.9 × 10-8 to 

1.3 × 10-6 (ccSTP/cm2 y). These are smaller (up to two orders of magnitude less) than the 

values of 3.3 × 10-6 cm3(STP) cm-2y-1, reported by O’Nions and Oxburgh (1983) and used 

to explain the global atmospheric He budget (Torgersen, 1989), and the value of 3.6 × 10-6 

cm3(STP) cm-2y-1 for the Great Artesian Basin (GAB), estimated by Torgersen and Clarke 

(1985). However, these estimated 4He flux results are comparable to other estimated 

degassing 4He flux magnitudes from around the world: for example [ccSTP/(cm2 y) in 

each case], 4.4 × 10-7 for the Paris Basin (Marty et al., 1993); 2.9 × 10-6 (Martel et al., 

1989) and (0.8–5.2) × 10-7 (Stute et al., 1992) for the Great Hungarian Plain; (2.3–3.0) × 

10-7 for the Molasse Basin in Austria (Andrews et al., 1985); 2.0 × 10-7 for the Morsieben 

Basin in Germany (Osenbrück et al., 1998); (2.2–2.9) × 10-6 for the Auob Sandstone 

Aquifer in Namibia (Heaton, 1984); (2.8–3.1) × 10-6 for northern Taiwan (Sano et al., 
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1986); and 4.9 × 10-7 for the Rokkasho Basin in Japan (Mahara and Igarashi, 2003).  

Groundwater residence times (T) can be calculated using the estimated 4He degassing 

flux and Eq. (7), as per studies conducted by Torgersen and Clarke (1985), Stute et al. 

(1992), Osenbrück et al. (1998), and Lippmann et al. (2003):  

(7)excess

He

water

HeT J A
Zρ φ

=
+

⋅ ⋅

  

where Heexcess is the excess 4He concentration in groundwater (ccSTP/gwater), ρwater is the 

density of the water (1.0 ~ 1.188 g/cm3), φ is the porosity of the rock (0.005), Z is the 

sampling depth of the groundwater (400 m), and A is the in situ accumulation rate in pore 

water. Employing the density of brine water cited in Frape et al.  (1984), which has a 

maximum chloride ion concentration of 168,000 mg/L in the Canadian Shield, it was 

estimated that the oldest groundwater residence time was approximately 4.3–25 million 

years at KA2862A in 1995. 

Conversely, the 4He accumulation rate can be calculated from the oldest residence 

time. The approximate accumulation rates were subsequently found to range from 1.2 × 

10-9 to 7 × 10-9 (ccSTP/(gwater y)). These values are several times the average in situ 4He 

accumulation rate of 6.76 × 10-10 (ccSTP/(gwater y)) in the Äspö granite and, furthermore, 

are significantly greater than the 4He accumulation rate of 2.91 × 10-10 (ccSTP/(gwater y)) 

estimated for the GAB (Torgersen and Clarke, 1985). Nevertheless, the estimated crustal 

4He flux was small at the Äspö site, because the porosity of the local rock (0.5%) is very 

small compared with that (20–30%) in the aquifer of the GAB.  

 

4.5 Reconstruction of the relationship between the dissolved 4He concentration and 
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the 36Cl/Cl ratio  

Groundwater flows through fractures or fissures in the granite at the Äspö site. Most 

36Cl atoms in groundwater in granite fractures are produced in situ through neutron 

capture. Since thermal neutrons are absorbed in rock over a mean free path of 

approximately 50 cm, the stable chlorine atom 35Cl is equally likely to be activated in 

interstitial water in fractures as in rock (Lehmann et al., 1997). 

The 36Cl/Cl ratio gradually reaches a constant level in relation to the increasing 

dissolved 4He concentration in old groundwater, because the production of 36Cl by 

neutron capture and its subsequent decay reach radioactive equilibrium, and the 36Cl/Cl 

ratio approaches secular equilibrium. The 36Cl/Cl ratio changes exponentially (1 – 

exp(–λt)), where λ is the decay constant and t is elapsed time. If we express elapsed time 

as the dissolved excess 4He concentration, a strong correlation is observed between the 

increasing 36Cl/Cl ratio and the 4He concentration (Fig. 9).  

The 36Cl/Cl ratio increases dramatically as the dissolved 4He concentration 

increases up to 0.01 ccSTP/g, but then it tends to level off when the 4He concentration 

reaches 0.02 ccSTP/g as secular equilibrium conditions are attained(Fig. 9). If 

confirmation of both the edge point as the lower limit of the 36Cl/Cl ratio at secular 

equilibrium and the starting point is possible, a theoretical growth curve of 36Cl in relation 

to the dissolved 4He concentration can be fitted. The starting point of this theoretical 

curve for the Äspö groundwater system can easily be set; surface seawater has a low ratio 

of 36Cl/Cl (approximately 0) owing to great dilution by stable chlorine and low dissolved 

4He concentrations that are close to equilibrium with atmospheric 4He in shallow 

seawater. However, if the linear correlation between radioactive decay and 4He 

concentration has been kept after mixing, then the theoretical neutron activation curve 
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can be fitted. 

Mixing is important for a dramatic change in 36Cl and 4He concentration in the very 

short term like a tunnel excavation. We examined the effect of simply mixing 

groundwater with tracers of different concentrations. When groundwater A (36Cl/Cl ratio, 

RA; chloride concentration, ClA; 4He content, HeA) mixes with groundwater B (36Cl/Cl 

ratio, RB; chloride concentration, ClB; 4He content, HeB), the 4He concentration in the 

mixture maintains linearity to the elapsed time because 4He is a stable element and its 

concentration is linearly related with time if 4He accumulates at a constant rate. On the 

other hand, the 36Cl/Cl ratio usually deviates from the exponential curve that is controlled 

by radioactive decay, as discussed by Park et al.  (2002). However, if both groundwaters 

A and B have already reached secular equilibrium (i.e., RA = RB = constant secular 

equilibrium ratio), the 36Cl/Cl ratio in the resulting mixture does not change: that is, 

( ) ( ) , 1, 0A A B B

A B

m R Cl n R ClR m n m and n
m Cl n Cl

⋅ ⋅ + ⋅ ⋅
= + =

⋅ + ⋅
0≥ ≥ . If RA and RB are the 

same secular equilibrium ratio, then R is equivalent to RA=RB. Thus, if two groundwaters 

in secular equilibrium with respect to the 36Cl/Cl ratio are mixed, then the ratio should 

keep constant in relation to the 4He concentration. In other words, the linear correlation 

between the radioactive decay and 4He concentration should be retained after mixing. 

The theoretical correlation curve fitted after omitting all data points where the 

groundwater does not fall within the secular equilibrium range owing to mixing is given 

in Fig. 10. The remaining data points correspond to the data collected at boreholes 

SA2718A, SA2743A, SA2783B, KA2858A, and KA2862A, where Mahara et al. (2001) 

confirmed that the groundwater was very old and increased in the 40Ar/36Ar ratio as 

compared to that of atmospheric Ar. These samples should show a linear correlation 
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between the dissolved 4He concentration and the elapsed time with the constant secular 

equilibrium 36Cl/Cl ratio even if groundwater mixing occurred because of the tunneling. 

However, the data relating to SA2783B was deleted from the data set, because SA2783B 

contains a small amount of tritium (1.69 ± 0.25 TU) indicating that it has recently been 

affected at least by a shallow groundwater intrusion. 

In this analysis, the modern Baltic seawater was used as the starting point and 

sample KA2858A as the location of the lower limit of secular equilibrium for 36Cl/Cl. The 

growth curve of the 36Cl/Cl ratio (Fig. 10) is described by the following equation (r2 = 

0.96): 

{ }
36 36

1 exp( (126 49.7) ) (8)
t eq

Cl Cl He
Cl Cl

⎛ ⎞ ⎛ ⎞
= × − − ± ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

where He is the dissolved excess 4He concentration (ccSTP/g) in groundwater. (36Cl/Cl)eq 

is the best fitted secular equilibrium ratio, (5.26 ± 0.24) × 10–14, for the groundwater, 

which is a slightly lager than the value estimated in the section 4.2. Nevertheless, it is 

acceptable considering the inclusion of the measurement error in the 36Cl/Cl ratio which 

is more than 10%. 

From Fig. 10, the accumulation rate of 4He is found to be (1.83 ± 0.72) × 10–8 

ccSTP/(gwater·y). While this is approximately 27 times greater than the in situ production 

rate of 4He, it is significantly smaller than 72 times greater found in the GAB (Torgersen 

and Clarke, 1985). Furthermore, this rate is two to ten times greater than that estimated 

from the simple 4He diffusion model. Although there are still some data quality problems 

and more discussion is required to determine the edge point as the lower limit of the 

36Cl/Cl ratio at secular equilibrium in the sever groundwater mixing, it is proposed that 

this method can estimate the 4He accumulation rate without prior determination of the 
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magnitude of 4He degassing flux. 

 

5. CONCLUSIONS 

The study’s major conclusions are as follows. 

(1) Groundwater at the Äspö site has been disturbed and become mixed as a result of a 

great intrusion of present-day Baltic seawater caused by the tunnel excavation. 

Moreover, the disturbance increased at deep sites at each later observation due to a 

deep turbulent flow of groundwater with high density and high salinity generated by 

movement of modern Baltic seawater through the many fractures connecting the deep 

sites with the surface as a result of groundwater being pumped out of the tunnel. 

Although the variation in the dissolved 4He concentration in high-salinity water 

changed with time elapsed since the tunnel excavation, the distribution of the 4He 

concentration observed in 1995 is probably close to the original distribution before 

tunnel excavation, given that the tunnel first penetrated to deep locations in 1995 and 

because a good correlation between dissolved 4He concentration and chloride 

concentration was observed in samples collected in 1995. 

(2) The 36Cl/Cl ratio increased linearly in relation to the number of 36Cl atoms to 4 × 10-14 

in Äspö groundwater samples with 5000–8000 mg/L of chloride. The ratio at chloride 

concentrations above 10000 mg/L, which was greater than 4 × 10-14 (the value 

estimated to be the secular ratio for brine at Laxemar), ceased to correlate with the 

number of 36Cl atoms. This suggests that 36Cl in the groundwater at Äspö is not 

cosmogenic, but was produced in situ through the neutron capture of 35Cl atoms in 

interstitial water in the granite. The intensity of the neutron flux in the deep-rock 

environment was estimated to average (1.11 ± 0.18) × 10–4 n cm–2.s–1. The secular 
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equilibrium ratio of 36Cl/Cl in the rock was estimated to be (5.05 ± 0.82) × 10–14. 

(3) Groundwater mixed and unmixed conditions were distinguished by investigating the 

relationship between 1/Cl and 36Cl/Cl. Although tunnel excavation caused severe 

disturbance in groundwater because of deep intrusion of present-day Baltic seawater, 

some waters escaped mixing and have maintained their paleo-hydrogeochemical 

condition. These waters show evidence of mixing with ancient Baltic seawater, which 

had higher salinity than the modern Baltic seawater. 

(4) The crustal degassing flux of 4He was estimated to range from 2.9 × 10-8 to 1.3 × 10-6 

(ccSTP/cm2 y) by using two different methods. Although this is up to two orders of 

magnitude smaller than that estimated in the GAB, it is comparable to values 

estimated for other basins in the world. The 4He accumulation rate ranged from 1.2 × 

10-9 to 7 × 10-9 (ccSTP/(gwater y), though the 4He diffusion coefficient for the Äspö 

granite still needs to be estimated accurately. 

(5) In interstitial water and rock, the number of 36Cl atoms increases over time owing to 

the constant neutron flux. If the concentration of dissolved 4He also increases 

constantly with time, changes in the 4He concentration can be used to represent 

elapsed time. Therefore, it is possible to determine the magnitude of the 4He 

accumulation rate from the relationship between the increasing 4He concentration and 

the increasing 36Cl/Cl ratio. When two groundwaters, both at secular equilibrium with 

respect to the 36Cl/Cl ratio, are mixed, the ratio ceases to change and the dissolved 4He 

concentration maintains linearity to the elapsed time despite the severe disturbance 

caused by tunneling. The actual 4He accumulation rate at the Äspö site was estimated 

to be (1.83 ± 0.72) × 10–8 ccSTP/(gwater·y), using data from samples in which the 

36Cl/Cl ratio had reached secular equilibrium. This is approximately twenty seven 
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times the value estimated on the basis of in situ production (6.76 × 10-10 

(ccSTP/(gwater·y)). Reasonable 4He accumulation rates probably range from 6.76 × 

10-10 to (1.83 ± 0.72) × 10–8 ccSTP/(gwater·y) for the Äspö site, though the 

determination of the edge point as the lower limit of the 36Cl/Cl ratio at secular 

equilibrium requires further work. 
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Appendix: Analytical protocols 

Tritium 

Tritium concentrations were measured by counting beta rays after electrolytic enrichment 

(Japanese Science and Technology Agency, 1976). One liter of groundwater was reduced 

to about 40 ml by electrolysis using Ni/Fe electrodes. Forty milliliters of distillate and 60 

ml of scintillation cocktail were mixed in a 100-ml Teflon vial. This mixture was 

analyzed for 1000 min using a low-background liquid-scintillation counter. The detection 

limit for this method is 0.3 TU. 
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U and Th in the rock 

A sample of 0.5 g of pulverized rock powder was placed in a Teflon beaker and 

completely dissolved by adding concentrated HNO3 and HF and heating on a hot plate. 

After subsequent addition of concentrated HNO3 and HClO4 to the resolved material, the 

mixture was again heated until HClO4 fuming occurred. The re-resolved material was 

diluted with a small amount of weak HCl, and diluted further to 100 ml using super-pure 

distilled water. The U and Th concentrations were measured using inductively-coupled 

plasma mass spectrometry (ICP-MS) (Japanese Ministry of Education and Science, 

2002). 

 

Dissolved noble gases 

Dissolved noble gases were separated from the water samples using 15 min of ultrasonic 

vibration in a stainless steel extraction line under high vacuum (1 × 10–6 mbr), after 

attaching the pinched-off annealed copper tube and removing one pinch-off using a 

reopening device. A liquid nitrogen cold trap removed the water vapor and condensable 

gases. Active gases were removed using two titanium-zirconium getters, one heated to 

450 °C and the other at room temperature. The 1-cc gas sample was separated from the 

residual gas, which excluded active gases, and was isolated in a stainless steel ampoule 

bottle for measurement of argon isotopic ratios. Heavy noble gases (Ar, Kr, and Xe) in the 

residual gas in the extraction line were removed by two activated charcoal traps cooled in 

liquid nitrogen, and further cooled to 40 K using a cryogenic pump to remove residual 

argon and moisture. 

The residual He and Ne mixture in the purification unit was fed into a VG-5400 mass 
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spectrometer (Micro Mass Ltd). First, the concentration of 4He and the 20Ne/4He ratios 

were measured six times in 10 min. The mixture was then cooled to 22 K using a 

cryogenic pump to remove Ne, and gas fed back through the spectrometer to measure the 

ratio of 3He to 4He. This was repeatedly measured (at least 50 times) over approximately 

60 min, with a standard deviation of 1σ at less than 1%. The precise values of the 4He 

concentrations, 20Ne/4He ratios, and 3He/4He ratios were determined by comparison with 

two sets of standard air values measured under the same conditions before and after 

measuring the samples. This study assumed the ratio of 3He/4He in standard air to be 

1.384 × 10–6 (Clarke et al., 1976). The 4He concentrations, 3He/4He ratios, and 20Ne/4He 

ratios were determined with measurement errors of less than 0.5, 1, and 5%, respectively 

(described in detail in Sano et al., 1993). These errors, which do not include sampling 

errors from loss or contamination, were verified through the reproducibility of the 4He 

concentration measurements in the standard air sample and the ratios of 3He/4He and 

20Ne/4He dissolved in the distilled water samples, and by using 2.4 × 10–9 ccSTP and 7.2 × 

10–9 ccSTP as system blanks for 4He and 20Ne, respectively. The average gas-stripping 

efficiency of the dissolved gases from the water samples was determined to be 97% by 

comparing the 4He extracted from distilled water equilibrated with atmospheric air at 

23ºC to the data in the literature (Weiss, 1971). 

 

36Cl/Cl ratio 

Chloride was precipitated as AgCl in a clean room. The precipitate was purified by 

repeated re-dissolution in NH4OH and re-precipitation (after the removal of sulfur as 

BaSO4). All AgCl precipitation samples to be used in accelerator mass spectrometry 

(AMS) measurements were made following the standard procedures used at the 
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Australian National University (ANU) (Creswell, 2001). The 36Cl/Cl ratios for the 

groundwater samples were measured using accelerator mass spectrometers located at 

ANU and at ETH in Zurich. Measurement of the 36Cl/Cl ratio for the rock samples was 

performed using the accelerator mass spectrometer at the Prime Laboratory, Purdue 

University, West Lafayette, IN, USA, after chemical Cl separation as AgCl and 

purification of its precipitation from the rock matrix. 
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Figure Captions 

Fig. 1: Location of the Äspö HRL in Sweden and projection of the spiral tunnel (heavy 

solid line) in the HRL. The open circle indicates the location of the deep borehole Lax-02 

at Laxemar.  

 

Fig. 2: (a) Locations of the boreholes for sampling groundwater in the HRL, and the 

distribution of areas of high groundwater conductivity via fractures. (b) Vertical cross 

section showing locations and depth of boreholes for sampling groundwater in the tunnel. 

 

Fig. 3: Relationship between dissolved 4He concentration (cm3STP/m3) and sampling 

depth (- z (m)) of groundwater. The fitting curve, which is described by the exponential 

function given in eq. 1, was drawn using the corrected data for 1995. The measurement 

error in the 4He concentration was less than 1%.  

 

Fig. 4: Relationship between dissolved 4He concentration and chloride ion concentration 

in groundwater from 1995 to 2001. Disturbances in the 4He concentration can be seen in 

all samples of groundwater collected from 1995 to 2001 with more than 200 meq/L of 

chloride ion concentration. The measurement error in 4He concentration was less than 1%. 

Squares and solid line, sampled in 1995; open circles and broken line, sampled in 1997; 

open triangles and dotted line, sampled in 1999; open stars and dash-dot line, sampled in 

2001. 

 

Fig. 5: The origin of 36Cl in the Äspö groundwater, as deduced from the relationship 

between chloride concentration and 36Cl/Cl ratio. The solid squares with error bars 
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represent Äspö groundwater, modern Baltic seawater, Japan Sea ocean water, commercial 

mineral waters (European: S. Pellegrino, Thonon, Volvic; Japanese: Tennen Meisui, 

Shikotsuko Hisui, Tanigawarennpou Meisui, Rokkou Oishii Mizu, Fuji Mineral Water, 

Sennin Hisui (Mahara et al., 2003)), and brine at Laxemar; the two dash-dot lines 

represent mixing between commercial mineral waters and ocean water (36Cl/Cl = 1 × 

10–12/Cl- + 2.4 × 10–16), and mixing between commercial mineral waters and modern 

Baltic seawater (36Cl/Cl = 9.85 × 10–13/Cl- + 1.53 × 10–15); the fine solid circle indicates 

the brackish and high-saline water in the Äspö groundwater groups. 

 

Fig. 6: Relationship between the 36Cl/Cl ratio and the number of 36Cl atoms per liter of 

water for the Äspö groundwater and brine from the deep borehole Lax-02 at Laxemar. 

The three dashed lines show the relationship for chloride concentrations of 1000, 5000, 

and 8000 mg/L. The shaded area indicates where the water is at secular equilibrium with 

respect to the 36Cl/Cl ratio. Field A, enclosed by the dash-dotted line within the shaded 

area, indicates samples at secular equilibrium at the Äspö site. The solid circles with error 

bars are brine water measured in this study and by Louvant et al. (1999).   

 

Fig. 7: Mixing lines between present-day Baltic seawater and seven different levels of 

saline water with different 36Cl/Cl ratios and lacking tritium. Present-day Baltic seawater 

(Cl-, 3760 mg/L; 36Cl/Cl, 1 × 10-15; 3H, 42 TU in 1992) is shown by the solid circle. Seven 

different saline waters with respective Cl- concentrations and 36Cl/Cl ratios of (47000 

mg/L and 5.05 × 10-14), (16000 mg/L and 5.05 × 10-14), (10000 mg/L and 5.05 × 10-14), 

(5000 mg/L and 5.05 × 10-14), (1000 mg/L and 5.05 × 10-14), (100 mg/L and 1 × 10-13), and 

(10 mg/L and 1 × 10-13) are indicated by the seven solid lines. The thick dash-dotted line 
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indicates the predicted detection limit (0.3 TU) of tritium in a mixture consisting of  

modern Baltic seawater (equivalent to 1.14% seawater) in 2001. The five fine dash-dotted 

lines represent mixtures with 5%, 10%, 25%, 50%, and 75%, respectively, of modern 

Baltic seawater. Open circles represent groundwater samples with detectable tritium; 

solid squares, groundwater samples lacking tritium. 

 

Fig. 8: Mixing lines between ancient Baltic seawater and five saline waters with different 

36Cl/Cl ratios and plots of groundwater samples lacking tritium (solid squares). Ancient 

Baltic seawater (solid hexagon) had a Cl- concentration of 8300 mg/L and a 36Cl/Cl ratio 

of 1 × 10-15. The five saline waters (broken lines) had respective Cl- concentrations and 

36Cl/Cl ratios of (47000 mg/L and 5.05 × 10-14), (16000 mg/L and 5.05 × 10-14), (10000 

mg/L and 5.05 × 10-14), (5000 mg/L and 5.05 × 10-14), and 1000 mg/L and 5.05 × 10-14.  

 

Fig. 9: Relationship between 36Cl/Cl ratio and dissolved 4He concentration in 

groundwater, and the theoretical range of secular equilibrium with respect to the 36Cl/Cl 

ratio in rock at the Äspö site. The shaded area is the secular equilibrium range for the 

36Cl/Cl ratio in rock. Squares with error bars represent groundwater sampled in 1995; 

circles with error bars, sampled in 1997; triangles with error bars, sampled in 1999; stars 

with error bars, sampled in 2001. 

 

Fig. 10: Relationship between groundwater samples at secular equilibrium with respect to 

the 36Cl/Cl ratio and the theoretical growth curves of 36Cl activated in the terrestrial water 

in rock for the neutron flux intensity at the Äspö site. The data set are fitted with the solid 
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line, (
36

14 25.26 10 (1 exp( 126 )) 0.96Cl He r
Cl

−= × ⋅ − − × = ). Squares with error bars 

represent groundwater samples at secular equilibrium for 36Cl/Cl ratio and lacking 

tritium; triangle with error bar, present-day Baltic seawater, the starting point of the 

activation curve. 
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Table 1.   Dissolved noble gases, 36Cl/Cl , tritium concentration in groundwater at the Äspö site from 1995 to 2001.

Sampling Date of  pressure * 4He 3He/4He Ne 40Ar/36Ar Cl- 36Cl/Cl ± error 36Cl ± error 3H
(year) drilling up (Mpa) (ccSTP/g) (mol/mol) (ccSTP/g) (mol/mol) (meq/L) (atoms/atoms) (E-15) (Bq/l)

KR0013B 1991/4/30
1995 – 3.00E-04 1.15E-08 3.60E-07 3.10E+02 42.018 4.70E-15 ±1.2 ‡ 1.19E+08 3.04E+07 1.92±0.04
1997 – 1.05E-04 1.90E-08 2.00E-07 2.96E+02 25.0698 1.10E-14 ±2 1.66E+08 3.02E+07 1.69±0.03
1999 – 7.79E-05 2.49E-08 1.29E-06 2.97E+02 26.1696 2.40E-14 ±4 3.79E+08 6.32E+07 1.87±0.03
2001 – 2.74E-05 1.90E-08 3.29E-07 2.92E+02 4.512 8.80E-15 ±2.7 2.39E+07 7.33E+06 1.53±0.03

1.98E-14 ±2 † 5.39E+07 5.44E+06
HA1327B 1992/9/11

1995 0.84 4.06E-04 3.04E-08 1.20E-07 2.95E+02 97.572 9.20E-15 ±1.9 ‡ 5.41E+08 1.12E+08 1.68±0.04
1999 0.65 2.91E-04 1.29E-08 2.90E-06 2.87E+02 79.242 1.30E-14 ±2 6.21E+08 9.55E+07 1.72±0.04
2001 0.55 9.81E-05 2.03E-08 3.85E-07 2.75E+02 71.91 3.10E-15 ±1.1 1.34E+08 4.75E+07 1.41±0.03

5.70E-15 ±5.7 † 2.47E+08 2.47E+08
KA2162B 1993/4/1

1997 2.35 3.02E-03 2.33E-08 8.60E-07 3.20E+02 147.204 9.00E-15 ±2 7.99E+08 1.78E+08 0.41±0.02
1999 2.27 1.41E-04 2.25E-08 3.00E-06 3.16E+02 167.79 2.80E-14 ±4 2.83E+09 4.04E+08 0.21±0.02
2001 2.2 7.82E-03 1.86E-08 1.23E-06 2.90E+02 165.816 2.30E-14 ±8.2 2.30E+09 8.20E+08 0.27±0.02

2.28E-14 ±2 † 2.28E+09 2.00E+08
SA2743A Unknown

1997 – 3.89E-02 2.08E-08 2.30E-05 4.08E+02 290.46 5.40E-14 ±2 1.93E+09 3.51E+08 N.D.
1999 – 4.10E-02 2.04E-08 7.02E-07 3.58E+02 329.94 5.40E-14 ±5 1.07E+10 9.91E+08 N.D.
2001 – 2.87E-02 2.42E-08 9.28E-06 3.09E+02 335.58 5.40E-14 ±5.2 1.09E+10 1.05E+09 N.D.

3.97E-14 ±6.2 † 3.97E+09 6.20E+08
KA2858A 1995/1/15

1995 3.6 – – – – 335.58 N.D.
2001 3.42 1.56E-02 1.63E-08 1.56E-06 3.10E+02 406.08 4.72E-14 ±4.1 1.16E+10 1.01E+09

4.16E-14 ±3.7 † 1.02E+10 9.07E+08
KA2862A 1995/1/25

1995 3.58 3.05E-02 1.49E-08 1.00E-06 4.50E+02 400.44 N.D.
1997 3.35 3.50E-02 2.07E-08 2.80E-07 4.23E+02 403.26 4.00E-14 ±4 9.72E+09 9.72E+08 N.D.
1999 3.33 2.10E-02 2.13E-08 5.43E-07 3.97E+02 439.92 4.60E-14 ±4 1.22E+10 1.06E+09 N.D.
2001 3.31 8.22E-02 3.23E-08 1.71E-06 3.56E+02 411.72 4.74E-14 ±6.9 1.18E+10 1.72E+09 N.D.

4.00E-14 ±2.4 † 9.93E+09 5.96E+08
KA3010A 1994/12/8

1995 3.7 2.66E-02 1.09E-08 5.80E-07 3.60E+02 238.008 N.D.
1997 3.6 1.31E-02 3.48E-08 4.90E-06 3.55E+02 226.446 3.80E-14 ±3 5.19E+09 4.10E+08 N.D.
1999 3.59 9.81E-03 4.69E-08 5.64E-07 3.49E+02 217.986 3.90E-14 ±4 5.12E+09 5.25E+08 N.D.
2001 3.62 5.65E-03 1.88E-08 6.89E-07 3.07E+02 120.414 2.28E-14 ±3.0 1.66E+09 2.18E+08 1.00±0.04

2.10E-14 ±3.6 † 1.52E+09 2.61E+08
KA3067A 1994/12/11

1995 3.84 2.24E-02 3.15E-08 4.40E-05 3.03E+02 158.202 4.40E-15 ±1.3 ‡ 4.20E+08 1.24E+08 0.16±0.04
1997 3.77 1.17E-02 2.42E-08 1.20E-05 3.23E+02 155.1 2.90E-14 ±3 2.71E+09 2.80E+08 0.12±0.02
1999 3.76 1.21E-03 8.00E-08 2.62E-07 2.98E+02 130.002 2.20E-14 ±3 1.72E+09 2.35E+08 N.D.
2001 3.76 9.16E-03 1.85E-08 4.62E-06 3.04E+02 142.41 2.51E-14 ±3.7 2.15E+09 3.17E+08 0.49±0.03

2.62E-14 ±2 † 2.25E+09 1.72E+08
KA3105A 1994/12/15

1995 3.8 1.35E-03 1.57E-08 7.50E-08 2.96E+02 97.854 5.90E-15 ±1.4 ‡ 3.48E+07 8.26E+07 1.00±0.04
1999 3.7 4.17E-04 1.52E-08 2.99E-07 2.86E+02 71.064 1.20E-14 ±2 5.14E+08 8.57E+07 1.23±0.03
2001 3.7 4.39E-04 2.37E-08 7.81E-07 3.02E+02 58.938 2.60E-15 ±1.1 9.24E+07 3.91E+07 1.49±0.04

6.00E-15 ±6 † 2.13E+08 2.13E+08
KA3110A 1994/12/17

1995 3.65 1.32E-03 1.65E-08 1.80E-07 3.03E+02 104.058 1.10E-14 ±2.0 ‡ 6.90E+08 1.25E+08 1.47±0.04
1997 3.52 1.33E-03 1.89E-08 6.30E-07 2.86E+02 97.29 7.00E-15 ±2 4.11E+08 1.17E+08 1.48±0.03
1999 3.45 2.53E-04 1.83E-08 2.99E-07 2.97E+02 88.266 1.10E-14 ±2 5.85E+08 1.06E+08 1.56±0.03
2001 3.45 1.72E-04 1.41E-08 4.56E-07 2.90E+02 67.68 4.10E-15 ±1.6 1.67E+08 6.52E+07 1.79±0.04

5.60E-15 ±5.6 † 2.28E+08 2.28E+08
HA3290B Unknown

1997 – 5.58E-03 1.70E-08 1.80E-06 3.35E+02 185.838 2.90E-14 ±3 3.25E+09 3.36E+08 0.50±0.02
1999 – 4.90E-02 2.09E-08 4.74E-07 3.12E+02 188.658 3.30E-14 ±3 3.75E+09 3.41E+08 0.40±0.02
2001 – 9.81E-03 2.11E-08 1.49E-06 3.16E+02 209.526 3.14E-14 ±8.2 3.97E+09 1.04E+09 0.16±0.03

3.19E-14 ±2.6 † 4.03E+09 3.28E+08
KA3385A 1995/1/10

1995 – 1.54E-02 1.90E-08 2.20E-07 3.47E+02 206.706 0.16±0.04
1997 3.81 1.70E-02 2.03E-08 6.60E-06 3.37E+02 191.76 1.90E-14 ±3 2.20E+09 3.47E+08 N.D.
1999 3.66 1.21E-02 2.00E-08 4.68E-07 3.23E+02 188.658 2.40E-14 ±3 2.73E+09 3.41E+08 N.D.
2001 3.66 1.26E-02 1.86E-08 7.92E-06 3.07E+02 175.404 2.10E-14 ±2.8 2.22E+09 2.96E+08 0.07±0.03

2.16E-14 ±4 † 2.28E+09 4.22E+08
KA3510A 1996/9/9

1997 – 4.12E-03 2.21E-08 7.40E-08 3.26E+02 174.84 2.30E-14 ±3 2.42E+09 3.16E+08 0.25±0.02
1999 4.1 8.99E-03 2.00E-08 3.00E-07 3.02E+02 157.638 2.40E-14 ±3 2.28E+09 2.85E+08 0.2±0.02
2001 4.1 1.02E-02 1.85E-08 1.07E-05 2.94E+02 152.562 3.39E-14 ±9.8 3.12E+09 9.02E+08 0.22±0.03

2.43E-14 ±2 † 2.23E+09 1.84E+08

KR0012B 1991/5/3
1995 – 1.01E-04 4.28E-08 4.20E-06 3.06E+02 18.8658 1.92±0.04

KR0015B 1991/5/4
1995 – 1.19E-04 1.65E-08 4.30E-08 2.97E+02 8.7138 1.91±0.04

SA0813B Unknown
1995 – 1.94E-04 1.68E-08 9.20E-08 – 84.318 1.97±0.04

SA2718A Unknown
1995 – 4.39E-02 1.98E-08 1.31E-07 4.27E+02 315.84 5.50E-14 ±5 ‡ 1.05E+10 9.55E+08 0.09±0.03
1999 – 3.47E-02 2.86E-08 1.17E-05 3.49E+02 383.52 5.70E-14 ±5 1.32E+10 1.16E+09 N.D.

SA2783B Unknown
1999 – 3.76E-03 2.63E-08 4.18E-06 3.35E+02 321.48 5.20E-14 ±4 1.01E+10 7.77E+08 0.20±0.03

SA1009B Unknown
1999 – 1.06E-04 1.44E-08 2.68E-06 2.95E+02 79.806 4.00E-15 ±1 1.92E+08 4.80E+07 2.00±0.04
2001 – – – – – 80.652 2.40E-15 ±1.1 1.17E+08 5.36E+07 1.52±0.03

4.30E-15 ±4.3 † 2.09E+08 2.09E+08
Lax-02 –

(Laxemar) – 1.09E-5 § 2.14E-8 § 1.66E-7 § 292 § 967.26 4.00E-14 ±4 3.09E+10 3.09E+09 –
1999

Baltic –
Seawater – --

2001 – – – – 89.394 1.80E-15 ±1.8 9.70E+07 9.70E+07 –
3.00E-15 ±3 † 1.62E+08 1.62E+08

N.D.: Under the detection limit
– : No measurement

*: monitaring static water pressure
†: Analyzed by ETH and other were analyzed by ANU.
‡ : These AgCl precipitated from the residual groundwater samples collected in 1995 were reanalyzed by ANU in 2005.
§:  This sample was degased, because groundwater was collected from the water storage  tank  pumping up from the depth interval of 1420-1705 m
    of the Lax-02 borehole located at Laxemar.

–

(Atoms/L)

–

–

–

–

–

––

–

–

–

–

–
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