<table>
<thead>
<tr>
<th>Title</th>
<th>Correlation between dissolved 4He concentration and 36Cl in groundwater at Äspö, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mahara, Yasunori; Hasegawa, Takuma; Miyakawa, Kimio; Ohta, Tomoko</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied Geochemistry (2008), 23(12): 3305-3320</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93468</td>
</tr>
</tbody>
</table>
| Right | Copyright © 2008 Elsevier Ltd; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
This is not the published version. Please cite only the published version. |
| Type | Journal Article |
| Textversion | author |

京都大学
Correlation between dissolved 4He concentration and 36Cl in groundwater at Äspö, Sweden

Yasunori Maharaa, Takuma Hasegawab, Kimio Miyakawab and Tomoko Ohtaa

aResearch Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan
bCivil Engineering Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan

* Author to whom correspondence should be addressed: Tel.:+81-724-51-2462, Fax: +81-724-51-2636, E-mail address: mahara@HL.rri.kyoto-u.ac.jp
Abstract Tunnel excavation at Åspö Island, Sweden, has caused severe groundwater disturbance, gradually extending deeper into the tunnel as present-day Baltic seawater intrudes through fractures connecting to the surface. However, the paleo-hydrogeochemical conditions have remained in the deep highly saline waters that have avoided mixing. A correlation has been observed between dissolved 4He concentration and chloride ion concentration, measured every two years from 1995 to 2001 at Åspö. Groundwater mixing conditions can be examined by the correlations between $1/\text{Cl}$, $^{36}\text{Cl}/\text{Cl}$, and tritium concentrations. Subsurface production is responsible for the majority of the ^{36}Cl and excess dissolved 4He of interstitial groundwater in fractures. The secular equilibrium ratio of $^{36}\text{Cl}/\text{Cl}$ in rock was theoretically estimated to be $(5.05 \pm 0.82) \times 10^{-14}$ based on the neutron flux intensity, a value comparable to the measured $^{36}\text{Cl}/\text{Cl}$ ratio in rock and groundwater. The degassing crustal 4He flux was estimated to be $2.9 \times 10^{-8} \sim 1.3 \times 10^{-6}$ (ccSTP/cm2y) using the HTO diffusion coefficient for the Åspö diorite. The 4He accumulation rate ranges from 6.8×10^{-10} (for the in situ accumulation rate) to 7.0×10^{-9} (ccSTP/(g$_\text{water}$·y)) considering both 4He in situ production and the degassing flux, assuming 4He is accumulated constantly in groundwater. By comparing the subsurface ^{36}Cl increase with 4He concentrations in groundwater, the 4He accumulation rate was determined from data for groundwater arriving at the secular equilibrium of $^{36}\text{Cl}/\text{Cl}$. The 4He accumulation rate was found to be $(1.83 \pm 0.72) \times 10^{-8}$ ccSTP/(g$_\text{water}$·y) without determining the magnitude of degassing 4He flux.

Keywords: Groundwater mixing, excavation, $^{36}\text{Cl}/\text{Cl}$ ratio, subsurface production, secular equilibrium, excess 4He, crustal 4He flux
1. INTRODUCTION

Dissolved ^4He can be used to estimate groundwater residence time if the ^4He accumulation rate can be determined and is constant (Lehmann et al., 1993). In a pioneering study, Marine (1979) predicted groundwater flow velocity and residence time using only the *in situ* ^4He production rate. The results overestimated the residence time because the addition of ^4He from external sources was neglected. The mechanism of ^4He accumulation in groundwater is complex, and it has been variously discussed in terms of sources and accumulation processes. Some researchers have considered the crustal ^4He flux to be an external source for ^4He in flowing groundwater (Heaton, 1981; O’Nions and Oxburgh, 1983; Torgersen and Clarke, 1985; Martel et al., 1989; Stute et al., 1992; Marty et al., 1993; Ballentine et al., 2002), while others have argued that a sufficient concentration can be supplied from accumulated and produced ^4He in aquifer minerals (Tolstikhin et al., 1996; Solomon et al., 1996).

Ballentine et al. (2002) stated that a very long groundwater residence time cannot be determined from the ^4He flux from the crust into aquifers because regional ^4He accumulation rates vary greatly. Furthermore, the magnitude of the ^4He crustal flux has not been directly measured, but has only been indirectly estimated from the vertical ^4He profile using the ^4He diffusion coefficient in water and a suitable tortuosity parameter for rock (Osenbrück et al., 1998; Ballentine et al., 2002; Mahara and Igarashi, 2003). On the other hand, Andrews and Lee (1979) estimated a groundwater residence time of up to 30,000 years for the Bunter Sandstone in England using excess ^4He concentrations calibrated by ^{14}C ages. Lehmann et al. (2003) estimated the ^4He accumulation rate using only four groundwater samples, collected in the Great Artesian Basin of Australia, which were dated to more than 500 ka and calibrated using ^{81}Kr ages. However, these latter
authors calibrated the 4He accumulation rate using cosmogenic radionuclides only, assuming constant 4He accumulation.

Lippmann et al. (2003) also estimated the residence time of very old (1~168 Ma) groundwater in several deep gold mines in South Africa using 4He, 40Ar, 134Xe and 136Xe accumulation models, which consisted of in situ production and in situ production plus crustal flux. It was concluded that the in situ production model produced better estimations for the study basin than did the in situ production plus crustal flux model.

In this study, we discuss the correlation among dissolved 4He concentration, chloride ion concentration and 36Cl/Cl ratio under dramatic disturbances in groundwater caused by tunnel excavation. We try to reconstruct the correlation between dissolved 4He concentration and the secular 36Cl/Cl ratio using groundwater data that avoided severe mixing for the estimation of 4He accumulation rate.

2. STUDY AREA AND GEOHYDROLOGICAL SETTING

The study area was the spiral tunnel of the Äspö Hard Rock Laboratory (HRL) constructed beneath Äspö Island, which is located about 400 km south of Stockholm on the eastern (Baltic Sea-facing) side of Sweden (Fig. 1). The tunnel was constructed between 1991 and 1995. Its total length is 3600 m, and its maximum depth is 460 m below sea level. Äspö Island itself is composed of Precambrian basement rock dated between 1.76 and 1.84 billion years by the U–Pb method (Stanfors et al., 1999). Major outcropping rocks are Småland granite and Äspö diorite, which are highly fractured and saturated. The Äspö site is characterized by swarms of fractures forming major fracture zones (Stanfors et al., 1999) which control the groundwater flow through the site.

Determination of the origin of groundwater is important for estimating residence
time and mixing among various end members. Although Laaksoharju et al. (1999) described the effects of prolonged water–rock interaction at Äspö, Louvat et al. (1999) estimated the addition of chlorine from rock to groundwater to be small. By comparing the changes in the Cl/Br ratios (e.g. the evolution indicator log(Cl/Br): 2.24 for KA2862A, 2.08 ~ 2.16 for KAS03, 2.08 ~ 2.17 for Lax-02, 2.59 for present-day Baltic seawater, and 2.46 for ocean water) in the evolution process of sea water and quoting Savoye’s (1998) chlorine mass balance between dissolution from granite and salinity of deep groundwater, it was concluded that the origin of chlorine in these highly saline water was marine. Consequently, Louvant et al. predicted that the chlorine in the Äspö groundwater was supplied from marine derived water intruded into the Baltic shield at a time too ancient to estimate by the 36Cl secular equilibrium method.

Quoting from Laaksoharju et al. (1999), present-day groundwater on the island is the result of mixing of five different end members: glacial meltwater, meteoric water, Baltic seawater, altered marine Baltic seawater, and brine. “Brine”, with a very high chloride concentration (47000 mg/L) and thought to be extremely old, is found at the deepest location of a borehole at Laxemar (Lax-02, Fig. 1), located on the opposite shore of Äspö Island from the HRL tunnel. “Glacial meltwater” is cold-climate recharge, based on stable isotope values, and is 31,365 years old as determined by 14C dating ([Cl⁻], 0.5 mg/L). “Baltic seawater” refers to the modern Baltic seawater ([Cl⁻], 3760 mg/L and 42 TU measured in 1992), while “altered marine Baltic seawater” ([Cl⁻], 4490 mg/L) is Baltic seawater affected by bacterial sulfate reduction, and is found within marine sediments. “Meteoric water” is non-saline water (chloride concentration, 5 mg/L), the tritium concentration in which was 59 TU measured in 1991.

Cyclic glacial activity in the study area has influenced long-term chemical
conditions for more than 1 million years. Although a dramatic local drawdown of the groundwater table (of approximately 80 m) has occurred in the past 15 years, due to the tunnel excavation as opposed to long-term natural events such as cyclic glaciation, hydrogeochemical changes in groundwater have been greater than could be caused by water–rock interactions. Therefore, mixing is an important factor for evaluating the chemical composition of groundwater under conditions of dramatic, local turbulent flow in an area where there has been significant regional and local fracturing.

Fractures and fracture zones are also critical because these control groundwater flow through Äspö Island (Laaksoharju et al., 1999). Based on detailed hydrogeological investigations (Stanfors et al., 1999), the water-bearing fracture zones are characterized by high hydraulic conductivity (in excess of 1×10^{-3} m/s). And, according to Mahara et al. (2001), the 17 major fracture zones probably control the dynamic flow via which present-day Baltic seawater and meteoric water intrude or mix with groundwater of different origins. Significant change in dissolved substance concentration in the short term is mainly controlled by dramatic changes in a geo-hydraulic condition. Stability of the groundwater chemistry depends on the extent of connectivity in the fracture network and the magnitude of the groundwater gradient, although some local dramatic changes in the groundwater environment have occurred through major fracture zones.

3. GROUNDWATER AND ROCK SAMPLING

At the Äspö site, major boreholes (HA and KA series) drilled in the tunnel were packed off at each fractured section. In order to monitor the effect of excavation on groundwater flow, groundwater hydraulic pressure has been continuously and automatically measured at each packed-off section since tunnel construction began. The
hydraulic pressure decreased by approximately 0.3 MPa between 1995 and 2001. The average difference from static hydraulic pressure since tunnel construction began in 1991 was approximately 0.6 MPa. The rate of decrease depends on the depths and locations of the boreholes. In general, the decrease in hydraulic pressure in shallow boreholes (e.g., HA1327B, KA2162B) has been greater than that in deep boreholes (e.g., KA2858A, KA3510A).

Groundwater samples were collected from the packed-off sections of the 13 boreholes in the tunnel every second year from 1995 to 2001 (Fig. 2) and, where possible, from other boreholes for reference. The groundwater samples were carefully collected to prevent degassing due to a reduction in water pressure and contamination by atmospheric air. A sampling head arrangement with control valves was used to maintain a hydraulic pressure of up to 25 MPa. The water pressure in the section was first gauged, and then an annealed copper tube, which had the sampling head arrangement opposite the opening, was connected to Teflon tubing coming out of the borehole. The copper tube was used to maintain the same pressure as that inside the packed-off borehole section while groundwater was drained directly from the isolated borehole section. Monitoring of the pressure gauge of the sampling head arrangement during sampling was conducted to ensure that the hydraulic pressure of the packed-off sections of the boreholes had been maintained throughout. After the pressure valve was opened, the borehole was purged of approximately three times the volume of groundwater in the isolated section while field parameters (electrical conductivity, pH, redox potential, dissolved oxygen content, and water temperature) were measured. Once there had been sufficient flushing to eliminate air bubbles from the inside wall of the copper tube, as visually confirmed by viewing the wall through the sampling head arrangement’s observation window, approximately 15 ml
of groundwater was pinched off in the annealed copper tube. This would be used for the analysis of dissolved noble gases.

One liter of groundwater was used for the analyses of the 36Cl/Cl ratio and tritium, stable isotope and dissolved anion and cation concentrations. An attempt was also made to measure the 14C concentration of high-salinity water samples (from boreholes SA2718A, KA2858A, KA2862A, and KA3010A) without detecting tritium. However, insufficient usable precipitation was collected from a 5-L groundwater sample; SrCO$_3$ was not visibly precipitated due to very low concentrations of bicarbonate ions (HCO$_3^-$) and pH values of 6.33 to 8.2 during the sampling time.

Six rock samples, approximately 15 to 20 cm long, were cut from the stored drill cores collected at KA2862A, KA3010A, KA3067A, KA3105A, KA3385A, and KA3510A. These included the section from which the groundwater samples were collected. These rock samples were used to estimate the intensity of the in situ neutron flux and subsurface 36Cl production rate. Each rock sample was pulverized using an iron ball mill, and only rock powder that would pass through a 100-mesh sieve was retained. The powder was then repeatedly washed using super-pure distilled water, taking care to avoid AgCl precipitation originating from the residual saline water in rock mass micro-fractures. The powder was dried at room temperature in a clean room.

The analytical methods employed for determining the dissolved 4He and tritium concentration and 36Cl/Cl ratios in groundwater, and U and Th content in rock, are described in the Appendix.

4. RESULTS AND DISCUSSION

Noble gas, chloride, 36Cl, and tritium concentrations for the collected groundwater
samples are presented in Table 1. Some groundwater samples had high excess Ne values; whether the mechanisms of partitioning were artificial or natural is not clear. The original, non-corrected data are used in the following discussion, since the concentrations of the heavier noble gases (i.e., Ar, Kr and Xe) could not be determined because of missing preparation. The $^{40}\text{Ar}/^{36}\text{Ar}$ ratio was measured, however, to confirm its increase in older groundwater (Davis and Bentley, 1982; Rauber et al., 1991).

4.1 Correlation between dissolved ^4He concentration and chloride concentration

The dissolved ^4He concentration increases as the groundwater sampling depth increases at the Äspö site (Fig. 3), although the rate of increase is not linear. In particular, the dissolved ^4He concentration varied greatly at –350 to –425 m depth, the result of intrusion directly into this deep location through fractures connecting to the surface zone by either shallow groundwater and/or modern Baltic seawater with low ^4He concentrations (Mahara et al., 2001). The ^4He concentration gradually decreased with an increase in time elapsed since the tunnel excavation, except in certain deep wells. The change in dissolved ^4He concentration from 1995 to 2001 can be attributed to the mixing of intruded modern Baltic seawater with the groundwater or of deep glacial brine that rose as a result of the deep turbulence caused by tunnel excavation.

Excavation in the deepest area of the site had just been completed in 1995, so the distribution of the ^4He concentrations observed in 1995 might closely reflect the virgin distribution before tunnel excavation. The correlation between the ^4He concentration ($\text{cm}^3\text{STP/m}^3$) in 1995 and sampling depth is expressed by the following exponential function:

$$^4\text{He} = 4.26 \times 10^{-5} \cdot \exp(-0.016 \times z) \quad (r^2 = 0.92) \quad (1)$$
where \(z \) is the depth (m) from the ground surface to the sampling depth in the sampling well and has a negative value.

The dissolved \(^4\)He concentration, which we can consider as a proxy for the sampling depth of groundwater, does not constantly increase with the chloride ion concentration; instead the relationship is a sigmoidal curve (Fig. 4). These disturbances in the \(^4\)He concentration appear to be caused by the rise of deep saline groundwater, considered to be glacial brine (Laaksoharju et al., 1999), as a consequence of the complex water circulation that occurred during the tunnel excavation process. The relationship between the dissolved \(^4\)He concentration and chloride ion concentration observed in 1995 probably reflects the original distribution, before tunnel excavation, in consideration of the low level of disturbance in the \(^4\)He concentration in the high salinity zone (Fig. 4).

4.2 Origin of \(^{36}\)Cl and estimation of the equilibrium ratio of \(^{36}\)Cl/Cl in groundwater and the Äspö granite

At the Äspö site, the increase in \(^{36}\)Cl/Cl ratio in the groundwater showed a strong positive correlation with the increase in the chloride concentration (Fig. 5). Figure 5 also shows the relationships between the \(^{36}\)Cl/Cl ratio and chloride concentrations of Japanese and European commercial mineral waters, which mainly contain cosmogenic and/or bomb pulse \(^{36}\)Cl, from around the world, and of ocean water collected from the Japan Sea (Mahara et al., 2004).

Consider two cases of simple mixing: commercial mineral water (Cl\(^-\), 10 mg/L; \(^{36}\)Cl/Cl, \(1 \times 10^{-13}\)) with Japan Sea ocean water (Cl\(^-\), 18000 mg/L; \(^{36}\)Cl/Cl, \(3 \times 10^{-16}\)) and with present-day Baltic seawater (Cl\(^-\), 3760 mg/L; \(^{36}\)Cl/Cl, \(1.8 \times 10^{-15}\)), respectively. If all \(^{36}\)Cl atoms in the water are cosmogenic, then the mixing lines showing the relationship
between the 36Cl/Cl ratio and chloride concentration in the water are described by the formula 36Cl/Cl = 1×10^{-12}/Cl$^- + 2.4 \times 10^{-16}$ for the ocean water and 36Cl/Cl = 9.85×10^{-13}/Cl$^- + 1.53 \times 10^{-15}$ for present-day Baltic seawater (Fig. 5). However, the Äspö groundwater samples do not lie on either mixing line, indicating that the 36Cl contained in groundwater at the Äspö site has a different origin from that of present-day Baltic seawater, ocean water, and commercial mineral waters.

According to Andrews et al. (1986), the maximum amount of excess 36Cl atoms available via fallout from the bomb pulse is 1.4×10^9 n/L. If this was input into modern Baltic seawater, the apparent 36Cl/Cl ratio would reach 2.19×10^{-14}. However, the observed 36Cl/Cl ratio was only $(1.8 \pm 1.8) \times 10^{-15}$. Furthermore, if 1.4×10^9 n/L of excess 36Cl atoms from the bomb pulse was added to shallow groundwater with the lowest chloride ion concentration of 4.51–42.02 meq/L at well KR0013B, the apparent 36Cl/Cl ratio would range from 5.53×10^{-14} to 5.16×10^{-13}. In fact, however, the ratio changed only from a minimum of $(4.7 \pm 1.2) \times 10^{-15}$ in 1995 to a maximum of $(2.40 \pm 0.4) \times 10^{-14}$ in 1997. In other words, the contribution of airborne 36Cl atoms from the bomb pulse or cosmic ray irradiation can be ignored in both shallow and deep groundwater.

In water samples with chloride concentrations of 5000 to 8000 mg/L, the 36Cl/Cl ratio increased linearly from 1.8×10^{-15} to 4.0×10^{-14} as the number of 36Cl atoms per liter of groundwater increased (Fig. 6). In samples with chloride concentrations above 10000 mg/L (Field “A” in Fig.6), the ratios were randomly distributed from 4.0×10^{-14} to 5.7×10^{-14} and were no longer linearly correlated with the number of 36Cl atoms; instead, the ratios were closer to those of the brine samples from the Lax-02 borehole. This finding also indicates that 36Cl was produced in situ in the subsurface and that the ratio had already reached secular equilibrium in groundwater with chloride concentrations greater
than 10000 mg/L, provided that most of chlorine originated in the intrusion of ancient seawater into the Baltic Shield as suggested by Louvant et al. (1999) and Savoye (1998).

To confirm the equilibrium ratio of 36Cl/Cl in granite, we measured the 36Cl/Cl ratios of six rock-matrix samples collected at KA2862A, KA3010A, KA3067A, KA3105A, KA3385A, and KA3510A. Since the Äspö granite is very old, if 36Cl is generated in the rock then the 36Cl/Cl ratios in its matrix should have reached secular equilibrium. The 36Cl/Cl ratios measured in the rock matrix samples were $(5.10 \pm 0.60) \times 10^{-14}$ at KA2862A; $(8.60 \pm 0.60) \times 10^{-14}$ at KA3010A; $(9.70 \pm 0.80) \times 10^{-14}$ at KA3067A; $(1.52 \pm 0.54) \times 10^{-14}$ at KA3105A; $(1.27 \pm 0.42) \times 10^{-14}$ at KA3385A; and $(2.06 \pm 0.22) \times 10^{-14}$ at KA3510A. The measured ratios varied greatly among the six rock samples, perhaps because of the different rock types and the heterogeneous distribution of U and Th in the very small rock pieces sampled. The 36Cl/Cl ratio in rock depends on the distribution and density of fissures and microfractures, where these neutron sources are concentrated (Moran et al., 1995). Trace elements, which absorb neutrons, also have a heterogeneous distribution in small rock pieces.

The secular equilibrium ratio can be theoretically calculated from the intensity of the estimated neutron flux in a rock matrix (Feige et al., 1968; Andrews et al., 1986) as follows:

$$^{36}Cl = \sigma \cdot \Phi \cdot ^{35}Cl \cdot (1 - e^{-\lambda_{38} \cdot t}) / \lambda_{36}$$

$$Cl = 1.7 \times 10^{32} \cdot \rho_{rock} \cdot [Cl]$$

$$\left(\frac{^{36}Cl}{Cl} \right)_t = 4.55 \times 10^{-10} \cdot \Phi \cdot (1 - e^{-\lambda_{38} \cdot t})$$

where σ is the cross section for the neutron capture of 35Cl (44 barns); Φ is the neutron flux produced by spontaneous fission and the (α,n) reaction induced by α particles.
emitted from U and Th in the rock; Cl and ^{35}Cl are the total numbers of target nuclide atoms of $^{35+37}\text{Cl}$ and ^{35}Cl in the rock, respectively, calculated from the chloride concentration ([Cl], ppm per 1 g of rock), a relative ^{35}Cl abundance of 0.758, and rock density ρ_{rock}; λ_{36} is the decay constant of ^{36}Cl (7.30×10^{-14} s). Using the measured concentrations of U, Th, and light and trace elements in Åspö granite, the neutron flux intensity was estimated to be $(1.11 \pm 0.18) \times 10^{-4}$ n cm$^{-2}$ s$^{-1}$.

The average $^{36}\text{Cl}/\text{Cl}$ secular equilibrium ratio was subsequently calculated to be $(5.05 \pm 0.82) \times 10^{-14}$, whereas the average measured ratio in the six rock samples examined was $(4.71 \pm 3.72) \times 10^{-14}$. Furthermore, the measured $^{36}\text{Cl}/\text{Cl}$ ratios of seven groundwater samples that had high chloride concentrations (more than 10000 mg/L) averaged $(4.94 \pm 0.19) \times 10^{-14}$. These three secular equilibrium ratios, which were obtained by different methods, are consistent within approximately 10%. Consequently, we can accept $(5.05 \pm 0.82) \times 10^{-14}$ as the $^{36}\text{Cl}/\text{Cl}$ secular equilibrium ratio for the Åspö granite.

4.3 Groundwater mixing caused by intrusion of present-day Baltic seawater

According to Banwart et al. (1994), Laaksoharju et al. (1999), and Mahara et al. (2001), tunnel excavation caused large-scale intrusion of modern Baltic seawater, which penetrated deeply via fractures into the bedrock. To characterize the effect this intrusion would have on Åspö groundwater, mixing between modern Baltic seawater (Cl$^-$, 3760 mg/L; $^{36}\text{Cl}/\text{Cl}$, 1×10^{-15}) and waters with different salinities and different $^{36}\text{Cl}/\text{Cl}$ ratios was examined. For the latter, waters with a Cl$^-$ concentration of 47000 mg/L and a $^{36}\text{Cl}/\text{Cl}$ ratio of 5.05×10^{-14} were considered to be brine; those with respective values of 16000
mg/L and 5.05×10^{-14} to be high-salinity water, found in the deepest part of the Äspö site; those with values of 10000 mg/L and 5.05×10^{-14} to be high-salinity glacial brine; those with values of 5000 mg/L and 5.05×10^{-14} to be low-salinity glacial brine; those with values of 1000 mg/L and 5.05×10^{-14} to be relatively high salinity, shallow groundwater; those with values of 100 mg/L and 1×10^{-13} to be relatively low salinity, shallow groundwater; and those with values of 10 mg/L and 1×10^{-13} to be meteoric water. Figure 7 shows the relationships between \(\frac{1}{\text{Cl}} \) and \(^{36}\text{Cl}/\text{Cl} \) ratios that would result from the mixing of present-day Baltic seawater with such waters.

Most groundwater samples with \(^{36}\text{Cl}/\text{Cl} \) ratios greater than 2.5×10^{-14} are distributed in the mixing zone between present-day Baltic seawater and water with chloride concentrations higher than 10000 mg/L; tritium is not detectable in these waters. On the other hand, water with relatively low \(^{36}\text{Cl}/\text{Cl} \) ratios, in which tritium is detectable, is distributed in the mixing zone between modern Baltic seawater and low-salinity water, with chloride concentrations of less than 5000 mg/L. When groundwater was mixed with present-day Baltic seawater (Fig. 7), the mixing indicator employed was the detection limit of tritium (0.3 TU, see Appendix). Tritium concentrations in seawater and in the shallow groundwater surrounding the Äspö site have remained relatively high. The origin of the tritium is global fallout from nuclear weapons testing before the early 1960s and other artificial sources such as release from nuclear facilities. Although it is not clear whether artificial contributions have maintained tritium at a relatively high level in present-day Baltic seawater, there are nuclear power plants and spent-fuel storage facilities near the Äspö site.

Since Baltic seawater in 1992 and shallow groundwater in 1991 had tritium concentrations of 42 TU and 60 TU, respectively (Banwart et al., 1994), in 2001 the
tritium detection limit in a mixture was equivalent to the inclusion of approximately 1.14% of present-day Baltic seawater. Therefore, if the groundwater has mixed homologously with modern Baltic seawater, it should be possible to detect tritium in all of the samples. However, in several water samples, tritium was not detected (Fig. 7, solid squares). Most groundwaters lacking tritium are aligned with mixing lines between present-day Baltic seawater and brine or high-salinity water with more than 10000 mg/L of chloride. Although these waters, based on their location on the plot, contain at least 50% modern Baltic seawater, tritium was not detected in them. This finding is inconsistent with the relationship between the tritium detection limit and the mixing rate with modern Baltic seawater. This contradiction led us to infer that these waters at the time of sampling had not yet become mixed with modern Baltic seawater as a result of tunnel excavation.

Alternatively, mixing between ancient Baltic seawater (with maximum chloride concentrations of 8300 mg/L and a $^{36}\text{Cl}/\text{Cl}$ ratio of 1×10^{-15}) and water with various salinities and $^{36}\text{Cl}/\text{Cl}$ ratios was investigated (Fig. 8). Ancient Baltic seawater has a maximum salinity of about twice that of modern Baltic seawater (Ekman, 1953). The salinity (S) of ancient Baltic seawater, estimated as 10–15‰, was approximately converted to 5500–8300 mg/L of chloride ions using the equation $S = 1.80655 \times \text{Cl (g/L)}$ (Clesceri et al., 1989). Most of the samples from areas in which tritium was undetectable and with a salinity of more than 10000 mg/L were aligned with one of these mixing lines. Thus, the high-salinity groundwater samples that strayed greatly away from the mixing lines between present-day Baltic seawater (Fig. 7) possibly preserve ancient hydrogeochemical conditions produced by subsurface paleo-mixing at the Äspö site.

It can therefore be concluded that great changes in hydrogeochemical conditions were
caused by the dramatic drawdown of the water table resulting from tunnel excavation, but that at the time of sample collection several waters had not yet been affected by mixing with modern Baltic seawater. Moreover, we cannot exclude the possibility that some waters have preserved their ancient hydrogeochemical characteristics.

4.4 Estimated magnitude of the crustal degassing flux of 4He and the 4He accumulation rate in groundwater

The magnitude of the crustal degassing flux of 4He was estimated using the following equation (Andrews, 1985):

$$ J_{He} = 2G \sqrt{\frac{D_{He}T}{\pi}} $$

(5)

where G is the production rate of He in rock (3.4×10^{-12} ccSTP/(cm3.y)$_{rock}$), T is the age of the rock formation (1.8×10^9 years), and D_{He} is the 4He diffusion coefficient in the granite matrix, where fractures and microfractures are assumed to be the main routes of 4He transport.

Although a typical diffusion coefficient of dissolved 4He has not yet been determined for Äspö granite, Holgersson et al. (1998) reported $(6.5–25) \times 10^{-14}$ m2/s to be the diffusion coefficient of HTO (titrated water) in Äspö diorite, which is one of the typical granites at the Äspö site. However, 4He transport in the crust might best be explained by using one 4He diffusion coefficient for the matrix and another for the water-filled micropores, as in the wet-sponge model described by Andrews et al. (1989b). In the present case, a larger value for the diffusion coefficient for dissolved 4He was used than found for HTO, because the diffusion of dissolved 4He is greater than HTO. When the crustal 4He flux was estimated using 4He diffusion coefficients of 1×10^{-13} and $1 \times$
10^{12} m2/s, the 4He flux ranged from 2.9×10^{-8} to 9.1×10^{-8} cm3(STP) cm$^{-2}$ y$^{-1}$ at the Äspö site.

The magnitude of the 4He degassing flux (J_{He}) was also estimated, using the 4He profile (Eq. 1 and Fig. 3), the 4He diffusion coefficient values reported for the Äspö diorite, and Fick’s analogous equation:

$$J_{He} = -D_{He} \frac{dHe}{dZ}$$

(6)

The gradient of the 4He concentration (m3STP·m$^{-3}$water·m$^{-1}$) was calculated using Eqs. (1) and (6) as $\frac{dHe}{dZ} = -6.8 \times 10^{-7} \cdot \exp(-0.016 \cdot Z)$. The magnitude of the 4He degassing flux at a depth of $Z = -400$ m was predicted to be between 1.3×10^{-7} and 1.3×10^{-6} (ccSTP/(cm2 y)), using the two 4He diffusion coefficients 1×10^{-13} and 1×10^{-12} m2·s$^{-1}$, respectively.

The crustal 4He fluxes estimated in these two different ways range from 2.9×10^{-8} to 1.3×10^{-6} (ccSTP/cm2 y). These are smaller (up to two orders of magnitude less) than the values of 3.3×10^{-6} cm3(STP) cm$^{-2}$y$^{-1}$, reported by O’Nions and Oxburgh (1983) and used to explain the global atmospheric He budget (Torgersen, 1989), and the value of 3.6×10^{-6} cm3(STP) cm$^{-2}$y$^{-1}$ for the Great Artesian Basin (GAB), estimated by Torgersen and Clarke (1985). However, these estimated 4He flux results are comparable to other estimated degassing 4He flux magnitudes from around the world: for example [ccSTP/(cm2 y) in each case], 4.4×10^{-7} for the Paris Basin (Marty et al., 1993); 2.9×10^{-6} (Martel et al., 1989) and $(0.8–5.2) \times 10^{-7}$ (Stute et al., 1992) for the Great Hungarian Plain; $(2.3–3.0) \times 10^{-7}$ for the Molasse Basin in Austria (Andrews et al., 1985); 2.0×10^{-7} for the Morsieben Basin in Germany (Osenbrück et al., 1998); $(2.2–2.9) \times 10^{-6}$ for the Auob Sandstone Aquifer in Namibia (Heaton, 1984); $(2.8–3.1) \times 10^{-6}$ for northern Taiwan (Sano et al.,
Groundwater residence times (T) can be calculated using the estimated 4He degassing flux and Eq. (7), as per studies conducted by Torgersen and Clarke (1985), Stute et al. (1992), Osenbrück et al. (1998), and Lippmann et al. (2003):

$$T = \frac{He_{\text{excess}}}{J_{^4\text{He}}/\rho_{\text{water}} \cdot \phi \cdot Z + A} \quad (7)$$

where He_{excess} is the excess 4He concentration in groundwater (ccSTP/g$_{\text{water}}$), ρ_{water} is the density of the water (1.0 ~ 1.188 g/cm3), ϕ is the porosity of the rock (0.005), Z is the sampling depth of the groundwater (400 m), and A is the in situ accumulation rate in pore water. Employing the density of brine water cited in Frape et al. (1984), which has a maximum chloride ion concentration of 168,000 mg/L in the Canadian Shield, it was estimated that the oldest groundwater residence time was approximately 4.3–25 million years at KA2862A in 1995.

Conversely, the 4He accumulation rate can be calculated from the oldest residence time. The approximate accumulation rates were subsequently found to range from 1.2×10^{-9} to 7×10^{-9} (ccSTP/(g$_{\text{water}}$ y)). These values are several times the average in situ 4He accumulation rate of 6.76×10^{-10} (ccSTP/(g$_{\text{water}}$ y)) in the Äspö granite and, furthermore, are significantly greater than the 4He accumulation rate of 2.91×10^{-10} (ccSTP/(g$_{\text{water}}$ y)) estimated for the GAB (Torgersen and Clarke, 1985). Nevertheless, the estimated crustal 4He flux was small at the Äspö site, because the porosity of the local rock (0.5%) is very small compared with that (20–30%) in the aquifer of the GAB.

4.5 Reconstruction of the relationship between the dissolved 4He concentration and
Groundwater flows through fractures or fissures in the granite at the Äspö site. Most 36Cl atoms in groundwater in granite fractures are produced *in situ* through neutron capture. Since thermal neutrons are absorbed in rock over a mean free path of approximately 50 cm, the stable chlorine atom 35Cl is equally likely to be activated in interstitial water in fractures as in rock (Lehmann et al., 1997).

The 36Cl/35Cl ratio gradually reaches a constant level in relation to the increasing dissolved 4He concentration in old groundwater, because the production of 36Cl by neutron capture and its subsequent decay reach radioactive equilibrium, and the 36Cl/35Cl ratio approaches secular equilibrium. The 36Cl/35Cl ratio changes exponentially ($1 - \exp(-\lambda t)$), where λ is the decay constant and t is elapsed time. If we express elapsed time as the dissolved excess 4He concentration, a strong correlation is observed between the increasing 36Cl/35Cl ratio and the 4He concentration (Fig. 9).

The 36Cl/35Cl ratio increases dramatically as the dissolved 4He concentration increases up to 0.01 ccSTP/g, but then it tends to level off when the 4He concentration reaches 0.02 ccSTP/g as secular equilibrium conditions are attained(Fig. 9). If confirmation of both the edge point as the lower limit of the 36Cl/35Cl ratio at secular equilibrium and the starting point is possible, a theoretical growth curve of 36Cl in relation to the dissolved 4He concentration can be fitted. The starting point of this theoretical curve for the Äspö groundwater system can easily be set; surface seawater has a low ratio of 36Cl/35Cl (approximately 0) owing to great dilution by stable chlorine and low dissolved 4He concentrations that are close to equilibrium with atmospheric 4He in shallow seawater. However, if the linear correlation between radioactive decay and 4He concentration has been kept after mixing, then the theoretical neutron activation curve
can be fitted.

Mixing is important for a dramatic change in ^{36}Cl and ^4He concentration in the very short term like a tunnel excavation. We examined the effect of simply mixing groundwater with tracers of different concentrations. When groundwater A ($^{36}\text{Cl}/\text{Cl}$ ratio, R_A; chloride concentration, Cl_A; ^4He content, He_A) mixes with groundwater B ($^{36}\text{Cl}/\text{Cl}$ ratio, R_B; chloride concentration, Cl_B; ^4He content, He_B), the ^4He concentration in the mixture maintains linearity to the elapsed time because ^4He is a stable element and its concentration is linearly related with time if ^4He accumulates at a constant rate. On the other hand, the $^{36}\text{Cl}/\text{Cl}$ ratio usually deviates from the exponential curve that is controlled by radioactive decay, as discussed by Park et al. (2002). However, if both groundwaters A and B have already reached secular equilibrium (i.e., $R_A = R_B = \text{constant secular equilibrium ratio}$), the $^{36}\text{Cl}/\text{Cl}$ ratio in the resulting mixture does not change: that is, $R = \frac{m \cdot (R_A \cdot \text{Cl}_A) + n \cdot (R_B \cdot \text{Cl}_B)}{m \cdot \text{Cl}_A + n \cdot \text{Cl}_B}$, $m + n = 1$, $m \geq 0$ and $n \geq 0$. If R_A and R_B are the same secular equilibrium ratio, then R is equivalent to $R_A=R_B$. Thus, if two groundwaters in secular equilibrium with respect to the $^{36}\text{Cl}/\text{Cl}$ ratio are mixed, then the ratio should keep constant in relation to the ^4He concentration. In other words, the linear correlation between the radioactive decay and ^4He concentration should be retained after mixing.

The theoretical correlation curve fitted after omitting all data points where the groundwater does not fall within the secular equilibrium range owing to mixing is given in Fig. 10. The remaining data points correspond to the data collected at boreholes SA2718A, SA2743A, SA2783B, KA2858A, and KA2862A, where Mahara et al. (2001) confirmed that the groundwater was very old and increased in the $^{40}\text{Ar}/^{36}\text{Ar}$ ratio as compared to that of atmospheric Ar. These samples should show a linear correlation
between the dissolved 4He concentration and the elapsed time with the constant secular equilibrium 36Cl/Cl ratio even if groundwater mixing occurred because of the tunneling. However, the data relating to SA2783B was deleted from the data set, because SA2783B contains a small amount of tritium (1.69 ± 0.25 TU) indicating that it has recently been affected at least by a shallow groundwater intrusion.

In this analysis, the modern Baltic seawater was used as the starting point and sample KA2858A as the location of the lower limit of secular equilibrium for 36Cl/Cl. The growth curve of the 36Cl/Cl ratio (Fig. 10) is described by the following equation ($r^2 = 0.96$):

$$\left(\frac{^{36}\text{Cl}}{\text{Cl}} \right)_t = \left(\frac{^{36}\text{Cl}}{\text{Cl}} \right)_{eq} \times \left\{ 1 - \exp\left(-\left(126 \pm 49.7 \right) \times He \right) \right\}$$

where He is the dissolved excess 4He concentration (ccSTP/g) in groundwater. $(^{36}\text{Cl}/\text{Cl})_{eq}$ is the best fitted secular equilibrium ratio, $(5.26 \pm 0.24) \times 10^{-14}$, for the groundwater, which is a slightly larger than the value estimated in the section 4.2. Nevertheless, it is acceptable considering the inclusion of the measurement error in the 36Cl/Cl ratio which is more than 10%.

From Fig. 10, the accumulation rate of 4He is found to be $(1.83 \pm 0.72) \times 10^{-8}$ ccSTP/(g$_{\text{water}}$y). While this is approximately 27 times greater than the in situ production rate of 4He, it is significantly smaller than 72 times greater found in the GAB (Torgersen and Clarke, 1985). Furthermore, this rate is two to ten times greater than that estimated from the simple 4He diffusion model. Although there are still some data quality problems and more discussion is required to determine the edge point as the lower limit of the 36Cl/Cl ratio at secular equilibrium in the severe groundwater mixing, it is proposed that this method can estimate the 4He accumulation rate without prior determination of the
magnitude of \(^4\)He degassing flux.

5. CONCLUSIONS

The study’s major conclusions are as follows.

(1) Groundwater at the Åspö site has been disturbed and become mixed as a result of a great intrusion of present-day Baltic seawater caused by the tunnel excavation. Moreover, the disturbance increased at deep sites at each later observation due to a deep turbulent flow of groundwater with high density and high salinity generated by movement of modern Baltic seawater through the many fractures connecting the deep sites with the surface as a result of groundwater being pumped out of the tunnel. Although the variation in the dissolved \(^4\)He concentration in high-salinity water changed with time elapsed since the tunnel excavation, the distribution of the \(^4\)He concentration observed in 1995 is probably close to the original distribution before tunnel excavation, given that the tunnel first penetrated to deep locations in 1995 and because a good correlation between dissolved \(^4\)He concentration and chloride concentration was observed in samples collected in 1995.

(2) The \(^{36}\text{Cl}/\text{Cl}\) ratio increased linearly in relation to the number of \(^{36}\text{Cl}\) atoms to \(4 \times 10^{-14}\) in Åspö groundwater samples with 5000–8000 mg/L of chloride. The ratio at chloride concentrations above 10000 mg/L, which was greater than \(4 \times 10^{-14}\) (the value estimated to be the secular ratio for brine at Laxemar), ceased to correlate with the number of \(^{36}\text{Cl}\) atoms. This suggests that \(^{36}\text{Cl}\) in the groundwater at Åspö is not cosmogenic, but was produced \textit{in situ} through the neutron capture of \(^{35}\text{Cl}\) atoms in interstitial water in the granite. The intensity of the neutron flux in the deep-rock environment was estimated to average \((1.11 \pm 0.18) \times 10^{-4} \text{ n cm}^{-2}.\text{s}^{-1}\). The secular
equilibrium ratio of $^{36}\text{Cl}/\text{Cl}$ in the rock was estimated to be $(5.05 \pm 0.82) \times 10^{-14}$.

(3) Groundwater mixed and unmixed conditions were distinguished by investigating the relationship between $1/\text{Cl}$ and $^{36}\text{Cl}/\text{Cl}$. Although tunnel excavation caused severe disturbance in groundwater because of deep intrusion of present-day Baltic seawater, some waters escaped mixing and have maintained their paleo-hydrogeochemical condition. These waters show evidence of mixing with ancient Baltic seawater, which had higher salinity than the modern Baltic seawater.

(4) The crustal degassing flux of ^4He was estimated to range from 2.9×10^{-8} to 1.3×10^{-6} (ccSTP/cm2 y) by using two different methods. Although this is up to two orders of magnitude smaller than that estimated in the GAB, it is comparable to values estimated for other basins in the world. The ^4He accumulation rate ranged from 1.2×10^{-9} to 7×10^{-9} (ccSTP/(g$_\text{water}$ y)), though the ^4He diffusion coefficient for the Åspö granite still needs to be estimated accurately.

(5) In interstitial water and rock, the number of ^{36}Cl atoms increases over time owing to the constant neutron flux. If the concentration of dissolved ^4He also increases constantly with time, changes in the ^4He concentration can be used to represent elapsed time. Therefore, it is possible to determine the magnitude of the ^4He accumulation rate from the relationship between the increasing ^4He concentration and the increasing $^{36}\text{Cl}/\text{Cl}$ ratio. When two groundwaters, both at secular equilibrium with respect to the $^{36}\text{Cl}/\text{Cl}$ ratio, are mixed, the ratio ceases to change and the dissolved ^4He concentration maintains linearity to the elapsed time despite the severe disturbance caused by tunneling. The actual ^4He accumulation rate at the Åspö site was estimated to be $(1.83 \pm 0.72) \times 10^{-8}$ ccSTP/(g$_\text{water}$ y), using data from samples in which the $^{36}\text{Cl}/\text{Cl}$ ratio had reached secular equilibrium. This is approximately twenty seven
times the value estimated on the basis of in situ production (6.76×10^{-10} ccSTP/(g$_{\text{water}}$·y)). Reasonable 4He accumulation rates probably range from 6.76×10^{-10} to $(1.83 \pm 0.72) \times 10^{-8}$ ccSTP/(g$_{\text{water}}$·y) for the Åspö site, though the determination of the edge point as the lower limit of the 36Cl/Cl ratio at secular equilibrium requires further work.

Acknowledgements: This work was part of the cooperative research between SKB and CRIEPI during the period from 1995 to 2002. I thank Dr. P. Wikberg (Swedish Nuclear Fuel and Waste Management Company) for arranging this fieldwork at Åspö HRL. I further thank Prof. L. K. Fifield (Australian National University), Dr. R. G. Cresswell (Commonwealth Scientific and Industrial Research Organization), and Prof. M. Suter and Dr. H. A. Synal (Swiss Federal Institute of Technology) for measuring 36Cl in the Åspö groundwater, and Prof. D. Elmore (Purdue University) for measuring 36Cl in rock matrixes using an accelerator mass spectrometer. At last, we thank Dr. Hunt and one anonymous reviewer for their critical comments on the manuscript.

Appendix: Analytical protocols

Tritium

Tritium concentrations were measured by counting beta rays after electrolytic enrichment (Japanese Science and Technology Agency, 1976). One liter of groundwater was reduced to about 40 ml by electrolysis using Ni/Fe electrodes. Forty milliliters of distillate and 60 ml of scintillation cocktail were mixed in a 100-ml Teflon vial. This mixture was analyzed for 1000 min using a low-background liquid-scintillation counter. The detection limit for this method is 0.3 TU.
U and Th in the rock

A sample of 0.5 g of pulverized rock powder was placed in a Teflon beaker and completely dissolved by adding concentrated HNO₃ and HF and heating on a hot plate. After subsequent addition of concentrated HNO₃ and HClO₄ to the resolved material, the mixture was again heated until HClO₄ fuming occurred. The re-resolved material was diluted with a small amount of weak HCl, and diluted further to 100 ml using super-pure distilled water. The U and Th concentrations were measured using inductively-coupled plasma mass spectrometry (ICP-MS) (Japanese Ministry of Education and Science, 2002).

Dissolved noble gases

Dissolved noble gases were separated from the water samples using 15 min of ultrasonic vibration in a stainless steel extraction line under high vacuum (1 × 10⁻⁶ mbr), after attaching the pinched-off annealed copper tube and removing one pinch-off using a reopening device. A liquid nitrogen cold trap removed the water vapor and condensable gases. Active gases were removed using two titanium-zirconium getters, one heated to 450 °C and the other at room temperature. The 1-cc gas sample was separated from the residual gas, which excluded active gases, and was isolated in a stainless steel ampoule bottle for measurement of argon isotopic ratios. Heavy noble gases (Ar, Kr, and Xe) in the residual gas in the extraction line were removed by two activated charcoal traps cooled in liquid nitrogen, and further cooled to 40 K using a cryogenic pump to remove residual argon and moisture.

The residual He and Ne mixture in the purification unit was fed into a VG-5400 mass
spectrometer (Micro Mass Ltd). First, the concentration of 4He and the 20Ne/4He ratios were measured six times in 10 min. The mixture was then cooled to 22 K using a cryogenic pump to remove Ne, and gas fed back through the spectrometer to measure the ratio of 3He to 4He. This was repeatedly measured (at least 50 times) over approximately 60 min, with a standard deviation of 1σ at less than 1%. The precise values of the 4He concentrations, 20Ne/4He ratios, and 3He/4He ratios were determined by comparison with two sets of standard air values measured under the same conditions before and after measuring the samples. This study assumed the ratio of 3He/4He in standard air to be 1.384×10^{-6} (Clarke et al., 1976). The 4He concentrations, 3He/4He ratios, and 20Ne/4He ratios were determined with measurement errors of less than 0.5, 1, and 5%, respectively (described in detail in Sano et al., 1993). These errors, which do not include sampling errors from loss or contamination, were verified through the reproducibility of the 4He concentration measurements in the standard air sample and the ratios of 3He/4He and 20Ne/4He dissolved in the distilled water samples, and by using 2.4×10^{-9} ccSTP and 7.2×10^{-9} ccSTP as system blanks for 4He and 20Ne, respectively. The average gas-stripping efficiency of the dissolved gases from the water samples was determined to be 97% by comparing the 4He extracted from distilled water equilibrated with atmospheric air at 23°C to the data in the literature (Weiss, 1971).

36Cl/Cl ratio

Chloride was precipitated as AgCl in a clean room. The precipitate was purified by repeated re-dissolution in NH$_4$OH and re-precipitation (after the removal of sulfur as BaSO$_4$). All AgCl precipitation samples to be used in accelerator mass spectrometry (AMS) measurements were made following the standard procedures used at the
Australian National University (ANU) (Creswell, 2001). The 36Cl/Cl ratios for the groundwater samples were measured using accelerator mass spectrometers located at ANU and at ETH in Zurich. Measurement of the 36Cl/Cl ratio for the rock samples was performed using the accelerator mass spectrometer at the Prime Laboratory, Purdue University, West Lafayette, IN, USA, after chemical Cl separation as AgCl and purification of its precipitation from the rock matrix.

References

Banwart S., Gustafsson E., Laaksoharju M., Nilsson A.-Ch., Tullburg E.-L., and Wallin B., 1994. Large-scale intrusion of shallow water into a vertical fracture zone in crystalline bedrock: Initial hydrochemical perturbation during tunnel construction at the Hard Rock

Hydrogeochemical conditions and evolution at the Äspö HRL, Sweden, Appl. Geochem. 14, 835-859.

Torgersen T. and Clarke W. B., 1985. Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin,

Figure Captions

Fig. 1: Location of the Äspö HRL in Sweden and projection of the spiral tunnel (heavy solid line) in the HRL. The open circle indicates the location of the deep borehole Lax-02 at Laxemar.

Fig. 2: (a) Locations of the boreholes for sampling groundwater in the HRL, and the distribution of areas of high groundwater conductivity via fractures. (b) Vertical cross section showing locations and depth of boreholes for sampling groundwater in the tunnel.

Fig. 3: Relationship between dissolved ^4He concentration ($\text{cm}^3\text{STP/m}^3$) and sampling depth (- z (m)) of groundwater. The fitting curve, which is described by the exponential function given in eq. 1, was drawn using the corrected data for 1995. The measurement error in the ^4He concentration was less than 1%.

Fig. 4: Relationship between dissolved ^4He concentration and chloride ion concentration in groundwater from 1995 to 2001. Disturbances in the ^4He concentration can be seen in all samples of groundwater collected from 1995 to 2001 with more than 200 meq/L of chloride ion concentration. The measurement error in ^4He concentration was less than 1%. Squares and solid line, sampled in 1995; open circles and broken line, sampled in 1997; open triangles and dotted line, sampled in 1999; open stars and dash-dot line, sampled in 2001.

Fig. 5: The origin of ^{36}Cl in the Äspö groundwater, as deduced from the relationship between chloride concentration and $^{36}\text{Cl}/\text{Cl}$ ratio. The solid squares with error bars
represent Äspö groundwater, modern Baltic seawater, Japan Sea ocean water, commercial mineral waters (European: S. Pellegrino, Thonon, Volvic; Japanese: Tennen Meisui, Shikotsuko Hisui, Tanigawarennpou Meisui, Rokkou Oishii Mizu, Fuji Mineral Water, Sennin Hisui (Mahara et al., 2003)), and brine at Laxemar; the two dash-dot lines represent mixing between commercial mineral waters and ocean water \(\frac{^{36}\text{Cl}}{\text{Cl}} = 1 \times 10^{-12}/\text{Cl}^- + 2.4 \times 10^{-16}\), and mixing between commercial mineral waters and modern Baltic seawater \(\frac{^{36}\text{Cl}}{\text{Cl}} = 9.85 \times 10^{-13}/\text{Cl}^- + 1.53 \times 10^{-15}\); the fine solid circle indicates the brackish and high-saline water in the Äspö groundwater groups.

Fig. 6: Relationship between the \(^{36}\text{Cl}/\text{Cl}\) ratio and the number of \(^{36}\text{Cl}\) atoms per liter of water for the Äspö groundwater and brine from the deep borehole Lax-02 at Laxemar. The three dashed lines show the relationship for chloride concentrations of 1000, 5000, and 8000 mg/L. The shaded area indicates where the water is at secular equilibrium with respect to the \(^{36}\text{Cl}/\text{Cl}\) ratio. Field A, enclosed by the dash-dotted line within the shaded area, indicates samples at secular equilibrium at the Äspö site. The solid circles with error bars are brine water measured in this study and by Louvant et al. (1999).

Fig. 7: Mixing lines between present-day Baltic seawater and seven different levels of saline water with different \(^{36}\text{Cl}/\text{Cl}\) ratios and lacking tritium. Present-day Baltic seawater (\(\text{Cl}^-, 3760 \text{ mg/L}; ^{36}\text{Cl}/\text{Cl}, 1 \times 10^{-15}; ^3\text{H}, 42 \text{ TU in 1992}\)) is shown by the solid circle. Seven different saline waters with respective \(\text{Cl}^-\) concentrations and \(^{36}\text{Cl}/\text{Cl}\) ratios of \((47000 \text{ mg/L and } 5.05 \times 10^{-14})\), \((16000 \text{ mg/L and } 5.05 \times 10^{-14})\), \((10000 \text{ mg/L and } 5.05 \times 10^{-14})\), \((5000 \text{ mg/L and } 5.05 \times 10^{-14})\), \((1000 \text{ mg/L and } 5.05 \times 10^{-14})\), \((100 \text{ mg/L and } 1 \times 10^{-13})\), and \((10 \text{ mg/L and } 1 \times 10^{-13})\) are indicated by the seven solid lines. The thick dash-dotted line
indicates the predicted detection limit (0.3 TU) of tritium in a mixture consisting of modern Baltic seawater (equivalent to 1.14% seawater) in 2001. The five fine dash-dotted lines represent mixtures with 5%, 10%, 25%, 50%, and 75%, respectively, of modern Baltic seawater. Open circles represent groundwater samples with detectable tritium; solid squares, groundwater samples lacking tritium.

Fig. 8: Mixing lines between ancient Baltic seawater and five saline waters with different $^{36}\text{Cl}/\text{Cl}$ ratios and plots of groundwater samples lacking tritium (solid squares). Ancient Baltic seawater (solid hexagon) had a Cl$^-$ concentration of 8300 mg/L and a $^{36}\text{Cl}/\text{Cl}$ ratio of 1×10^{-15}. The five saline waters (broken lines) had respective Cl$^-$ concentrations and $^{36}\text{Cl}/\text{Cl}$ ratios of (47000 mg/L and 5.05×10^{-14}), (16000 mg/L and 5.05×10^{-14}), (10000 mg/L and 5.05×10^{-14}), (5000 mg/L and 5.05×10^{-14}), and 1000 mg/L and 5.05×10^{-14}.

Fig. 9: Relationship between $^{36}\text{Cl}/\text{Cl}$ ratio and dissolved ^4He concentration in groundwater, and the theoretical range of secular equilibrium with respect to the $^{36}\text{Cl}/\text{Cl}$ ratio in rock at the Äspö site. The shaded area is the secular equilibrium range for the $^{36}\text{Cl}/\text{Cl}$ ratio in rock. Squares with error bars represent groundwater sampled in 1995; circles with error bars, sampled in 1997; triangles with error bars, sampled in 1999; stars with error bars, sampled in 2001.

Fig. 10: Relationship between groundwater samples at secular equilibrium with respect to the $^{36}\text{Cl}/\text{Cl}$ ratio and the theoretical growth curves of ^{36}Cl activated in the terrestrial water in rock for the neutron flux intensity at the Äspö site. The data set are fitted with the solid
line, \(\frac{^{36}\text{Cl}}{\text{Cl}} = 5.26 \times 10^{-14} \cdot (1 - \exp(-126 \times He)) \), \(r^2 = 0.96 \). Squares with error bars represent groundwater samples at secular equilibrium for \(^{36}\text{Cl}/\text{Cl}\) ratio and lacking tritium; triangle with error bar, present-day Baltic seawater, the starting point of the activation curve.
Fig. 1

Map showing locations of Äspö and Lax-02 in the Baltic Sea region.
Fig. 2
$$^4\text{He} = 4.26 \times 10^{-5} e^{-0.016z} \quad (r^2 = 0.92)$$

Fig. 3
Dissolved 4He Concentration (ccSTP/cm3 water) vs Chloride Ion Concentration (meq/L).

- 1995
- 1997
- 1999
- 2001

Fig. 4
Cl/Cl ratio in groundwater

- **Chloride concentration (mg/L)**
 - Ocean water
 - Laxemar (brine)
 - Present Baltic Seawater
 - Commercial mineral water

Mixing lines between commercial mineral water and ocean water/Baltic seawater

Fig. 5
This study Louvain (1999)

Brine water (Lax.02)

Fig. 6
Fig. 7

- Present-day Baltic Seawater (Cl⁻: 3760 mg/L)
- 75% 50% 25% 10% 1.14% (detection limit)

36 Cl/Cl ratio vs. 1/Cl⁻

Symbols:
- ■ ³H undetected
- ○ ³H detected
Ancient Baltic Seawater
(max. Cl⁻ : 8300 mg/L)
Secular equilibrium range of $^{36}\text{Cl}/\text{Cl}$

Fig. 9
Fig. 10

Dissolved 4He concentration (ccSTP/g) vs. 36Cl/Cl ratio for seawater. The line represents the secular equilibrium range of 36Cl/Cl.
Table 1. Dissolved noble gases, 36Cl/Cl, tritium concentration in groundwater at the Äspö site from 1995 to 2001.

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>Date of pumping</th>
<th>4He (Moly)</th>
<th>3He/^{4}$He</th>
<th>Ne (cm$^{-3}$)</th>
<th>4He (cm$^{-3}$)</th>
<th>40Ar/^{36}$Ar</th>
<th>36Cl (pmol/L)</th>
<th>36Cl/Cl (pmol/L)</th>
<th>36Cl/Cl (pmol/L)</th>
<th>36Cl/Cl (pmol/L)</th>
<th>36Cl/Cl (pmol/L)</th>
<th>36Cl/Cl (pmol/L)</th>
<th>36Cl/Cl (pmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-01-01</td>
<td>1995-01-01</td>
<td>2.10E-14</td>
<td>5.60E-15</td>
<td>2.62E-14</td>
<td>2.28E-14</td>
<td>5.70E-15</td>
<td>2.28E-14</td>
<td>5.70E-15</td>
<td>2.28E-14</td>
<td>5.70E-15</td>
<td>2.28E-14</td>
<td>5.70E-15</td>
<td>2.28E-14</td>
</tr>
</tbody>
</table>

N.D.: Under the detection limit

1. Measurement of static water pressure
2. Monitoring static water pressure of the Lax-02 borehole located at Laxemar.
3. Analyzed by ETH and/or other by ANU.
4. These Age 3 samples from the residual groundwater samples collected in 1995 were reanalyzed by ANU in 2005.
5. This sample was degraded, because groundwater was collected from the reactor storage tank pumping up from the depth interval of 1420-1710 m of the Lax-02 borehole located at Laxemar.