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One-dimensional XY spin mode! with random exchange interaction is studied and our new
approach and its result are reported. The distinguishing feature of this model is that the
susceptibility diverges at T=(=0) due to the off-diagonal disorder, while the susceptibility of the
uniform system is constant at T, . The generality of this divergency is discussed. By our
method, a perturbation from the uniform system, the susceptibility has no singularity i in the
first order of the perturbation.
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§1 Introduction

Many random spin systems have been investigating for the classical Ising
models, but no study on the quantum spin systems has been reported except a few
cases. We study here the one-dimensional XY-spin model which was solved
exactly for the uniform case by Lieb, Schultz and Mattis and by Katsura 1 The
Hamiltonian we consider here is defined by ,

— X : q
S,{ = _; j; (G-}.Iaz+' +0‘}'"40~£f'7 ) ~ Z H}, G.LZ ) : (1.1)
where thé exchange interaction {J;} has the distribution function P(J) and the
external field {H;} is also randomly distributable.

The disoder of {Ji} is an off-diagonal disorder and of {H;} a diagonal one. In
almost of the present paper, H;=H. Our main interest is a following problem.

PROBLEM. Does the susceptibility x*? diverge affected by the randomness of
{Ji}as’

/Xz?Z ~ » 1
T (T)* ad¢ H=0. (1.2)

Note here, the susceptibility x** is a constant for the uniform case at T'=0.

Morgenstern and Wiiltz2) and Schiittler, Scalapino and Grant3) studied this
problem by the Monte Carlo method and concluded that the answer is yes,when
P(J) is a gaussian or a rectangular distribution, respectively.
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" An exact solution was found by Dyson4) and Smith5) for the general Poisson
distribution given by P(J) =2mmJ2m-le-mJ2 [(m-1)! with an integer m. A short
review is given in §2. The corrected resultis

/Xzi ~ ‘ '('m ) 1 . (1.3)
2= - .
i /5 T (0.T)? |,
where t, =r‘_43l r2,
Another exact solution was also found by Matsubara and Katsura®6) for the
distribution: P(J) = p8(J-Jg) + (1-p)8(J), i.e., thismodel is a diluted XY cham

From their solutlon eq.(5) of Ref.6, the susceptlblhty behaves as

/XE_Z A~ L =P 4 | - (1.4)
T v .
This has also singularity but without logarithmic correction.

We approach to this problem by the ST-transformation method which was
developed by Suzuki and the present author7.8) and by Koma.9)

§2 A Short Review of Dyson4) and Smith5)

As is well-known, the XY model can be mapped to a harmonic oscillator or a
free fermion(electron) problems. By the Jordan-Wigner transformation and
diagonalization, our Hamiltonian is represented as the fermion system.

H = 53:_ £a Ca Ca (2.1)

Ve

where Ca is a spinless fermion. Cbrisequently the free energy is written with the
~ density of state by

% = [“QM (1 éaé YdE = 2.2)
and the susceptibility is given by _
2 4 / - (23)
A= "47,],0 ki (aigsy DEIE.

In generally, if the density of state has singularity at e =0, the susceptibility
diverges. Numerious studies on the density of state were reportred.10)

Asmensioned in §1, the density of state D(e) is obtained by Dyson* for the
generalized Poisson distribution. In the vicinity of e =0, the density of state
behaves as

| @C@) 2 @Eifm_,)/lg(b nea) [ 2.4
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and thus the susceptibility is given by eq.(1.4) in the critical region T'=0. Thisis
shown in fig.1. The result has not been obtained by Smith. Compare (2.4) with
(5.6) of ref.5 and fig.1 with fig.2 of ref.5, respectively.

. X .

* The density of state is obtained as follows. Define Mg(x)= J' D(e)de which relates to Mp(x2)
by Mp(x2) = -1 +2Mg(x). Mp(x2) is given by eq.(63) of Dyson s paper. Mg(x) is defined as M ()
in eq.(3.2) of Smith’s paper.

§3 The ST-transformation Method and The Perturbational Expansion

l3-1 The ST -transformation method

The one-dimensional quantum system can be mapped to a two-dimensional
classical one and the virtual-space transfer-matrix (VTM) can be defined for the
present model as was given by Suzuki and the present author for the uniform XY

model in ref. 8.
The VTM is eXphcxtly glven by

Retd= 5, [ 30307 Gy + Tl 05035 ] 6.

with i =odd fo; a =1,i=even fora=2 and

by  h) -
5= fa (wh BX) | T, (=e™ L, (ah EF) g9

where r denotes a position in the real space and n is the Trotter number. We can
reduce this transfer matrix to the 4 by 4 matrix with use of the Jordan-Wigner
and the Fourier transformation, independently on r.

The partition function Z of our XY chain with the length m is then written as -

a product of the 4 by 4 matrices:

I_\rm o 6 o

—_ TY ‘r\; o Am Bm o
A © Cm Dm o
o o o Tm | (3.3)
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where Y, = H sinh(2K r/n) (K r=pJ(r)) and A,,B,,..are defined suscesswely as
follows. ™ | |

Al- Bk} ak br' Ar—l Bk-/.

G- D» + Q]| Ct Drey

| hO-) .

. | b e:.* > F=eren (3.4)
h=Cosh -, b= -%-%ﬁi’ P or=odd

e

and q takes the valuesq= -—z—z , 13-575 e T ﬁnl’?z; .
In the mathematical aspect, the above product of matrices relates to the
theorem of noncommuting random products proved by Furstenberg!1) which says

that there exists a unique stationary probavility measure v determined from the
convolution equation p+v=v for m— 2, where a, or b, are random variables with

a distribution p.

3-2 Integral equationé ,
Define that X,=A,+D,and x,=C/JA, and assume that wA,=B, and
wC,=D, for sufficiently large r with a constant w, and thus we get

><l~ =a, + WA:’-f br Xy

X1 /I +w X,
and . _
X, = brl+ GvX,., : (3.5)
ar + br Xr-t

_for reven. We should exchange b1 & b, for rodd. With use of the above
variables, we have the free energy by

35 = 2 T (Xm+2Tm ) 27,,’—%2“ (Xwn )

_  omp )(zhr/ Yss l, (3.6)
m 3;2;{. fﬂw + 9«7;_— .

for m~oo
Following Fan and McCoy,12) the quenched free energy is given by

whb b )X
—ﬂ% ZJQIX: d\ Pn (=) A ()\> 2 [C\ O>+ C/\)—f_-thllj

+ T Jet o ) ) e [y + 28002 £ “i’f] 6
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where vi(x7) and vg(x2) are limiting stationary distribution*functions of x; and x2
, respectivery and these satisfy the following simultaneous integral equations

P60 =[dadi 2 OuD) § (- ZAEINL )

a@+ b

and

Y2 06) = [du dA D oY U(N) S (2 - £OV+ a0\ )
ae) +b ) WU (3.8)

with a probavility distribution function p(1) of a(A) or b(A). When we consider the
random exchange model, A=J, p(A)=P(J) and b(A)=b. For the random field
model, A=H,a(A)=a and p(}A) =P(H).

Now we define a new “free energy” as follows

B = T3 e G

By the same treatments as above, the “free energy” becomes
=A%, = S [didd DiCLY U ba (A3 +50Y D
+ 5 [ebtyd) Py YA DY I [0 #5121, ) (3.10)

= ! >
%‘ ( et S5 ) .
We can easily show that % = %%, with use of (3.8).

When p(}) is a 8-function and H =uniform, we can get the free energy of the
- uniform XY model from (3.8) and (3.10). The distribution functions become
vi(x) =8(x-x70) and va(x)= 6(x-x20) where x70 and x29 are given by

Ko =Ass' = [ b-t+f4a3+ (441 ) ?é]/lao »

(3.9)

| (3.11)
ao = COS/\. (2@3’0/,, ) .
Jo is defined by P(J) =8(J-Jg). Thus the free energy is given by
ﬁ% "Q:;?OI_\JM\ [a°+/+ao(6xo+6_(zzo>]
), [2 ek (8% w0 ¢ 241> 7 e

with use of the same mathematical formulae asin ref.8 .

3-3 The j‘)erturbational expansion ----- Istorder -------
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We put our attention on the random exchange model hergafter. The exact
solotion of the integral equations (3.8) is difficult, we shall only explore some
general characterictic of solutions for the class of narrow distributions p(A). The
method we employ was developted by Fan and McCoy12) for the one-dimensional

Ising model.
First, we change the variables J to a =cosh(2fJ/n) and thus p(J)dJ = p(a)da
Assume that

ﬁ(a}-_- -—AA—{jC(—g(a_a())) + - i (3.13)

where A and N have the same meaning asinref.12,i.e., A is a unit for the energy
spread and N is a dimensionless scaling factor introduced to indicate the
narrowness of the width. The function f should have some mathematical
properties which are given in egs.(3.5)-(3.6) of ref.12 .

When N— o0, the distribution p becomes a §-function and then the
corresponding distribution functions v;(x) and va(x) are the functions of N(x-x1¢)
and N(x-x2¢), respectively. We expand them as

Pid= WG,o (wx-25)+ Gu (¥ (x-23) +

and
Yo O = MGy (/V (X=X03) + Gy (W (t-220>) + -+ (3.14)

with the condition: [ 8, (x)dx=38j9,i=1,2.

We change the variables to §;=N(x-xjp) and y=N (a-ag)/A and expand the free
energy defined by (3.10)

| /| amytb 35, _
o = (bt g GG O O
' . . /

where

M= [ dy 4®F(s) |
Mae=Jd% S %ulsd . @10

2
%"q is the same as (3.15) exchanging b to b-1, x79 to x29 and m;&p; to mafp;. From
(3.8) with (3.14), we have

g—;o—(’b) = fd/]/ o (49,) )C'( D—A,%, > (3.17)

in the first order of N , where we have re-exchanged the variables as

_ G B G
'?, = Za_‘,——— (é ’\(201"00)51 5 7_2 = Alb-E) (6Lofa°)§a

and
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,_Iif'c - do T 67 Y3 . (318)

g(o(g )= g ("I,) CM’

By the Fourier transformation, {y) = [F(k)eikydk and g,(n)= I Gij(k)eikfldk, we
get

Go (b)= G (A L)F (R aud 6,;,,(;).—. o (R FEGRY | (3.19)

where A is defined by (3.18) exchanging beb-1 and x 1’o<-+x20 .From (3.19), we
~ have _

L= R Ry 4 6l ey 6

F” denotes a derivative of F by its argument and so on. The moment defined by
(3.16) is then represented by F’(0) as follows

mg = LF’ () and

—_—_y _Aa(E-t> /+ Ay ’
m = =
|§ol . Qo (ao -+ 6"(-1.:;) l “A'IA b F (0 ) b (3.21)

Consequently, the free energy of (3.10) becomes

6X /0o Q* ( o+ X30)

g . 4_ 4 f __b(s-6"DAn
% /otv\ (a‘f'bx:o)‘f N dur / ?F ()(3 22)

?q2 has also a similer form.

3-4 Final results
The O(N-1) term of the free enrgy is thus obtained by

«4 |
) 4 2 cesh(2X) cos(E+ 37 )
YA I’MA (<) // T () s e (Ze by | . (3.23)

Let 8§ =Tyjcosh(2K/n)/sinh2(2K/n) , y =A/IN and t=-1, eq.(3.23) becomes
cos (F+ )
WAYS - “:A
\/St% (—ﬁ‘)-l‘cd:?'(_lz_..‘__ 1_’2_) ) (3.24)

With the help of the mathematical formulae used to derive (3.12), we have the
following result after tedious calculations.

_aa o
= =Ll f 1+ (1 +t
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‘“A;&”}:%idegn Cosh Ny -+ cosh A] - 3.25)

Cash 4K + assh h

where

Qf/»b_/-,c)s,né(x)fu -/‘-,m@) %  (3.26)

The result (3.25) is for the finite Trotter number, we should take the limit n— o
to return to the original Hamiltonian (1.1)

Keeping in mind that we are now considering the order N-1term, we integrate
by 01in (3.25). For large n,v becomes

o &K
U ———19)(14- —572-(/ ,9)? 3.27
with D={1+(tytan(6/2)/(1 +7))2}-1 . The free energy (3.25) becomes finally,

vl s, 4k /
- - 3.28
,’Z {“‘ﬁ%-rtosé/, */ Vi< § MY . 0:29)

This is the order N-1 term of the free enregy and thus the susceptibility is given
by

——

/X?_?S’)': 4 > sl 48% . A *—/1731,
377 sk somrt YV C 829)

This has no singularity at T=0. This is our final result The second or higher
terms can be in principle calculatable,

§4 Summary and Discussions

We have studied the XY chain with random distributed 'exchange
interactions. The free energy up to the first order is obtained by the-perturbation
method. The susceptibility has no singularity in this order. However, this result
does not mean that xzz is a smooth function of T (no singularity).

We should remark two points. i) Our perturbational calculation has no
meaning in the A/N > 1 region, because the free energy does not converge in
this region. ii) The free energy (3.10) is defined for the quenched system, but up to
the first order (N-1) it is the same as for the annealed system.

We have now two exact solutions, the susceptibility for the case of the
generalized Poisson distribution behaves as (1.2) , another one for the diluted
system behaves as (1.4). We shall ask again how generally the susceptibility
diverges and if it dwerges whether the logarithmic correction like (1.2) exists or
not.

Eggarter and Rledmger13) studied this problem very plausibly with using a
random walk representation and concluded that the answer of the problem (1.2) is
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yes in general if 02 exists. o2 is the variance of InJ2 defined as 02 = <(InJ2)2>--
<Ind2>2 and the susceptibility is given by

ARE a* | (4.1)
/€T (LaT)2 .

If their result is correct for all cases up to the coefficient ( for the case of the
generalized Poisson distribution, 02 =n2/6-¢,,.; which is the same as the exact
one), it is clear why we have obtained the susceptibility with no singularity.

We have studied the effect of the off-diagonal disorder to the diagonal
susceptibility. How about the diagonal disorder? The problem of the random field
corresponds to this case and which was also solved for the Lorentzian distribution
by Nishimori 14) with use of the corresponding Lloyd’s solution15) for the
electron system. Nishimori showed that the random field destroy the ordering of
the XY model in ground state and that the both of the susceptibilities x2z and y*=
are suppressed by the randomness.
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