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One-dimensional XY spin model with random exchange interaction is studied and our new
approach and its result are reported. The distinguishing feature of this model is that the

susceptibility diverges at Tc (= 0) due to the off-diagonal disorder, while the susceptibility of the

uniform system is constant atTc . The generality of this divergency is discussed. By our'

method, a perturbation from the uniform system, the susceptibility has no singularity in the
first order of the perturbation.
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§1 Introduction

Many random spin systems have been investigating for the classical Ising
models, but no study on the quantum spin systems has been reported except a few
cases. We study here the one-dimensional XY~spinmodel which was solved
exactly for the uniform case by Lieb, Schultz and Mattis and by Katsura.1) The
Hamiltonian we consider here is defined by

-t( =- ~~ (a-;.:(tn.; + a:\}Cf.i+-~ ) ~ ~ Hi. erA.8 ,
,. .. . .,(" :.

(1.1)

where the exchange interaction {Ji} has the distribution function P(J) and the
external field {Hi} is also randomly distributable.

The disoder of {Ji} is an off-diagonal disorder and of{Hil a diagonal one. In
almost of the present paper, Hi =H. Our main interest is a following problem.

PROBLEM. Does the susceptibility Xzz diverge affected by the randomness of
{Jil as·

1
oJ H=O. (1.2)

Note here, the susceptibility XZZ is a coustant for the uniform case at T=O.
Morgenstern and Wultz2) and Schuttler, Scalapino and Grant3) studied this

problem by the Monte·Carlo method and concluded that the answer is yes,when
P(J) is a gau;sian or a rectangular distribution, respectively.
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.An exact solution was found by Dyson4) and Smith5) for the general Poisson
distribution given by P(J)=2mmJ2m-1e-mJ2/(m-l)! with an integer m. Ashort
review is given in §2. The corrected result is

/V~~ /\- '( 7(.2 -.L ). 1 (1.3)
{\ -It ·7-"»1-1 T (~T).2
m ~

where tm=E ,2.
f'=./

Another exact solution was also found by Matsubara and Katsura6) for the
distribution: P(J) =po(J-Jo) + (l-p)o(J), Le., this model is a diluted XY chain.
From their solution eq.(5) of Ref.6, the susceptibility behaves as

/\I.~~ "-- _'
1\ - T •

(1.4)

This has also singularity but without logarithmic correction.

We approach to this problem by the ST-transformation method which was
developed by Suzuki and the present author7,8) and by Koma.9)

§2 A Short Review of Dyson4)and Smith5)

As is well-known, the XY model can be mapped to a harmonic oscillator or a
free fermion(electron) problems. By the Jordan-Wigner transformation and
diagonalization, our Hamiltonian is represented as the fermion system.

(2.1)

where Ca is a spinless fermion. Consequently the free energy is written with the
. density of state by

60

-;3~ = r. ~ (I-t e.13
E: ) Jj(£.) d E (2.2)

-60

and the susceptibility is given by
~

N~~_ /31 / ~G£) c/E
. A - 'f -60 Cash.:I. (;9E/2 )

In generally, if the density of state has singularity at e=O, the susceptibility
diverges. Numerious studies on the density of state were reportred.lO)

As mensioned in§l, the density of state D(c) is obtained by Dyson* for the
generalized Poisson distribution. In the vicinity of c=0, the density of state
behaves as
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and thus the susceptibility is given by eq.(!.4) in the critical region T=O. This is
shown in fig.!. The result has not been obtained by Smith. Compare (2.4) with
(5.6) ofref.5 and fig.1 with fig.2 ofref.5, respectively.

---------------------------------------------------------~-----------------------------~-----------------

. ~

*The density of state is obtained as follows. Define Ms(x) =I D(e)de which relates to MD(X2)
-10

by MD(X2) =-1 +2MS(x). MD(X2) is given by eq.(63) ofDyson1s paper. MS(x) is defined as Mp(}l)

in eq.(3.2) ofSmith's paper.

-----~-----------------------------------------------~~------------------------------------------~--~----

§3 The ST-transformation Method and The Perturbational Expansion

3-1 The ST-transformation method

The one-dimensional quantum system can be mapped to a two-dimensional
classical one and the virtual-space transfer-matrix (VTM) can be definedforthe
present model as was given by Suzuki and the present author for the uniform XY
model in ref. 8.

The VTM is explicitly given by "'-'

'1ot. (r) = si,,1t /1(/3-:5'" /n ) e "ieo< (J.- )

.~ ~n ]
Ko< (r)=~ [:J; (I'") (J;."t 0;;; + J~{r) a-~Oi:; (3.1)

with i=oddfora =1,i=evenfora=2and

_~) he",)·
~6-)=en ~(Coih~) .,:1(.-) en~(co~I3;... ).? (3.2)

where r denotes a position in the real space and n is the Trotter number. We can
reduce this transfer matrix to the 4 by 4 matrix with use of the Jordan-Wigner
and the Fourier transformation, independently on r.

The partition function Z ofour XY chain with the length m is then written as
a product of the 4 by 4 matrices:

Yrh 0 0 0

~=n~ 0 Am 8rn 0

.z: 0 em DvY) 0

0 -0 0 yW\
(3.3)
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In
where Ym =fl sinh(2Kr /n) ,(Kr =pJ(r) ) and Ar,Br, ..are defined suscessively as. tat
follows. . .

rA~ BrJ ""- far br][AI'"-' 3"'_j'.
Lc,.. D", lb1 01-' Cr- I Dr-I

. "

at = ca>h Ie",n

.
~ r=e~

; r=-odd
(3.4)

and q takes the values q= :t ;: ,±~ -:; , ,'2: h,;-'7l: •
In the mathematical aspect, the above product ofmatrices relates to the

theorem ofnoncommuting random products proved by Furstenberg11) which says
that there exists a unique stationary probavility measure v determined from the
convolution equation p*v =v for m- 00 , wherear or br are random variables with
a distribution p.

3-2 Integral equations

Define thatXr=Ar+Dr and xr=C,.IAr and assume that wAr=Br and
wCr=Dr for sufficiently large r with a constant w, and thus we get

XI-- := a,... + Wb".-f..,. 1,""::("'-1
Xlr--I I -t "t.<T X"._/

and

b-
'

a 'Yx .... = l' -+ "'.;(.r-,
a". + br ::(.,...-/

for r even. We should exchange bro. ++ br for r odd. With use of the above
variables, we have the free energy by

7~::::~~R.(Xm+.1Y"')<:!=~~.e... eX... )

= -' ):~ f> ~ 't:»-fl + ~ )(,2" L
Jtl i-- r::;;, x~...· X;);-I J

(3.5)

(3.6)

for m-OO •

Following Fan and McCoy, 12) the quenched free energy is given by

[ - . [ . ~b-l().)-t b (A)'X,]
- 13ft =- f Jel-x,dA )), (::i,) ,A..l(A) ~ a (X);- I + ~ X I

+t fd~ cl~~ ~)t«tJ\\ t,.[ClC>-\ T ~b(At" ::~:2] (3.7)
.I
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(3.9)

where Vl(Xl) and V2(X2) are limiting stationary distribution-functions of Xl and X2

,respectivery and these satisfy the following simultaneous integral equations

and

1'::. (~J =fd:t, ci>. V, (::(,) J,{ l>') S (X:z ~ b-io..) + aCA\ XI )
a (~) + b (>.) x, (3.8)

with a probavili,ty distribution function p(X) ofa(X) or b(X). When we consider the
random exchange model, X=J , p(X) =P(J) and b(X) - b. For the random field
model, A=H,a(X)=a and p(X)=P(H).

Now we define a new "free energy" as follows

-/3~ == J- r:: 1:. ~ A~I m ~ t" A,..-I
By the same treatments as above, the "free energy" becomes.

-19~1 = ~Jdt"clA )J,l:t,)M ().) k ( Q(A) -tb (}.);(, )
1r

+ L [dt,2dJt)J~ (~)M (,A)~ (Q ().) +h-l(A}:tJ ) (3.10)
~ . ..

== ~ (~l-' + ~~~ ) .

We can easily show that ~:=~, with use of(3.8).

When p(X) is a 8-function and H =uniform, we can get the free energy of the
uniform XY model from (3.8) and (3.10). The distribution functions become
Vj(x) =8(X-XIO) and V2(X) = 8(X-X20), where XIO and X20 are given by

x/o =:l.~-: =- [b-b-l +I4ao~+ (6-1>-1 r~· f~ ]/.2ao ~

Qo =l.os;h (~-;so/ 11 )
•

J 0 is defined by P(J) =8(J-J0). Thus the free energy is given by

-(3~ = ~ L ~'[ aa~+ i + Qo (i)~o -I- 6-1:60 ) ]
<, . "~IQ ~ ..

.- /71: .. .
== TC. So .Q... [2 c.osI.. (2t9Ja~ T /SH) J

with use of the same mathematical formulae asirt ref.8.

3 -3 The perturbational expansion ----- 1st order -------

~504-

(3.11)

(3.12)



We put our attention on the random exchange model hert!after. The exact
solotion of the integral equations (3.8) is difficult, we shall only explore some
general characterictic ofsolutions for the class of narrow distributions peA). The
method we employ was developted by Fan and McCoy12) for the one-dimensional
Ising model.

First, we change the variablesJ to a=cosh(2pJ/n) and thus p(J)dJ=p(a)da.
Assume that

(3.13)

where t!,. and N have the same meaning as in ref.12', Le., t!,. is a unit for the energy
spread and N is a dimensionless scaling factor introduced to indicate the
narrowness of the width. The function fshould have some mathematical
properties which are given in eqs.(3.5)-(3.6) ofref.12 .

When N-oo, the distribution p becomes a 8-function and then the
corresponding distribution functions Vl(X) and V2(X) are the functions ofN(X-XIO)

and N(X-X20), respectively. We expand them as

and

(3.14)

(3.17)

(3.16)

with the condition: Igi/x)dx = 8j,o, i = 1,2.

We change the variables to ~i=N(x-XiO) andy=N(a-ao)/6. and expand the free
energy defined by (3.10)

~ 1- n r . b ) 1 L1MV;-t'b ii;i;, + /CirlJ-J..) (3.15)
~ - ~ l Qo+ ::i/O -t IV Qo-t- l:>:xJo \..7('

where

In 7:Jfl. =: J:c/~ "a ll-f (17) ,

- f e.hlJrJa.ll:::: d~a -gei ~;k (3;j) .
:2

~q is the same as (3.15) exchanging b to b-1, XIO to X20 and ml~l to m2~1.From
(3.8) with (3.14), we have

d-~('l.J)= fd 'ldJ-,o{1,)f-(1::>.-A,1,)
iIi the first order ofN, where we have re-exchanged the variables as

and
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• (3.18)

By the Fourier transformation, f{y) =IF(k)eikYdk and gij(ll) =IGij{k)eik'ldk, we
get

whereA2 is defined by (3.18) exchanging b++b-l and XIO++X20. From (3.19), w~
have

1"__' I-t- A.,l r J - . 1 1+ AI ~ (320)
'-flO (0)= 1_ A A r'- (0) ~d <t.o (0):::: F Co) .

, ~ I-Attt.l

F' denotes a derivative ofF by its argument and so on. The moment defined by
(3.16) is then represented by F'(O) as follows

m~l=iF'(o) ~d

n'l'"!OI'=:t ~(b'-b) It-A)... -,:;'(0)
Qo (Qo -t" b-(.x.~) l-AIA ~ •

Consequently, the free energy of(3.10) becomes

(3.21)

~q2 has also a similer form.

3 -4 Final results

The O(N-l) term of the free enrgy is thus obtained by

(3.23)

Let 0=mYlcosh(2Kln)/sinh2(2Kln) , r= t:.IN and t=-l, eq.(3.23) becomes

-_I3..L-~ItJ= 1: .t..,l I T "6 (I + -t COS (! T -# ) )
. F IT· l JsllJ.>(~J-+ cM-( ~-I: if;)

(3.24). .

With the help of the mathematical formulae used to derive (3.12), we have the
following result after tedious calculations.
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(3.25)

I t§!liinliJf~ (7)fJT-'f¥! C: ~(7)r.sffl J

-/3;r/'J- ~l;je~[~; : :2:] ~
where

(3.26)

(3.27)

The result (3.25) is for the finite Trotter number, we should take the limit n- OO

to return to the original Hamiltonian (1.1)
Keeping in mind that we are now considering the order N-l term, we integrate

by ein (3.25). For large n, v becomes '

~~ 4k ~ f" 2.k:.:2. L
v ~ 7)vTJ I + ~ (I-D) I

with D={l +(trtan(S/2)/(l +r»2}-1 . The free energy (3.25) becomes finally,

I L L1
+ / - 111<.2 I N III rt, • (3.28)

This is the order N-l term of the free enregy and thus the susceptibility is given
by

• (3.29)

This has no singularity at T=O. This is our final result. The second or higher
terms can be in prinCiple calculatable,

§4 Sunimary and Discussions

We have studied the XY chain with random distributed exchange
interactions. The free energy up to the first order is obtained by the·perturbation
method. The susceptibility has no singularity in this order. However, this result
does not mean that Xzz is a smooth function ofT (no singularity).

We should rem'ark two points. i) Our perturbational calculation has no
meaning in the {3tJ.IN > 1 region, because the free energy does not converge in
this region. ii) The free energy (3.10) is defined for the quenched system, but up to
the first order (N-l ) it is the same as for tJ::1e annealed system.

We have now two exact solutions, the susceptibility for the case of the
generalized Poisson distribution behaves as (1.2) ,another one for the diluted
system behaves as (1.4). We shall ask again how generally the susceptibility
diverges and ifit diverges whether the logarithmic correction like (1.2) exists or
not.

Eggarterand Riedinger13> studied this problem very plausibly with using a
random walk representation andconc1uded that the answer of the problem (l.2)is
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(4.1)

•

yes in general if 0 2 exists. 0 2 is the variance oflnJ2 defined as 0 2=< (lnJ2)2 >-'
< InJ2 > 2 and the susceptibility is given by

0-.2

If their result is correct for all cases up to the coefficient (for the case of the
generalized Poisson distribution, 0 2=n216-tm_l which is the same as the exact
one), it is clear why we have obtained the susceptibility with no singularity.

We have studied the effect of the off-diagonal disorder to the diagonal
susceptibility. How about the diagonal disorder? The problem ofthe random field
corresponds to this case and which was also solved for the Lorentzian distribution
by Nishimori 14) with use of the corresponding Lloyd's solutionl5) for the
electron system. Nishimori showed that the random field destroy the ordering of
the XY model in ground state and that the both ofthe susceptibilities Xzz and Xxx

are suppressed by the randomness.
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Fig. I.

The susceptibility of Dyson-Smith model.

This graph is obtained by numerical

integration ofeq.(2.3) with the density of

state given by Dyson.

Fig.2.

The checkerboard decomposition. Each

shaded square means fQur~spin interactions.

T I and T2 are &iven by eq. ( 3.1)
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