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1. Introduction

In Literatures of spin glasses figures of the energy as a
function of the phase space. as shown in Fig.l, are often Listed
qualitatively. In this note a quant1tat5ve fngre of similar
nature will be shown.  The Ising spin glass for the.iJ model on
the Bethe Lattice (pair approximation in the cluster variation

method (CVM)>)> at T=0 is considered.
8§2. Discrete distribution

The free energy F in the pair approximation is shown to be

given byl>

F=(1-2)F1+(2/2)F2 1>

where F1 and F2 are ogne- and two-body free energies and z is the

coordination number.

First we consider the case where the distribution function
a(h) of the single bond effective field h is expressed by a

superposition of 2n+l delta functions:
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9(h)—ZQ=_nu£6<h £/h> | (2)
The exchange energy J is taken to be a unity. The one- and two-
KED) (2>

body effective fields, H and H .are given by convolutions of

z and z-1 single bond effective fields.

1>,,,(1), _<nz (1) _
G (H )—Z£=~nz bgﬁ(H. /0D (35
6(2)(H(2)>=Z(2—1)n 5(H(2>—£/n) : (4)

L==Cz-1>n %%
where

2.2

b, is a coefficient of et in (ZB=_nu %) (-nz<£<nz>

. L . n L. z-
a, is a coefficient of &7 in (Z£=_nu£$ )

1
(-n(z-1)><2<n(z-1>> (S5

The one and two-body free energies Fl and F2 are givenZ) in terms

of DB and a£:

| v zn _
Fl—(l/n)zﬂ=—zn bymax <L, 2> (6>
_ (z-1>n (z-1)n _
Fom /M2y (z-1>n “m=-(z-1>n %4%n
x max(-n+tf+m,  -n-L-m, n-L+m, n+L-m) )

The distribution function g(h) is determined by the

integral equation. At T=0 it reads
9<h>=J6<h—sgn<H(2>>min<|H<2)|>>n§;} a¢h, dh (8)
(2> _ z~l‘
HZ =227 My

The infegraL equation (7> Leads a system of algebraic equtions
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S =1

2
We consider the symmetric (spin glss. u£=~u_£) case for z=3.

The algebraic equations (8) are reduced to
fo(u0>=0 10>
ﬁ£=fﬂ(uo) T R=1., 2,'... ., N : 1D

where fq and fy are polynomials of of uy of 2" and 2" ltn
degree.
The selution of (10) which gives the sotution of the

‘integraL:equation are obtained by Katsura et aL3>

for n=1. 2, 3,
and 4. The values of the energies in these points except the.
paramagnetic state are almost the same (agree with tﬁree digits)
WE catculated F in terms o¥ My fof'0<y0<1 by usﬁng‘(10>.
(11>, (5S>, (6>, and (1) successively. Figures 2 and 3 show the
negative of the free enersies VS Hg for n=2 and 3. respectively.
The energy surface for n=2 in the Mo~Hq plane are shown in Fig.4,
(similar to ref 6). The points for the solutions of integral
equations are shown by close circles in the figures,.\ The maxima
(minima) in Figs. 2 and 3 do not‘nécessariLy give the 'maxima
(minimad df the energy surfaée. The reason is thaf Fig.2 C(or 3
is a section of the energy surface on a,curve given by (11> in
“l' Howoon Mo spaﬁe. These figures are simitar to Fig.l but with

numerical .axis.
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8§%. Continuous distribution

The integral equation (7) has solutions expressed‘by
superpositions of 2n+l1 delta functions. As n»o, it tends to a
continous distribution with three delta functions4? The

solution of the integral equation in that case is shown to be

2

9(h)=a5(h)+(b/2)[5(h~1)+5(h+l)]¥c (3h™-1>/4 (120~

0 2
The coefficients a. b,-co, c2 are-spolution of a system of

algebraic equations and they are reduced to

f~ (a>=0, b=f

0 (a). ;0=f2(a). c2=f3(a) 13>

1

where fdis a polynomiaL of of a of 8th degree. and fl' f2. f3 of
7th degree.
The energy was calculated as a function of a. b, Cq° and

c2 and expressed as a function of a. F=f*(a), poLynomiaL‘of a of

28th degree. The stationary points of‘f* are calcutated and are
shown in Table 1. In table 1 the value of a with * are the
sglution of the integral equation, (7). . These points are

. . . . * . . . X X
neither maxima nor minima of f (a). again since this is a section

in a, b. CO’ c~. space. Among them a=1/3 and 0.10683 are spin

2
glass states. the former is the state of discrete distribution

and the Latter the continuous distribution. The enérgies by

MoritaS) and by Wong et aL6> are 1.276 and 1.2749, respectively.
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Fig. 1 Schematic diagram of the free energy in the phase space
appeariﬁg in Litefatures.

Fig. 2 Negative of the energy. —E(ﬂo), as a function of ﬂo.\2=3‘
n=2. |

Fig. 3 Negative of the energy. —E(u0>. as a function of M- z=3,
n=3.

Fig.4 Negative of the energy,. ~E<u0. ul)émF. z=3, n=2.
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Table 1 Stationary poins of F=f"(ad. The value of a with * are

solutions

a
0.03815
*0.04171
0.06734
0.10681
*x0.10683
0.20446
0.33059
*x0. 33333
*x0.42219
0.45170
0.45452
‘*0.45809
0.61111
x(Q. 72049
0.73281
0.84812
0.958%90
*x0.97162

*1.00000

integral equation.

fda)

366.972
-77584.08
-41476862
1.31011
1.27367
~1649870784
130.862
1.27778
-2342966
~-0.68646
284 .973
-7168.45
-4759339956
-5145002
387.355
-6858432078

2769 .61

-1096078

1.5
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FREE ENERGY of Ising Spin Glass
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