研究会報告
8．A section of the ground state energy of the spin glass in the phase space

Shigetoshi Katsura and Mitsuhiro Sasaki

Faculty of Science and Engineering，Tokyo Denki University atoyama，Saitama 350－03
§1．Introduction

In Literatures of spin glasses figures of the energy as a function of the phase space，as shown in Fig．1，are often listed qualitatively．In this note a quantitative figure of similar nature will be shown．The Ising spin glass for the $\pm\rfloor$ model on the Bethe Lattice（pair approximation in the cluster variation method（CVM））at $T=0$ is considered．
§2．Discrete distribution

The free energy F in the pair approximation is shown to be given by ${ }^{1)}$

$$
\begin{equation*}
F=(1-z) F_{1}+(z / 2) F_{2} \tag{1}
\end{equation*}
$$

where F_{1} and F_{2} are one－and two－body free energies and z is the coordination number．

First we consider the case where the distribution function $g(h)$ of the single bond effective fietd h is expressed by a superposition of $2 n+1$ delta functions：

$$
\begin{equation*}
g(h)=\sum_{l=-n^{\mu}}^{n} \delta(h-\ell / n) \tag{2}
\end{equation*}
$$

The exchange energy J is taken to be a unity．The one－and two－ body effective fields，$H^{(1)}$ and $H^{(2)}$ ，are given by convolutions of z and $z-1$ single bond effective fields．

$$
\begin{align*}
& G^{(1)}\left(H^{(1)}\right)=\sum_{l=-n z}^{n z} b_{\ell} \delta\left(H^{(1)}-\ell / n\right) \tag{3}\\
& G^{(2)}\left(H^{(2)}\right)=\sum_{l=-(z-1) n}^{(z-1) n} a_{\ell} \delta\left(H^{(2)}-\ell / n\right) \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& b_{l} \text { is a coefficient of } \xi^{\ell} \text { in }\left(\sum_{l=-n^{\mu}}^{n} \xi^{\ell}\right)^{z} \quad(-n z<\ell<n z) \\
& a_{\ell} \text { is a coefficient of } \xi^{\ell} \text { in }\left(\sum_{l=-n}^{n} \mu_{\ell} \xi^{\ell}\right)^{z-1} \\
&(-n(z-1)\langle\ell\langle n(z-1))
\end{aligned}
$$

The one and two－body free energies F_{1} and F_{2} are given ${ }^{2}$ ）in terms of b_{ℓ} and a_{ℓ} ：

$$
\begin{align*}
-F_{1}= & (1 / n) \Sigma_{\ell=-z n}^{z n} b_{l} \max (\ell,-\ell) \tag{6}\\
-F_{2}= & (1 / n) \Sigma_{\ell=-(z-1) n}^{(z-1) n} \sum_{m=-(z-1) n}^{(z-1) n} a_{l} a_{m} \\
& \times \max (-n+\ell+m,-n-\ell-m, \quad n-\ell+m, \quad n+\ell-m) \tag{7}
\end{align*}
$$

The distribution function $g(h)$ is determined by the integral equation．At $T=0$ it reads

$$
\begin{gathered}
g(h)=\int \delta\left(h-\operatorname{sgn}\left(H^{(2)}\right) \min \left(\left|H^{(2)}\right|\right)\right) \Pi_{K=1}^{z-1} g\left(h_{K}\right) d h_{K} \\
H^{(2)}=\sum_{K=1}^{z-1} h_{K}
\end{gathered}
$$

The integral equation（7）Leads a system of algebraic equtions

研究会報告

for unknown coefficien $\begin{aligned} & \text { functions } \mu_{l}\end{aligned}$

$$
\begin{align*}
\mu_{l}=\sum_{l_{1} \ell_{2}} \cdots \ell_{z-1}{ }^{\mu} l_{1}^{\mu} l_{2} \cdots{ }^{\mu} \ell_{z-1} \tag{9}\\
\sum l_{i}=l, \quad \ell_{i}=-n+1,-n+2, \ldots n-1
\end{align*}
$$

$$
\Sigma \mu_{l}=1
$$

We consider the symmetric（spin glss．$\mu_{\ell}=-\mu_{-\ell}$ ）case for $z=3$ ． The algebraic equations（8）are reduced to

$$
\begin{align*}
& f_{0}\left(\mu_{0}\right)=0 \tag{10}\\
& \mu_{\ell}=f_{\ell}\left(\mu_{0}\right) \quad \quad \ell=1,2, \ldots, n \tag{11}
\end{align*}
$$

where f_{0} and f_{ℓ} are polynomials of of μ_{0} of 2^{n} and 2^{n-1} th degree．

The solution of（10）which gives the solution of the integral equation are obtained by Katsura et $a^{3)}$ for $n=1,2,3$ ， and 4．The values of the energies in these points except the paramagnetic state are almost the same（agree with three digits） We calculated F in terms of μ_{0} for $0<\mu_{0}<1$ by using（10）， （11），（5），（6），and（1）successively．Figures 2 and 3 show the negative of the free energies $\vee s \mu_{0}$ for $n=2$ and 3 ，respectively． The energy surface for $n=2$ in the $\mu_{0} \mu_{1}$ plane are shown in Fig． 4 ， （similar to ref 6）．The points for the solutions of integral equations are shown by close circles in the figures．The maxima （minima）in Figs． 2 and 3 do not necessarily give the maxima （minima）of the energy surface．The reason is that Fig． 2 （or 3） is a section of the energy surface on a curve given by（11）in $\mu_{1}, \mu_{2} \ldots \mu_{n}$ space．These figures are similar to Fig． 1 but with numerical axis．
§3．Continuous distribution

The integral equation（7）has solutions expressed by superpositions of $2 n+1$ delta functions．As $n \rightarrow \infty$ ，it tends to a continous distribution with three delta functions ${ }^{4}$ ．The solution of the integral equation in that case is shown to be

$$
\begin{equation*}
g(h)=a \delta(h)+(b / 2)[\delta(h-1)+\delta(h+1)]+c_{0}-c_{2}\left(3 h^{2}-1\right) / 4 \tag{12}
\end{equation*}
$$

The coefficients a, b, c_{0}, c_{2} are solution of a system of algebraic equations and they are reduced to

$$
\begin{equation*}
f_{0}(a)=0, b=f_{1}(a), c_{0}=f_{2}(a), c_{2}=f_{3}(a) \tag{13}
\end{equation*}
$$

where f_{0} is a polynomial of of a of 8 th degree，and f_{1}, f_{2}, f_{3} of 7th degree．

The energy was calculated as a function of a, b, c_{0} ，and c_{2} and expressed as a function of $a, F=f^{*}(a)$ ，polynomial of a of 28 th degree．The stationary points of f^{*} are calculated and are shown in Table 1．In table 1 the value of a with $*$ are the solution of the integral equation，（7）．These points are neither maxima nor minima of $f^{*}(a)$ ，again since this is a section in a, b, c_{0}, c_{2} space．Among them $a=1 / 3$ and 0.10683 are spin glass states，the former is the state of discrete distribution and the Latter the continuous distribution．The energies by Morita ${ }^{5)}$ and by wong et al ${ }^{6)}$ are 1.276 and 1.2749 ，respectively．

The authors acknowledge helpful discussions with D．S． Fujiki，Dr．M．Inoue，and Dr．S．Moritugu． References

1）T．Morita，j．Math．Phys．13（1972） 115.
2）S．Katsura，Physica 104A（1980） 333.
3）S．Katsura，W．Fukuda．S．Inawashiro，N．M．Fujiki，and R． Gebauer，Cell Byophys． 11 （1987） 309.
$4)$ S．Katsura，Prog．Theor．Phys．Suppl．No． 87 （1986） 139.
5）K．Y．M．Wong，D．Sherrington，P．Mottishaw，R．Dewar，and C ． deDominicis，J．Phys．A $\underline{21}$（1987）L99．

6）S．Inawashiro and S．Katsura，Physica 100A（1980） 24.

Fig． 1 Schematic diagram of the free energy in the phase space appearing in Literatures．

Fig． 2 Negative of the energy，$-E\left(\mu_{0}\right)$ ，as a function of $\mu_{0} . z=3$ ， $n=2$ ．

Fig． 3 Negative of the energy，$-E\left(\mu_{0}\right)$ ，as a function of $\mu_{0} . z=3$ ， $n=3$ ．

Fig． 4 Negative of the energy，$-E\left(\mu_{0}, \mu_{1}\right)=m F . z=3, n=2$ ．

Table 1 Stationary poins of $F=f^{*}(a)$ ．The value of a with $*$ are solutions of integral equation．

a	$f(a)$
0.03815	366.972
$* 0.04171$	-77584.08
0.06734	-41476862
0.10681	1.31011
$* 0.10683$	1.27367
0.20446	-1649870784
0.33059	130.862
$* 0.33333$	1.27778
$* 0.42219$	-2342966
0.45170	-0.68646
0.45452	284.973
$* 0.45809$	-7168.45
0.61111	-4759339956
$* 0.72049$	-5145002
0.73281	387.355
0.84812	-6858432078
0.95890	2769.61
$* 0.97162$	-1096078
$* 1.00000$	1.5

FREE ENERGY of Ising Spin Glass $M(8): \begin{aligned} & \theta \\ & M(1): ~ \\ & M(2)=(1-M(1)-2 t H(1)) / 2\end{aligned}$
MHMOM

Fig. 1

