<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>振動子集団におけるイントリンシックな揺動と引き込み相転移 基研長期研究会「カオスとその周辺」研究会報告</td>
</tr>
<tr>
<td>Author(s)</td>
<td>大同 寛明</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1989), 51(6): 723-727</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989-03-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93591</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
振動子集団におけるイントリンシックな揺動と
引き込み相転移

九工大・工大 同 寛明

自然界には時間的なリズムを示す系が多数存在する。そのような系は通常、多数の散逸的振動子の集まりと見なすことができ、系全体の示すリズムは要素振動子間の相互引き込みの現象と解釈される。結合が弱ければ、各要素はそれぞれ独自のリズムで振動するので巨視的リズムは現れない。従って、もし振動子間の結合強度をコントロールできるとすれば、ある強度を境として、一種の“相転移”が見られるであろう。この相転移の性格を探る事は、自然界にくくも普遍的に存在する時間的リズムの発現の機構を明らかにする上で、極めて重要である。これまで数種のモデル系について、主として秩序変数の振舞いから、二次相転移との類似が指摘されて来たが、以下では、秩序変数の振舞（但し、外来ノイズに依る振るイントリンシックなもの）の振舞いを調べる。解析的アプローチを容易にするために平均場型の微分方程式モデルを採用する。すなわち、$N \gg 1$ 個の振動子から成る集団について、θ_j をj 番目の振動子の位相 (mod. 1)，ε を振動子間の相互作用強度を表すパラメータとして，

$$\frac{d\theta_j}{dt} = \omega_j + (\varepsilon/2\pi N) \sum_{i=1}^{N} \sin 2\pi (\theta_i - \theta_j)$$ (1)

(1 ≤ j ≤ N) なる力学系を考える。ω_j は固有振動数であり、系内での分布函数を $f(\omega)$ とす。簡単のため、その平均値を 0（一般性を失わない）とし、 0 のまわりに分布は対称と仮定する。秩序変数は

$$Z(t) = N^{-1} \sum_{j=1}^{N} e^{2\pi i \theta_j(t)} \quad (i^2 = -1)$$ (2)

の $t \to \infty$ における極限値を \hat{Z} である。もちろん、そのような極限は $N = \infty$ においてのみ存在する。このとき、相互引き込みの転移点は $\varepsilon_c = 4/f(0)$ であり、 $\varepsilon < \varepsilon_c$ で $\hat{Z} = 0$, $\varepsilon > \varepsilon_c$ で $\hat{Z} \neq 0$ となる。\hat{Z} の臨界指数 β は通常の分布 f に対して、1/2 である。$N < \infty$ では $Z(t)$ は平均値 $<Z>$ のまわりで $O(N^{-1/2})$ のゆらぎを示す。このゆらぎの大きさの目安として

$$\sigma = \lim_{N \to \infty} (N < |Z - <Z>|^2>)^{1/2}$$ (3)

を定義し、その振舞いを調べる（平均$<$>は全て長時間平均である）。スピン系の言葉でいえば，
研究会報告

σ²は1スピンあたりの帯磁率に相当する。筆者のモデル(1)を Euler 差分化しての数値計算によれば σ はスピン系における同様に、転移点の前後で巾発散

$$\sigma \propto |\varepsilon - \varepsilon_c|^{-\gamma}$$ （4）

を示す。以下で臨界指数 σ'(2γ'が帯磁率の臨界指数 σ に相当する) を求め、数値的な証拠を与える。

理論の要諦は系のサイズ N について展開する事である。つまり、$$w = Z - \hat{Z}$$ とおけば $$w = O (N^{-\frac{1}{2}})$$ であり、$$\theta_j = \psi_j + \phi_j$$ とかいて $$\psi_j$$ を Z からゆらがないときの位相と定義すると、$$\phi_j = O (w) = O (N^{-\frac{1}{2}})$$ となるので、これらの式を(1)と(2)に代入して、w と $$\phi_j$$ について展開する事が許される。$$N \to \infty$$ で消える項を落とすと、最終的にwに関する次々の様な線形方程式がえられる。

$$w(t) = - \hat{Z} + N^{-1} \sum_{j=1}^{N} e^{2\pi i \psi_j(t)}$$

$$+ \frac{\varepsilon}{2} \int_0^t dt'\left\{ A_-(t, t')w(t') - A_+(t, t')w^*(t') \right\}$$ （5）

ここで、定義により

$$d\psi_j(t)/dt = \theta_j + (\varepsilon / 2\pi) \text{Im}(\hat{Z}e^{2\pi i \psi_j(t)})$$ （6）

である (1 ≤ j ≤ N)。（但し、Im は虚数を意味する。なお、(5)において $$w^*$$ は w の複素共役である。）積分核 A±は(6)の解を用いて次々に定義される。

$$A_\pm(t, t') = \lim_{N \to \infty} N^{-1} \sum_{j=1}^{N} \exp\left\{ 2\pi i [\psi_j(t) \pm \psi_j(t')] \right\}$$

$$+ \left(\varepsilon / 2\pi \right) \int_t^{t'} d\tau \text{Im}\{-2\pi i \hat{Z} e^{-2\pi i \psi_j(\tau)}\}. \quad (7)$$

方程式(5)の解がえられると、$$\sigma = (N < |w - \langle w \rangle|^2 \rangle)^{1/2}$$ から σ が求めるられる。

まず $$\varepsilon < \varepsilon_c$$ の領域を考えよう。ここでは $$\hat{Z} = 0$$ であるから dominant phase motion $$\psi_j(t)$$ は trivial である。$$t \to 1$$ に対して(5)を解くと、

$$w(t) = N^{-1} \sum_{j=1}^{N} \{ 1 - (\varepsilon / 2) \tilde{A}(2\pi \theta_j) \}^{-1} e^{2\pi i [\theta_j t + \psi_j(0)]}$$ （8）

ここで、

$$\tilde{A}(\omega) = \int_0^\infty d\tau e^{-i\omega \tau} \int_0^\infty d\omega f(\omega) e^{2\pi i \omega \tau}. \quad (9)$$
つまり，ゆらぎ \(w \) は \(N \)-torus 上の運動を示す。\((8) \)から \(\sigma \)が次のようにとられる。

\[
\sigma = \left(\int_{-\infty}^{\infty} d\Omega f(\Omega) \left(1 - \left(\varepsilon/2 \right) \tilde{A}(2\pi\Omega)^2 \right)^{1/2} \right). \tag{10}
\]

\((8) \)を使うとゆらぎの相関関数 \(C_Z(\tau) \) もすぐ計算できる。

\[
C_Z(\tau) \equiv \langle \{ Z(t+\tau) - <Z> \} \{ Z(t) - <Z> \} \rangle^* \\
= N^{-1} \int_{-\infty}^{\infty} d\Omega f(\Omega) \left(1 - \left(\varepsilon/2 \right) \tilde{A}(2\pi\Omega)^2 \right)^{-2} e^{2\pi i' \Omega \tau}. \tag{11}
\]

これらの公式によると，例えばLorentz分布 \(f(\Omega) = (\tau/\pi)(\Omega^2 + \tau^2)^{-1} \)の場合，\(\sigma = \sqrt{4\pi r} \) \((4\pi r - \varepsilon)^{-1/2} \)および \(NC_Z(\tau) = 4\pi r(4\pi r - \varepsilon)^{-1} \times e^{-\left((4\pi r-\varepsilon)\right)^{1/2}} \)となることがわかる。（\(\varepsilon_c = 4\pi r \)に注意。）

さて，もっとも興味のあるのは，\(\varepsilon \to \varepsilon_c^- \)での \(\sigma \)と \(C_Z(\tau) \)の挙動である。\((10) \)より容易に

\[
\sigma \equiv f(0)(\varepsilon_c/|b|)^{1/2}(\varepsilon_c - \varepsilon)^{-1/2} \tag{12}
\]

ここで

\[
b = (2/\pi^2) \int_{0}^{\infty} d\Omega (\frac{df}{d\Omega})/\Omega.
\]

つまり，無秩序相から相転移点に近づくときの臨界指数 \(r' \)はスピン系の平均場モデルと同じく，1/2である。又，相関関数は転移点の近くで指数的減衰 \(|C_Z(\tau)| \sim e^{-\gamma/\tau_c} \)を示し，相間時間

\[
\tau_c \equiv f(0)^{-1}(\varepsilon_c/|b|/2)(\varepsilon_c - \varepsilon)^{-1} \tag{13}
\]

の様に発散して，ゆらぎのcritical slowing downを特徴づける。

さて，秩序相の解析に移ろう。\(\psi_j \)の発展方程式\((6) \)からわかる通り，秩序相においては \(|\Omega_j| < \varepsilon |Z|/(2\pi) \)をみたす引き込まれる振動子のグループとそれ以外の引き込まれない振動子のグループの二つに分かれる。前者では \(\psi_j \) は一定となるため積分核 \(A_\pm \)への寄与は正確に計算できるが，後者ではそれが困難である。このため，\(|\Omega_j| > \varepsilon |Z|/(2\pi) \)なる \(j \)については次の様な近似を行なう。

\[
A_- \mbox{に対する}(7)の \{ \} = 2\pi i'(t-t')\Omega_j - \varepsilon Z^* \int_t^{t'} d\tau e^{2\pi i' \psi_j(\tau)} \\
\rightarrow 2\pi i'(t-t')\Omega_j - \varepsilon Z^* e^{2\pi i' \psi_j(t-t')} = \Phi_j(t-t') \tag{14}
\]
ここで最初の等号は(6)を用いて示される。つまり，$e^{2\pi i \psi_j}$なる周期関数（周期$Q_j^2 - |Z|^2 / (2\pi)$）の積分の微細な変動を落として、直線にならしてしまうのである。求めるのは長時間平均であるから，(5)は$t \gg 1$で解けばよい事から，これは妥当な近似と考えられる。同様にして，$A_+\zeta$に対しては(7)の$\exp \{ \cdots \}$を$e^{-4\pi i \psi_j} \cdot \varphi_j(t-t')$で置き換える。詳細は略すが，このような近似の下で，次の結論をえた。$\varepsilon \to \varepsilon_c^+ \text{において，}$

$$\sigma \propto (\varepsilon - \varepsilon_c)^{-1/8} \tag{15}$$

および

$$\tau_c \propto (\varepsilon - \varepsilon_c)^{-1/4} \tag{16}$$

以上の結果(12), (13), (15), (16)に対しては数値計算の結果が支持を与えているが，ここではσのスケーリング(12)と(15)に対する証拠の得られる。σの従うべき有限サイズ・スケーリング則は

Fig. 1
\[\sigma = N^{\frac{1}{4}} \Psi (|\epsilon - \epsilon_c| N^{\frac{1}{2}}) \]

となる。但し、\(s = 2, \Psi(x) \sim x^{-1/2} (x \gg 1) (\epsilon > \epsilon_c) \)かつ\(s = 1/2, \Psi(x) \sim x^{-1/2} (x \gg 1) \)である。Lorentz分布の場合のプロットをFigure 1に示す。（a）では\(\epsilon < \epsilon_c, \delta = \epsilon_c - \epsilon \)で\(N = 6000 \sim 20000 \)。（b）では\(\epsilon > \epsilon_c \)で\(\delta' = \epsilon - \epsilon_c \). \(N = 1600 \sim 6000 \). \log は常用対数。}

上にえられた結果で特筆されるのは、秩序相から相転移点に近づくときの臨界指数が無秩序相から近づく場合に見出された平均場の指数と異なる事である。秩序相では \(O(N) \)の数の振動子が引き込まれ、その分だけ振動が弱くなり、発散が弱まる事がその原因と考えられる。この点については更に深く調べる必要があるが、何れにせよ振動を見ることによって初めて平衡相転移との著しい違いが明らかとなったのである。なお、ここでえられた結果は、\(\sigma \)の巾発散という筆者の予想2)を支持するが、\(\sigma \)の非発散というKuramoto-Nishikawaの主張（J. Stat. Phys. 49 (1987) 569）とは明らかに食い違うものである。

この研究3)は文部省科学研究費補助金の援助を受けたものである事を記して感謝します。

文 献
3) H. Daido, KIT preprint (投稿中), and to be published.