<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>界面における非線形振動 基研長期研究会「カオスとその周辺」研究会報告</td>
</tr>
<tr>
<td>論文作者</td>
<td>中田 聡 吉川 研一</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 基研長期研究会「カオスとその周辺」研究会報告</td>
</tr>
<tr>
<td>項目</td>
<td>項目</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI [Kyoto University Research Information Repository]
「カオスとその周辺」

界面における非線形振動

名古屋大学教養部 中田 智*・吉川研一

1. 緒言

生命体は、常に変化する自然環境にさらされてながら、巧みに自らを維持したり、形態形成を行なっている。ところが、このような生命現象は、生物を分子レベルでバラバラにした状態ではみられない。すなわち、完全に静止した状態（死の状態）に至っているものに刺激やエネルギーを与えたとしても、形態形成や自己修復機能を持つことは不可能である。このように、生命現象は死の状態とはほど遠いため、非線形非平衡下にある現象といえる。図1に神経インパルスの模式図を示す。神経細胞においては、通常、細胞膜の内側の方が外側よりもNa⁺濃度が高く、逆に細胞膜の外側の方が内側よりもK⁺濃度が高い状態が保たれている（A）。ところが、外部から化学的、または物理的刺激を受けると、細胞膜を介して内側から外側へNa⁺の流れ（B）が、そして、内側から外側へK⁺の流れ（C）が生じ、神経インパルスの発火が生じる1）。生命体はこのパルスを情報として様々な応答を示すのである。そこで、我々は生命現象の本質を解明するために、膜界面で生じる非線形非平衡現象に注目し、研究を進めてきている。本稿では、まず、チャネルタンパクのない系でも濃度差によって発振現象が生じる塩水発振子系について簡単に紹介し、次に、界面における非線形特性を情報とした化学センシングについて詳しく記述したい。

2. 濃度差を駆動力とする塩水発振子の時空間での秩序形成

図1のような発火現象は、チャネルタンパクが担っていると考えられている。ところが、生化学的な手法により、神経細胞をすりつぶして、チャネルタンパクを調べることは、発火機能そのものも、破壊してしまうことになり問題がある。一方、電気生理的な研究も、現象論的な記述に終わってしまう可能性が強い。そこで、簡単なモデル系で、神経の発火を再現することが、それからの重要な課題となることが分かる2)。

* ’89年4月より奈良教育大学化学教室

-621-
Nervous Impuls

図1．神経インパルスと発火機構の模式図

1970年海洋学者マーチンは、細管を通して塩水と純水を接触すると塩水と純水の周期的な流れが生じることを見いたした。この現象は、チャネルタンパクがなくても発振現象が生じるといった点で興味深い。そこで、我々は彼の実験系を改良し、発振子を複数個並べると“引き込み現象”が生じることを新たに見いだした。図2-Aに“引き込み現象”のための実験装置を示す。プラスチックコップまたは紙コップを用意し、コップの底に直径1mm程度の穴を開けておく。コップの中には塩水を、外の容器には純水を入れ、塩水と純水の水面のレベルをほぼ同じ高さにした後、実験を開始する。コップが1つ（すなわち振動子が1つ）の時は、塩水から真水への下向きの流れと、真水から塩水への上向きの流れが交互に起こる。さらに、コップを3つ（すなわち振動子が3つ）横に並べると、図2-Bに示すように120度位相ずれて振動が同調するといった、時空間的な秩序の形成がみられた。このような引き込み現象は、心臓細胞や脳波のようなに、生命でみられる引き込み現象を解明する上で、重要なモデルとなるであろう。我々はこの発振子が3つ存在する場合の引き込み現象を、Navier-Stokes方程式を簡略化した非線形微分方程式を用いて計算機シミュレーションを行なったところ、図2-Bの実験で得られたパターンを再現させることに成功した。そのシミュレーション結果を図2-Cに示す。
図2．塩水発振子の引き込み現象
A)実験装置図、B)3つのカップにおける引き込み現象、
C)"引き込み"のシミュレーション

3．界面における非線形特性を指標とした化学センシング

生体の優れた分子認識機能として、味覚・嗅覚が挙げられるが、これらは前述したように、外部からの化学的刺激を、細胞膜を介して発せられる神経の電気インパルスに変換している。そして、生じたパルスの周波数及び、周波数の変調度を主に情報源として、多くの化学物質を同時に認識・識別していると考えられる7)．8)。一方、近年優れた選択性電極の開発が進められているが、これらの電極には次のような原理的な問題がある。①出力が直流電圧であり、ネルンスト応答を情報としているため、情報量が限られている。②単一の物質に応
研究会報告

答するような、選択性電極をめざして研究開発が行われてきているが、実際にには他の混合物の影響を受けてしまう。生物の化学センサ、味覚は一般的に混合物が対象である。③修飾電極の作成において、同じものを作ることは不可能であるので、電極ごとで標準試料に対する応答性や感度が異なり、その上、ヒステリシスがある。

上記の問題は、センサを開発している人たちが苦労しているところでもある。このような点で、味覚・嗅覚の機構をまねたセンサを開発することが重要となってくる。そこで、我々は神経インパルスの発火が膜・界面における非線形挙動に基づいていることに注目し、界面における非線形特性を指標としたセンサを開発した。

3 - 1. 電極界面における非線形特性とは！

では、前述の電極界面における非線形特性とは何か、について説明したい。水溶液に電極を浸した場合のイオンの挙動は一般にGouy-Chapmanの理論が適用される。図3に固体表面（電極表面）に電圧が加えられたときの電極界面の

図3. 電極系における電気容量Cの非線形性
状態を模式的に示した。まず、(C) のように、固体（電極）が単に水溶液中に浸されている場合、固体（電極）界面近傍には、イオンと一緒にイオンが均一に存在している。ところが、(A), (B), (D) のように固体（電極）に電圧が加わったような場合では、固体（電極）界面近傍では固体表面と反対符号のイオンが接近し同符号のイオンは遠ざかっていくために、電極界面近傍では、固体界面の電荷と反対符号のイオンの電荷により、電気二重層が形成される。そして、その電気容量の大きさは、加える電圧に依存して変化するのである。では、一般の電気回路で使用されている電気容量と比較してみよう。

図4. シミュレーションに用いたモデル回路

図5. 電気容量Cが線形な場合の
A) C-V曲線、B) I-V曲線、C) 電流のフーリエスペクトル
(R=40kohm, f=1Hz, a)C=2uF, b)C=4uFを使用)
図4のような簡単なモデル回路を用い、この回路にサイン波（周波数\(\omega_0\)）の電圧を加えたときの出力の電流をシミュレーションしてみた。

(A) 一般的の電気回路で使用される電気容量の場合

この場合の電気容量は外部から加える電圧の強さに依存せず、常に一定の値を示す（線形）（図5-A）。そのため、I（電流）- V（電圧）曲線は必ず横軸を描き（図5-B）、電気容量の大きさは横軸の大きさに表れている。このとき回路を流れる電流Iをフーリエ変換すると、抵抗Rを流れる電流は加える電圧と同位相のサイン波の電流が流れるため、real（実数）成分的人力周波数（\(\omega_0\））に相当する周波数の位置にピークが1本出現する。一方、電気容量Cを流れる電流は、加える電圧と比較して、90度位相が進むため、imaginary（虚数）成分の人力周波数（\(\omega_0\））に相当する周波数の位置ピークが1本みられる（図5-C）。すなわち、real成分の人力周波数に相当するピークは回路内の電気電導度の大きさを、imaginary成分については容量成分の大きさを示しているのである。

(B) Gouy-Chapmanの理論に基づく電気容量の場合

Poisson-Boltzmann近似に基づいたGouy-Chapmanの理論における電気二重層容量は、式（1）で示される。

\[
C_d = \left(\frac{2z^2e^2\varepsilon \varepsilon_0 n^0}{kT} \right)^{1/2} \cosh \left(\frac{ze\varphi}{2kT} \right)
\] （1）

- \(n_0\) : 濃度（個数/\(cm^2\)), \(z\) : 電荷
- \(T\) : 絶対温度（K）, \(V\) : 電位（V）
- \(e\) : 電気素量（1.602\(\times\)10⁻⁹C）
- \(\varepsilon\) : 水溶液の比誘電率
- \(\varepsilon_0\) : 真空の誘電率（8.854\(\times\)10⁻¹⁴F/cm）
- \(k\) : Boltzmann constant（1.381\(\times\)10⁻²³C²/F·K）

式（1）のように、電気容量は加える電圧に依存して変化することがわかる。このような特性をもつ電気容量の場合についてはどうなるであろうか。図6-A
図6．電気容量が、Goy-Chapmanの理論に基づく場合の
(a) I-V曲線 (1)電解質濃度 5 mM, 溶液の抵抗 9 kΩ,
(2)10 mM, 4.5 kΩ, (3)15 mM, 3 kΩ,
(b) (a-3)の場合における電流のフーリエスペクトル
は水溶液中に各々濃度の異なるイオン（電荷 z = 1）が存在すると想定したときの I-V 曲線である。この曲線は、(A) の場合のような傾斜とは全く異なっていることがわかる。そして、この曲線の電流をフーリエ変換すると、図6-Bのように、基本周波数に相当するピーク以外に2倍波（2ω）、3倍波（3ω）といった高調波成分のピークが出現した。すなわち、この高調波成分は、電気容量の非線形特性から生じたものである。我々は、この高調波成分を有意な情報として様々な化学種のセンシングを行うのである。それでは”高調波成分”がどのような意味を持っているのか、を次の場合の電気容量について説明したい。

C 電気容量 C が電圧 V の1次に比例している（C = bV + c で表される：b, c は定数）場合（図7-A）

図7-B により示すように、I-V 曲線は歪んだ形を示し、電流のフーリエスペクトルには2倍波のピークが出現している。そして C-V 特性の傾き b が2倍（つまり2b）になるとI-V曲線の歪はより大きくなり、フーリエスペクトルの2倍波の強度がもとの2倍になる（図7-C）。すなわち、2倍波成分は C-V 特性の傾きを反映しているのである。

D 電気容量 C が電圧 V の2次に比例している（C = aV^2 + c で表される：a, c は定数）場合（図8-A）

図8-B により示すように、I-V 曲線は歪んだ形を示し、電流のフーリエスペクトル
トルには3倍波のビーグが出現している。そして、C−V特性の曲率αが2倍（つまり2a）になると1−V曲線の歪はより大きくなり、フーリエスペクトルの3倍波の強度がもとの2倍になる（図8−C）。すなわち、3倍波成分はC−V特性の曲率を反映しているのである。

以上のよう、電気容量Cが非線形な性質を有しているとき、人力の電圧が

図7．電気容量Cが電圧の1次に比例する場合（C=bV+c）の
A)C−V曲線、B)I−V曲線、C)電流のフーリエスペクトル
（R=40kohm,f=1Hz,a=3,b=2,b=4を使用）

図8．電気容量Cが電圧の2次に比例する場合（C=aV²+bV+c）の
A)C−V曲線、B)I−V曲線、C)電流のフーリエスペクトル
（R=40kohm,f=1Hz,a=2,b=5,b=10を使用）
サイン波（周波数 \(\omega \) のみ）であっても、出力の電流をフーリエ変換すると人力周波数以外の高調波成分のピークが出現される。そして、この高調波成分は測定系の \(C - V \) 特性を知る上で重要な情報となることがわかった。上記のシミュレーションで用いた式は、後の Appendix に示した。

3-2. 味覚物質の定性・定量

では、実際の実験に適用した結果について述べる。図9に実験装置図を示す。ファンクションジェネレーターによって周波数1 Hz、振幅(-0.5V～+0.5V)のサイン波の電圧をポテンショスタットを介して測定系に入力する。ポテンショスタットは、常に安定な電圧を測定系に加えるために使用した。そして、入力の電圧と、出力の電流をパーソナルコンピュータに取り込み、解析を行なう。作用電極としては、太さ0.5 mm、長さ20 mmの白金線を、参照電極としては、銀-塩化銀電極を使用した。測定温度は20℃の下で行なった。

測定には、1 mMオレイン酸ナトリウム水溶液に味物質を添加したときの、電気化学的な変化をみることにする。この実験系は、オレイン酸ナトリウムで修飾した電極を考えてよい。オレイン酸ナトリウムを用いたのは以下の理由による。私達は、オレイン酸ナトリウムを含む水-油-水三層液体膜系において、

![电路図](image)

図9. 電極系の非線形特性を検出するための実験装置図

自発的な電位の発振が生じることを見いだした。この液体膜系の発振時に、味物質を添加すると、味のカテゴリーの違いから、特異的な波形が得られることを明らかにしている。この特異的な発振波形は、油水界面における界面
活性剤と味物質の非線形挙動によるものであると考えている。界面でのこのような非線形挙動を電気化学的に検出する目的で、本実験方法を使用した。図10に味物質を添加したときのI-V曲線の変化を示す。味物質の添加により、特異的な変化の仕方を示しており、入力電圧がサイン波であっても、I-V曲線は、楕円体からは大きく歪んだ形をしており、明らかに電極系が非線形な性質を所持していることがわかる。味は、基本的には甘味・塩味・酸味・苦味といった4種類に分類されるが、この測定系においても同様な分類ができる。すなわち、同じカテゴリーの味物質であれば、I-V曲線が同様な変化の仕方を示すのである。その中で酸味と塩味についての例を図11に示す。

図10. 四基本味物質の応答
a)塩酸、b)塩化ナトリウム、c)ショ糖、d)ニコチン
図11. 塩味、酸味物質の応答

a)塩化アンモニウム、b)塩化カリウム、c)クエン酸、d)酒石酸

次に得られた電流のフーリエスペクトルをみてみよう。図12にニコチンを加えたときのフーリエスペクトルの相対強度（Imaginary成分の基本波に対する高調波成分の比）の変化を示した。ここで、この”相対強度”の理由について説明する。電極系においては、電極面積、電極の浸し方によって、基本波の値－すなわち電気抵抗と容量－が異なることが多く、これがインピーダンス測定の再現性の悪さにもつながる。また、修飾電極においても、同じものを作製することは困難であるので、基準の値が異なるのである。ところが、変化に一定の傾向があれば、基準が変化しても、基本波に対する高調波の比は変わらないであろう。このような理由から、”相対強度”をプロットしたのである。
さて、電極系が非線形であるために、フーリエスペクトルに入力周波数（1 Hz）以外に、2 Hz、3 Hzといった高調波成分が出現していることがはっきりとわかる。そして、ニコチンの添加と共に、例えば、real成分の2倍波がマイナ

![グラフ](image)

図12. ニコチンを添加したときのフーリエスペクトルの変化
一番上はオレイン酸ナトリウム、以下、図中濃度のニコチンを添加

スに出現していたものが、さらにマイナス方向に変化し、imaginary成分の3倍波についてはプラスに出現していたものが0に近づいている。他の高調波成分についても、添加濃度に依存して変化している。この高調波の変化を四基本味物質の代表例（酸味：HCl、塩味：NaCl、甘味：ショ糖、苦味：ニコチン）についてグラフにしたもののが図13である。この図から、高調波成分が加える味物質の濃度に依存して特異的に変化していることがわかる。また、他の物質に
図13. 四基本味物質濃度に対する相対強度の変化
a)塩酸、b)塩化ナトリウム、c)ショ糖、d)ニコチン

ついて実験してみたところ、同じカテゴリーの味物質であれば、同様な変化のパターンを示した。これを図14に模式的に表した。図中の矢印は、味物質の添加濃度の増加に対する相対強度の変化の方向を示している。味のカテゴリーが異なると、変化の方向のパターンに違いが生じていることがわかる。このように、高調波成分の変化のパターンから味物質の定性・定量化に成功した。このパターンによる識別方法は我々の味覚が神経の発火のパターンによって味を見分けていている点で類似しているところが多い。
次に、得られたフーリエスペクトルから逆にC-V特性をシミュレートしてみた。その結果を図15に示す。この図からわかるように、電気容量Cは電圧Vに依存しており、また、加える味物質に対して特異的に変化している。このようなC-V特性は、インピーダンス法では得られにくい。というのは、インピ

図14. 四基本味物質の応答パターン

図15. 図13からシミュレートした電気容量C-電圧V特性
a)塩酸、b)塩化ナトリウム、c)シュ糖、d)ニコチン

-634-
－ダンス法でこのような特性を測定する場合、あるバイアス電圧を加えておいた状態で、微小さな交流電圧を印可するので、バイアス電圧の印加による電極分極や経時変化のため、またはCの線形化のために、低周波測定では特に測定誤差が大きい。詳細は後述の表1にまとめた。この理由で、インピーダンス法によるC－V特性の測定は一般に困難であるが、私達は、電流値のフーリエスペクトルからC－V特性を再現性よく推測することに成功した。

A)

B)

C)

D)

図16. 四基本味物質の電極表面上の挙動の予想図

では、この系において味物質への応答挙動の違いは何によって生じたのか、実際の味覚機構と比較しながら推測してみよう。塩味物質は水溶液中のイオン強度を変化させ、電極近傍の電気二重層の形成に大きな変化を与える（図16-A）。そのために、I－V曲線に影らしが生じているのである。また、基準水溶液のオレイン酸イオンにも、塩析はみられないが強い影響を与えている。酸味物質は、水溶液中のpHを変化させ、オレイン酸イオン（COO⁻）はオレイン酸（COOH）となりやすい。そのため、電極表面では、オレイン酸分子が多く存在する（図16-B）。甘味物質は前述のような強い効果はみられないが、水溶液自身の性質を変え、オレイン酸イオンのC_M_Cに影響を与える（図16-C）。苦味物質は一般に疎水性の高い物質であるので、界面活性剤と凝集を起こりやすく、しかもそれ自身電極表面に吸着されやすい（図16-D）。

このような相互作用の違いから上記のような特異的な変化が出るものと思われるが、これを実証していくのがこれからの方題でもある。
研究会報告

ここでは、本測定方法とインピーダンス法を比較して、表1にまとめた。この表から、我々の測定法は電極系の非線形性を情報化している点で、インピーダンス法と本質的に異なっていること、そして、我々の測定法の方が再現性のよいデータが得られやすいことがわかる。

表1．インピーダンス法と我々の測定法との比較

<table>
<thead>
<tr>
<th></th>
<th>インピーダンス法</th>
<th>我々の測定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>原理</td>
<td>電極系を線形な抵抗と容量に置き換える。すなわち、I - V曲線の大きさを測定する。</td>
<td>電極系の非線形形を検出する。すなわち、I - V曲線の形を測定する。</td>
</tr>
<tr>
<td>周波数</td>
<td>高周波では、比較的に安定であるが、Cの非線形性は失われる。逆に、低周波では測定値が不安定で、再現性が悪い。</td>
<td>低周波では、Cの非線形形が現れやすいので、Cの非線形性を測定するには適しており、再現性もよい。主に、電極表面近傍の挙動を測定する15)。</td>
</tr>
<tr>
<td>セルや電極の大きさの影響</td>
<td>基準の値が変化するので、常に、同じ大きさの系で測定しなくてはならない。また、同じ系で、同サンプルであっても浸し方によって異なる値が得られる。</td>
<td>基準の値は変化するが、相対強度をとることにより、ある程度の補正が可能。浸し方の違いがあっても、この補正により解決できる。</td>
</tr>
<tr>
<td>浸し方の影響</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以上、電気化学的な非線形特性を有意な情報とすることにより、従来ない全く新しいセンサングシステムを開発することに成功した。このセンサによって、味物質の定性・定量化に成功した。今後、電極表面を修飾することによって、より幅広い測定ができることが期待される。

-636-
4. 引き込み現象を利用した分子認識

3. においては、電気化学系が一般的に非線形な特性を有していることを、そしてこの特性を情報として、味物質の定性・定量化が可能であることについて述べた。この章では、この電気化学的非線形特性を発振回路の”引き込み現象”を指標としてセンシングを試みたことについて示す。オペアンプを使用した発振回路として、ウィーンブリッジの発振回路がある。この発振回路は、回路内の抵抗や電気容量の様々な組合せにより、きれいなサイン波の発振を出現させることができるとともに、発振周波数及び発振条件は、理論的に計算が可能である。我々は、水溶液の電気的な特性を使って発振を起こすために、回路内の一部を電極系に変えてみた。そして、外部から電極系に、もとの発振周波数に近いサイン波の電圧を加え、出力電圧の発振波形と溶液に加わる電圧をモニターした（図17）。電極には白金電極を使用した。

図17. 電気回路の”引き込み現象”で使用する実験装置図

図18に KCl水溶液濃度を変化させたときの発振波形を示す。前節でも述べたが、水溶液系は非線形であるので、サイン波とは異なった波形が得られた。水溶液の濃度変化によって、発振周波数が変化し、波形も変化がみられるので、明らかに水溶液の特性を引き出していることがわかる。そして、外部からサイン波の電圧を水溶液系に加えてみると、元々の発振周波数が外部周波数によって、引き込まれる現象がみられ、図19のように KCl濃度の変化にともない、引き込みのパターンの違いがはっきりと現れた。このように、引き込みのパターンを指標としてセンシングが可能であることがわかった。この測定系は、例えば、pHメーターで緩衝溶液を使って、pH補正をするように、回路内の摘み
研究会報告

図18. ウィーンプリッジ発振回路中に電極系を組み込んだときの発振波形
a)2mM KCl, b)3mM KCl, c)4mM KCl水溶液

図19. KCl水溶液の濃度の変化に対する"引き込み現象"のパターン変化
（外部周波数: 3Hz, 元の発振周波数: 3～15Hz）

の調整により、同じ試料で、同じパターンの状態を再現させることができるので、非常に再現性がよい。今のところ、まだ試験段階であるが、将来的には、回路内や電極表面などを改良することにより、図20のようなパターンによる化学物質の定性・定量化が可能となるであろう。
「カオスとその周辺」

<table>
<thead>
<tr>
<th>甘味</th>
<th>酸味</th>
<th>塩味</th>
<th>苦味</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図20. パターンの違いによる化学物質の識別の模式図

最後に

以上、界面上において化学物質は非線形な挙動を示しており、この特性を明らかにすることによって、例えば、我々の五感をまねたセンシングシステムを開発すること、または生命現象を知る上でのカギともなる。前述したように、生命は常に時間的・空間的に自ら、秩序を形成しているのである。つまり、この”生命”の本質を知るためには、”線形”ではなく、”非線形”といった観点から迫らなくてはならないと思う。我々のモデルは、無生物系でもあり、しかも非常に簡単すぎるといってもよいくらいの系ではあるが、单細胞生物でも見事に生き続けていることからすれば、生命の本質的なところは、このようなシンプルな系から迫っていくのもよいのではないだろうか。

「謝辞」本研究は、川上博氏（徳島大工）、石井淑夫氏（鶴見大歯）、および、院生・学生の志磨修、小路勝、大山登、牧野正和の協力を得た。以上の方々にここで謝意を表したい。
(Appendix)

電極系が図4のような抵抗Rと容量C(V)の並列回路で置き換えられ、容量がC(V) = C₂・V² + C₁・V + C₈で表されるとしよう。

この回路にV(t) = E₈ + E₁・sinωtの電圧を加えたとき、抵抗を流れる電流Iₘ(t)は、

\[Iₘ(t) = \frac{V(t)}{R} = \frac{(E₈ + E₁・sinωt)}{R} \quad (2) \]

と表される。

また、容量を流れる電流Iₖ(t)は、

\[Iₖ(t) = \frac{dQ}{dt} = (dQ/dV)・(dV/dt) = C(V)・(dV/dt) = C(V)・(E₈ + E₁・sinωt) = (C₂・V² + C₁・V + C₈)・ω E₁・cosωt \]

\[= (C₂・V² + C₁・V + C₈)・ω E₁・cosωt + (1/2)・(2C₂ E₈ + C₁)・ω E₁²・sin2ωt + C₂・ω E₁³・(1/4)・(cosωt - cos3ωt) \]

と表される。

したがって全電流I(t)は

\[I(t) = Iₖ(t) + Iₘ(t) = \frac{E₈}{R} + \{ C₂ E₈² + C₁ E₈ + C₈ + (1/4)・C₂ E₁² \} • ω E₁・cosωt - (1/4)・C₂ ω E₁³・cos3ωt + (E₈/R)・sinωt + (1/2)・(2C₂ E₈ + C₁)・ω E₁²・sin2ωt \]

となる。
参考文献
2) 南雲仁一編, 「生体における情報処理」, 岩波講座 情報科学 24, 岩波書店.
4) 吉川研一, 現代化学, 4月号, 56 (1988).
13) 中田聡, 吉川研一, 石井淑夫, 日化誌, 495 (1987).