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A Temperature Shift Method

in Canonical Molecular Dynamics
Hiromi OTSUKA

We propose a method for obtaining the average values of physical quantities
at temperatures d‘i}ﬂ’erent_ from the assumed value ffom a simulation calculation of
the constant temperature molecular dynamics (MD) with a fixed temperature.
The method is developed on the basis of Nosé’s canonical MD. The present

method is numerically tested in a simulation on a 13-atom Lennard-Jones cluster.

§1 Introduction

Recently, several methods of molecular dynamics (MD) for treating ensem-
bles other than the microcanonical ensemble have been developed; they are the
constant temperature (T-const.) MD methods, the constant temperature con-
stant pressure (PT-const.) MD methods, and others.!=% Among them, the
method proposed by Nosé>?%) has attracted much attention, being simple and
transparent. He introduced an extra dégree of freedom described by a coordi-
~nate and its canonical conjugate momentum to :représent a "heat bath” which
exchanges energy with a given physicél system. By choosing an appropriate po-
tential for the heat bath, Nosé showed that the microcanonical ensemble for the
extended system consisting of the heat bath and the physical system is equiva-
lent to the canonical ensemble of the physical system for a constant temperature.
He also showed that the T-const. MD method developed on the basis of this
device could be extended to the PT-const. MD by combining it with Andersen's

constant pressure MD method?) ; in this case the volume of the physical system

—277—



K& WE

5) gave a further elucidation of Nosé's

is treated as a dynaﬁiica-l. variable. Hoover
méthod by showing that the heat bath‘variables act as thermodynamic friction.

An interesting method for calculating the free energy by means of Nosé's
method was developed by Brarika and Partinello.5) They showed that the calc’u—
lation of the average of the k-th power of the heat bath variable s, i.e., sk, by
T-const. MD at a temperature 8- yields the free energy difference between g1
and another temperature B(k)~1; the latter temperature ,3(/&:)‘1 is determined
by 8=t and k. | o

In this paper we éxtend the above-mentioned Brafika and Parrinello method
tof show that the aver'age of a given physical quantity A at tﬁe temperature
B(k)~! can be obtained by taking a ratio of < s¥A4 >4 to < s¥ >4, where <
. >p denotes th_e ,ayerage”v’alue calculated by T-const. MD at the temperature
B~1. This result can be extended to the_PT;cohst. MD. By varying the power
parameter k, we can obtain infor’mavtion at various ‘temperatures B(k)~" by a
simulation calculation at B~t; we can also obtain a temperature derivative of
the average of a physical quantity by adapting the present method.

This paper consists of four sections. The basic formulation is given in §2. In
§3, we perform a T-const. MD simulation on a 13-atom Lennard-Jones éluster

to check the validity of the method. A summary and conclusions are given in §4.
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§2 Formulation .

2 1 Nose S method

In this subsectlon we shaII summarize Nosé's method briefly.® 4 Nosé’ s Hamil-
tonian for T-const. MD is given by

pr
1
H.(q,p,s,P) = H(q, -) + + s In s, (2.1)

Q B

where H is the Hamiltonian for a physical system and 8~! is the simulation
temperature of the system.v f dénote%; the dégrees of freedom of the physical
system: f = 3N for the N-particle system in tﬁree dimensions. When the system
has conserved quantities, this equation must be corrected. @, s, and P; are the
mass, t»he coordinate, and its conjugate momentum for the motion of the heat
bath, respectively. (q,p, dt) are the virtual variables introduced by Nosé; they
are related to the real variables (¢, p’, dt') representing coordinates, momenta
and the time of the physical system by
02, %) = (¢,p, dt). )
s s

We assume that these virtual variables obe_y Hamilton's equations of motion with
Hamiltonian eq.(2.1). We write their trajectory as (¢(t), p(¢), s(t), Ps(¢)). With
the quasi-ergodic hypothesis, the long-time -average of a certain physical quantity

A(q,p/s) along this trajectory is equivalent to the average which is calculated

by a uniform sampling from the equienergy surface in the extended phase space
(4,p, 8 Fs):
1 p( ) /dPA(q>p/5)6(EO - Hn)
_tlim —t-/th(q(t), , —) =
o SONE / dT'§(Eo — H,)

=< A >, (2.3)
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where dI' = dgdpdsd P, and Ej is a constant which is determined by the initial
condition of the extended system. We transform the virtual variables p,¢ to
the real variables p’, ¢’ by use of eq.(2.2), and using the equivalence relation for

§—function:

8(9(a)) = 8(z — 20)/ L2 (2.4

where zg is the zero of g(z), we can rewrite eq.(2.3) as

dl'dsdP,A(q, p")s'T16(s — so)

3

< A>g=
, /dI"dsdP,‘sf+15(s — 5p)

where dI' = dq'dp’ and

B, P?
f+1{E°_2Q

—H(d,p')}]

so = exp|

By integrating with respect to the heat bath variables s and P, we can derive

following equation.
/dF'A(q',p')e"ﬁH(""”')

/dr'e—ﬂH(Q',p')

=< A >§, (2.5)

><A>ﬂ=

where < ... >g denotes the average with the canonical ensemble at 1.

In the case of PT-const. MD, Nosé’s Hamiltonian corresponding to eq.(2.1)

P P2  f+1 P?
iR Tag T T et o

+ Pe:c{/:
(2.6)

H.(q,p,s, Ps,V,P,) = H(qV/3
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where P, denotes the simulation.pressure. W,V, and P, are the mass, the co-
ordinate, and the momentum for the motion of the volume variable, respectively.

The relations between the real variables and the virtual variables are given by

R |
@V, =5, Sy = (¢ 0, dt). e

The following expreésion is derived in the same way as the case of T-const. MD.
.1 p(t)
lim = [ dtA(qg(t)V($)'/3, —r
{0 1 / | (eVE)T, s(t)V(t)1/3)

/ dU'dVdP,A(qV/3, p/sV1/3)5(E0 — H,)
= . . E< A >ﬂ7Pe:c
/ dUdVdP,§(Eo — H,)

/dVdI"A(q',p’)e“ﬂ(H(qup')+PexV)

/dVdI"e—ﬂ(H(q’,p’HPezV)

=<A>Fp . (2.8)

Consequently, by choosing Ins to the potential for heat bath variables and gen-
erating microcanonical ensembles for extended systems, we can take canonical
ensembles for physical systems.

The above argument applies to the case of the virtual time sampling, i.e.,the
sampling along the trajectory (q(t), p(t), s(t)). On the other hand, in the case
of real time sampling, which is performed along (¢'(¢’), p’'(¢') ), Nosé pointed out
that the factor f + 1 must be replaced by f. For example, Nosé's Hamiltonian

eq.(2.1) becomes

- P N
Haa,,, P) = 0.2+ 75 + g-lns. (2.1')

We perform a simulation on a 13-atom:Lennerd-Jones cluster in §3 using the

real variables; the factor f + 1 in all equations is replaced by f. The detailed
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explanation of the relation between the real time sampling and the virtual time

sampling is given-in AppendixA.

2.2 Formulation of temperature shift method

We have explained an outline of '\'vloéé;s“fnethod in the above subsection.
Next, let us consider ‘the following quantity to formulate "temperature shift
method” . . )
k . k P [

- t

< SkA >ﬂ tl—l}go t dts(t) A(q( ) ( )) |
‘ A lim = [ dts(t)* |

t— o0

The right-hand side of this equation is rewritten in the same way as the derivation
of q.(2.5). Assuming that we calculate both the numerator and the denominator

on the same equienergy surface, we obtain the next expression:

[avatg presenaany [apesns)

<s*A>p
< $k>ﬁ ce /dI\I —-ﬁ(k)H(q' p’)//d[" —ﬂH(q Y4 )
where : o
B =+ 7o o e

Therefore, we can say from this equation that by calculating < s*A >4 [/ <
sk >4 by the T-const. MD at B~1, we obtain the average of A at B(k)~?!.
By differentiating both sides of eq.(2.10) with respect to k, we derive the

following expression for the temperature derivative:

d < A>F, f+1<(s’“lns)A>ﬂ<s >5— < s*A>p< s Ins >y
apk) B <%,

(2.12)
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which can be rewritten as

< (&lns—< f+1

BT T

Ins >ﬁ(k))(A— <A >ﬁ(k)) >B(k) - (213)

The expression (2.13) can also be derived by taking into account the fact thét
the fluctuation of the total energy of the physical system is equivalent to that
of the heat bath except for its sign. Using this equation we can calculate the
temperature derivative at ﬂ(k)‘1 byltbe T-const. MD simulation at f~!. For
example, if A equals the total energy of the physical system ther’l;.’-cvﬁe- right-hand
sides of egs.(2.12) and (2.13) bécome |

= <(H=<H>51)* > - (2.14)

This expression: is familiar to us (see Appendix B).
It is a straightforward operation to extend the above argument to the case
of PT-const. MD. We can easily derive expressions corresponding to eqs.(2.10)

and (2.13) by paying attention to table I. The result is the following:

< e~ BAEWVh gk 4 >3.P
< e"‘ﬂ(k)Vhsk >ﬂrPea:

< A >g(k),Pez;(h)= (2.15)

d<A>$5 p ) 41 1 o - »
B(k),P.(n) _ _ f+ 1 v f+ | ,
256) =< (——ﬂ ns+hV— < s+ V' >4(k), Pec(h))
(A“_< A >5(k),»1_3ex(h)_) >B(k),Pez(h) (2.16)

C
d < A >ﬂ(k),Pem(h)
dP.;(h)

=A(k) < (V= <V >px),pc(h))
(A= <A >pk),Poa(h) >B(K), Pea(h)r (2.17)
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where

Pey(h) = Poy + h. - (2.18)

We have obtained all the equatiéns to be derived; we can make the meaning
of these equations clearer by studying the behavior of s on the trajectory. The

total energy of the extended system FEj is the conserved quantity of the motion: -

p2 :
Eo = H(qg, §)+ 2é+f;11ns. (2.1")
From this equation,
_ kB p? -
s® = expl— 7 {Fo— 55— H(¢,7)]}]
= const. expl—(B(k) — ) P2/2@ 2B 5 1)

exp(—BH)
As we explained in Appendix B, exp[—(8(k) — 8)P2/2@Q)] does not influence the

averages of the physical quantities. Consequently, s* essentially has the same
function as e #(®)H /e=BH and can shift the temperature from 8~ to A~ 1(k).
It is the same with PT-const. MD. We can show that e #(¥)VA sk is essentially
equal to e“ﬂ(k)(,H”’P“("’)V)/e"ﬂ(H"'P”V); it can shift both the temperature and

the pressure from 81, P, to B(k)™1, Peg(h), respectively.

Table I The relation between the weights at which temperature and pressure

shifts occur.

Temperature Pressure
Potential I;—l Ins P..V
Weight s* | (e=PV)h
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§3 T-const. MD Simulation on a 13-atom Lennard-Jones Cluster
Our simulations were carried out on a system of 13 atoms interacting with a

Lennard-Jones (LJ) potential:

Ui =4z = (g 6

It is well known that the LJ potential is a good approximation for rare gases such
as argon, iﬁ which case ¢ = 125kp, 0 = 3.45A. We measure energy in units of ¢,
length in o, temperature in (o/kp) and time in (ma?/€)/2, where m denotes
the mass of the atom. The physical system was enclosed in a 6 x 6 x 6 box.
We used the real variables. This is because the behavior of the real variables
is more moderate than that of the virtual variables. Therefore, the real variables
are more suitable for the simulation than the virtual variables. The integration
of the differential equation was performed on the NEC SX-2N at Computation
Center of Osaka University using a fourth-order Runge-Kutta method in double

precision. We rewrite eq.(2. 1') using the real variables:

o ;o (S’Ps,)z i '

where s’ = s, P/ = P,/s. This quantity is no longer the Hamiltonian for the
motion of the real variables, but it is still conserved. Therefore, we can take an
appropriate time step for integration by paying attention to its behavior.

We performed seven different simulations at the following temperatures:
A~1 =0.34303, 0.4288, 0.536, 0.67, 0.8375, 1.1167, and 1.488. After appropri-
ate equilibration run, the averages were taken over a run of 1,000,000 steps at
each temperature. At each simulation we calculated the averages for k =10, 9,

., -10.
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< First, we show ConfigurationS‘-of the 13-atom cluster at the above tem-
peratures in fig.l. Frames in this figure show the 6 x 6 x 6 bok. From these
configurations, we can recognize some differences between the configurations at
B~1=0.34074, 0.47389 and others. It appears that the cluster at these two tem-
peréiures is in the state which IS different from a’t oth'e.r temperatures. Therefore,
we treat results at =1 = 0.34043 and 0.47889 in the end of this section.

- We calculated four physical quantities: the kinetic energy, the total energy,
the mean bond length (MBL), and the specific heat of the physical system.
Errors for these data were also estimated from the standard deviations o_f the
shert—time averages, which were calculated from 20,000 steps simulations. We
shall unify in the following figures that open squares, filled triangles, open circles,
filled squares, and open triangles correspond to the simulations at B~ =1.488,
1.1167, 0.8375, 0.67, and 0.536, respectively.

Figure 2. compares S(k)~! with the calculated temperatures from kinetic

energy defined by : )’
p.

< s’ — >3
2 Z 2

el 3.3
f < s'* >p (8:3)

which are shown by above-mentioned symbols with error bars. The abscissa
shows the value of k. These two temperatures for |k| < 8 coincide with eaeh
other within error bars. We may thus conclude that we have confirmed the
temperature shift effect induced by s*.

Figure(3.a) plots the total energy per atom given by

_ <sMH(,p) >p

E
N < S(k >3

(3.4)
against the calculated temperature. We plot the data for even k's at each 871,

—286—



B ) = H VAT B BIREE shift D

7 '=1.488 ' 81=1.1167

> |

8~ 1-0.8375 ' 8= 1-0.67

8~ '=0.4288 | 8 1-0.34304

&

Fig.1 The configurations of the 13-atom LJ cluster at the simulation tem-

peratures.
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Fig.(3.a) The temperature dependence of the total energy per atom. The
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Fig.(3.b) The temperature dependence of the total energy per atom. The
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circles (#~1=0.4288) and open rhombus (8-1=0.34304).
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We can see from this figure that the data obtained from the simulations at five
different temperatures are on- a single smooth curve within error bars.

The last physical quantity to which eq.(2.10) is applied is the MBL:
2 < s R, >,

>

TN(N—1)< s, >5°

Lp (3.5)

where R;. is the distance between the i-th atom and the j—tuh atom. We plot
the results for MBL in fig.(4.2). As the temperature .becomes.higjher_,:the MBL
comes to be saturated because of the presence of the boundary. We find that
there is a temperature range near T(,B,k) ~0.5 where the MBL varies rapidly.
The tempe,ratt;re,. shift method fuhcti_oﬁé well even in thi$ r_éng‘e.ﬂ

We calculated the specific heat to check the expréession for the temperature

derivative eq.(2.13):

< (s'kiln sVH >5< 8" >5 — < s'*H >5< s'k%lns' >4
C=- 7 2 1k 2 ' - (36)
NT(ﬂ,k) <s >ﬂ

The results are shown in fig.(5.a). The values of specific heaf obtained as
derivatives dE /dT'(B, k) from fig.(3.a) are also given in this figure és five curves.
Except for the data with large |k|’s, these values are consistent with one another.
This figure shows that there is a. peak in a speciﬁé heat curve, and that it is in the
above-mentioned temperature range, where the MBL changes rapidly. Therefore,
we may consider this peak to correspond to the melting of the cluster. We can
see from this figure that for a sufficiently high temperature, the specific heat per
atom approaches 3/2. o

In order to study the influence of taking weighted averages on the dis-

tributions of physicai quantities, we show histograms of the above calculated

—290—



3.50

1.50

2.50 3.50

1.50

2.50

= ANSGFEIFIC B BB shift OFEE

QAQOEM—““QM & 8w & @
— | Og
.
ot

- wh

N

]
R A

A
A
A
— A
A

o T 1 1 — I I |
0.40 0.80 1.20 1.60 2.00

| T(B, k) o

Fig.(4.a) The temperature dependence of the MBL. The correspondencg
between the symbols and the temperatures is the same as that in ﬁg.(3.a).-
7] A
A
A
- A
A.
—_ A [ 4
PN ®
.A *
A
i RS
¢
'G, ]
X
OOV T

T 1 T 1 T l
0.20 0.40 - 0.60 -0.80
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Fig.(5.a) The temperature dependence of the specific heat per atom. The
correspondence between the symbols and the temperatures is the same as that in
fig.(3.a). The symbols with error bars denote the values obtained using eq.(3.6)

and the five curves show the specific heat calculated from fig (3.a) by dE/T(8, k)
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Fig.(5.b) The temperature dependence of the specific heat per atom. The
correspondence between the symbols and the temperatures is the same as that in
fig.(3.b). The symbols with error bars denote the values obtained using eq.(3.6)

and the five curves show the specific heat calculated from fig.(3.b) by dE/T(B, k)
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short-time averages of the kinetic energy (see fig.(6.a)~ fig.(6.€)). Nine figures
correspond to distributions for k =-4,...4.' In these figures, the long-time aver-
ages are also indicated by vertical lines, and the maximum and the minimum of
short-time averages are additionally remarked. -We can see from these figures
how the weights ;s"‘ shift the distributions of the kinetic eﬁergy.k

From the above simulation calcﬁlatidn results, we could check the validity
of eq.(2.10) and eq(2.173). However, it dose not }always work well. Next, we
show tHe vresultvs of MD simulation at 8~! =0.34303, 0.4288, and 0.534. Figure
2, fig.(3.b), ‘ﬁg.(4.b), and fig.(5.b) plot the data of the calculated temperature,
the total energy, the MBL, and the specific heat, respectively. The correspon-
dence bétween simulation temperatures and the symbols is the following: the
closed circles and open rhombus correspond to 8~ ! =0.4288 and 0.34304. The
consistency between data in fig.(3.b) and fig.(4.b) becomes worse than that in
fig.(3.a) and fig.(4.a), still more, fig.(5.b) shows that eq.(2.13) does not work
well at these temperatures. This would be because that the behavior of the
cluster is not sufficienly chaotic to satisfy the quasi-ergodic hypothesis at these

temperatures below the melting temperature.
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84 Conclusions
We have shown that in the case of T-const. MD, the weighted averages us-
ing s* give the averages of physical quantities at (k)~*, which is different from
the simu.ation temperature g1, and that fluctuation of the function Ins, which
is‘ the O;th power of s, yi“elds‘ the terhperature derivat.ives instead of the temper-
ature shift. It is easy to extend these relations to the case of PT-const MD: the
weight which produces the pressure shift is (e7#Y)* and that which gives the
preésure derivative is ln(é_5Vh) = —ﬂhV. We have checked the usefulness of
these methods. Eduation (2.10) shows that by calculating the weighted averages
using s*, we can obtain the temperature shift with a-magnitude k/(f + 1+ k)B.
Therefore, this method works well for a relatively small system; a 13-atom LJ
cluster was chosen in §3. It is to be noted that at tem‘perat.ure much lower than
the melting temperature, the pfesent temperature shift method may not work
well because of the breaking of quasi-ergodicity. When we take weighted aver-
ages using s* with large |k|, many steps are required to attain convergence. The
method is useful because we can get information about various temperatures by
one MD run at a certain temperature. We can say that these relations explored

an unknown possibility of Nosé's method.
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Appendix A
We summarize equations.of motion here. In Hamiltonian eq(2.1), we take A =

p?/2s% + ¢(q); The equations which the virtual variables obey are

dg _p dp 0 ds P, ﬂ;_hﬁ*f+5 (4.1)
dt s dt  0q dt  Q dt  s's? B '

Using eq(2.2) and s’ = s, P! = P, /s, we can obtain equations for real variables:

dq' dp'  0¢ ds’ dpP; 1 g
'C'ﬁ';' :p’a E = _B'q';' - C’ dt' = S.IC’ di’ = ;(plz - E) - P;C’ (AQ)

where ( = s' P]/Q. We replaced f+1 by g and it is determined later. As Hoover
showed, if we take ¢ as a new variable to describe the heat bath, the eq.(A.2)

can be rewritten as

dq’ , dp d¢ o dg 1 2 g
—_— —_— _— — =). A.

ar P dq' Pé dt’ Q'( ﬂ) (4.3)
These are Vlasov type differential equations, in which the heat bath acts as a

thermodynamic friction and have a canonical distribution as a stationary solution.

- When we calculate the average of A using the real time sampling,

t/—o0

lim_ - [ 4G @),p ()

i L [adaOROL), 11
t—oo 1 5(t) oo 1 A s(t)

_< S_lA >ﬂl

N < 3_1 >’3/ |

=<A>pcay , (A.4)

where f'(—-1) = (1 — 1/(f + 1))B' from eq.(2.3) and B’ = (f + 1)B/g. g is
determined by 8'(—1) = ;g is equal to f. Therefore, when we use the real

variables, the factor f 4+ 1 must be replaced by f.
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Appendix B
The detailed derivation of eq.(2.14) is given in this appendix. For simplicity, we
consider the case that k=0. From eq.(2.12), |
d< H(g,p/s)>F _ f+1
g g

[dU(Ins)H&(Eo — H,) [ dT(Ins)6(Eo — Hy) [ dTHS(Ey — H,)
[dT6(Ey — H,) [ dU6(Eo—H,)  [dTé(E,— H,) I

[< (Ins)H(q,p/s) >p — < H(q,p/s) >p<Ins >g4]

_f+1
p

[

(B.1)
where dI' = dqdpdsdP,. By transforming the virtual variables to the real vari-
ables and integrating with respect to s, we can rewrite the right-hand side of

eq(B.1) as the following:

—<(H-<H>§)?>§

. i 1 P82 PS2 1] ’
— < (H(q',p")- < H(¢',p') >§ GG~ < 3¢ > >¢" . (B2)

The average < ... >g' is defined by

[ P2

' dP,dT (g, p', P,)e PUH( P )+55
<ald,p,P) >§ = [dP,dl"a(q ,p’, P,)e -
fdPde'e'ﬂ(H(q’,p'H;g-

) (B.3)

where dI' = dq'dp'. H(q',p') dose not depend on P,. Therefore, the fluctuation
of total energy of the physical system does not correlate to that of the kinetic
energy of the heat bath. Consequently, the second term of eq.(B.2) is equal to
zero, and eq.(2.14) can be derived. This is not only in the case of the total
energy, l.e., all of the physical quantities do not depend on P, and have no
correlation to the fluctuation of P?/2Q). For this reason, the weight which gives
the temperature derivative is not the total energy but the potential energy of

the heat bath.

—297—



KE #E

References

1)'}H.C.A‘nd.ersen: J. Chem. .Phys. 7.2(1980)2384. |
2) J.M.Haile, S.Gupta: J. Chem. Phys.. 79(1983)3067.
3) S.Nosé: Mol. Phys. 52(1984)255. |
4) S.Nosé: J. Chem. Phys. 81(1984)511.

5) W.G.Hoover: Phys. Rev. 31(1984)1695.

6) A.Brarika, M. Parrinello: Mol. Phys. 58(1986)989. -

—298—



