<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>樹枝状結晶成長における超音波の影響（長期研究会「パターン形成、運動およびその統計」研究会報告）</td>
</tr>
<tr>
<td>作者</td>
<td>田中 敦 沢田 康次</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 京都大学名誉教授森本多門</td>
</tr>
<tr>
<td>発表日</td>
<td>1989-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/93639</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
研究会報告

樹枝状結晶成長における超音波の影響

東北大学 電気通信研究所

田中 敦 沢田 康次

I. はじめに

パターンの成長機構に関する種々の問題は、物理的及び数学者に興味深いものがある。その中でも結晶成長においては、ミクロなカイネティクスがマクロな形態に決定的な影響を与えること、実験室においてパラメータの制御により、様々な形態を生じることが出来るなど、数々の優れた点を持ち、パターン形成における中心問題の一つである。

その中でも、枝条の発生機構は、もっとも重要な問題の一つとして古くから興味が持たれているが、今だに未解決な問題である。そこでわれわれは、NH₄Cl水溶液を用いて、数次元系（50±10μm）において樹枝状結晶を発達させ、超音波による外乱を加え、その影響を観察した。

II. 実験方法

実験系を図1に示す。実験に使用した物質は、NH₄Cl33.3%水溶液で、飽和温度は、48.9℃である。合わせたスライドガラスの間に、1mm幅の溝を作り、そのなかに過飽和水溶液をいれ、系全体の温度を制御して結晶を成長させ、その様子を顕微鏡で観察し、画像処理を施して定量化した。

系への超音波導入に用いたTRANS-CERの共振周波数は1MHz、パルス幅～20μsec、パルス間隔2msecで上下方向に粗密波を発生させることができる。それを上面ガラスの溝の両側に固定し、一方から超音波をいれ、他方より波形をモニターした。
III. 実験結果

超音波の溶液中の強度の目安として、粒径30μm、長さ100μmの小粒子を観測した。パルス超音波存在下でその粒子は、周波数約10Hz、振幅約数μmで振動する様子が観察された。なお、超音波の強度の空間分布はまだ測定していない。

図2. 結晶の成長形

図2（a）は凍結分度Δ（＝T−Tm）= 8℃で（110）方向、（b）はΔ = 10℃で（100）方向に成長する結晶の成長形である。（110）方向に成長する結晶先端から一定距離dₕ（dₕ = 10μm）の位置における結晶の幅の時間変動を図示したものが図3である。超音波を導入した時（図3（a））、しない時（図3（b））いずれの時も、結晶の幅は周期的に振動し、超音波の影響をほとんど受けていないことが分かる。

図3. (110)方向に成長する結晶の幅の時間変化
それに対し、（100）方向に成長する結晶では、Δが大きい時（Δ = 10℃、
\(d_s = 27 \mu \text{m}\)）、結晶先端は超音波の影響を受けずに定常成長しているが（図4
(a)）、Δが小さくなるに従い（Δ = 7.5℃、\(d_s = 34 \mu \text{m}\)）、超音波の影
響を受けるようになり（図4(b)）、Δ = 5℃では、それが著しい（図4(c)
）。その時の結晶全体の形もかなり不規則で、超音波の影響が大きいことを示し
ている（図5、\(d_s = 40 \mu \text{m}\)）。

図4 (100) 方向に成長する結晶の幅の時間変化

図5. 超音波で乱された結晶
IV. Discussion

樹枝状結晶の横枝の発生機構は、様々な形でアプローチされているが、未だに未解決な部分が多い。可能な機構としては、決定論的機構と確率論的機構の2つが考えられる。

決定論的機構は、少数自由度の力学が結晶先端に存在するというもので、そのダイナミックスとしてのリミットサイクルが横枝を作る。

それに対し、確率論的機構は、結晶先端におけるわずかなノイズが選択的に増幅されて後方へ伝わるというものである。

我々の実験結果から、(100)方向に成長する結晶先端の振動は認められないのに対し、(110)方向に成長する結晶では、明かな先端の曲率の振動が認められ、先端におけるリミットサイクルの存在が予想される。ここで超音波を入れた時にも安定に成長するのは、結晶先端と横枝のカップリングが強く、リミットサイクルが外乱ノイズより大きい事による可能性がある。

それに対し(100)方向に成長する結晶については、先端の速度はもちろん、曲率も一定で確率論的機構による事が予想されるが、外乱ノイズを加えてもある固有な周波数のみが選択されるのであれば、安定に横枝を発生させることができる。しかしそれでは過冷却度が小さい時の乱れを説明できない。そこで逆に、横枝の発生を阻害する周波数が超音波に含まれていたと考えることもできる。仮にそのような周波数が存在するとしても、その周波数はいくつか、その機構は何なのか現実験ではまだ分からない。さらに、過冷却度が大きくなると横枝の振動数が増大するので、これを乱すためには阻害する周波数もより高いものが要求されるが、そのような依存性はまだ明らかでない。

(110)方向に成長する結晶についてもリミットサイクルが小さくなると同様に阻害されることが考えられるが、過冷却度が小さい時の影響はまだ明らかでなく、選択される波数、阻害する波数が(100)方向とは異なる可能性もある。

もう一つ、超音波を導入すると温度や濃度のゆらぎが大きくなり、過冷却度が小さい時に重要となる表面カイネティクスに影響を及ぼしているという可能性もある。

-433-
研究会報告

V. まとめ

我々は、NH₄Cl水溶液による擬二次元系結晶成長において、超音波による外乱を加え、その影響を観察した。その実験結果によると、（110）方向に成長する結晶は超音波に対して安定に成長するが、（100）方向に成長する結晶は、過冷却度が大きい時は、安定に成長するが、過冷却度が小さいときは、超音波の影響が大きく現れることがわかった。

この実験結果から、横枝の発生機構に関する様々な可能性が示唆されるが、今後測定を精密化することにより、横枝の発生機構を解明する。

参考文献

2) Y.Sawada: Proc. 16th Int. Conf. on Thermodynamics and Statistical Mech., North Holland (1986),134