
8. Nb/Nb_{1-x}Sn_x多層膜超伝導体の研究

田 口 充

TT理論 $^{1)}$ によると,超伝導転移温度 T_{c} が等しく上部臨界磁場 H_{c2} が違う 2 種類の超伝導 金属を交互に積層した多層膜において, $H_{c2//}$ の温度変化における不連続な上昇が指摘されて おり,この現象は超伝導オーダー・パラメータの局在する位置が各層間で転移するためである と説明している 1 本研究はこの指摘に基づき 1 Nb/Nb $_{0.96}$ Sn $_{0.04}$ 多層膜を超高真空中での熱蒸着 により作製し, H_{c2} の温度依存性測定を行なった。

Nb, Sn の蒸着源にはそれぞれ電子銃, W-Boat を用い, $Nb_{1-x}Sn_x$ 層蒸着は各元素の同時蒸着によった。あらかじめいくつかのNb 及びNbSn 単層膜を,それぞれ蒸着条件(基板温度及び $Nb_{1-x}Sn_x$ 単層膜ではNbとSn の組成比)を変化させて蒸着し,その H_{c2} 測定結果の検討から多層膜の蒸着条件を基板温度 500° C 及び上述の組成比に決定した。図に見られる様に,多層周期 Λ が $320 \sim 400$ Å の多層膜に上述の現象によると考えられる上昇が見られ(矢印), Λ の増加に伴い上昇点が高温側に移動しており,理論と一致した傾向にあることが観察された。

1) S. Takahashi and M. Tachiki, Phys. Rev. B34, 3162 (1986)