<table>
<thead>
<tr>
<th>タイトル</th>
<th>U-Au, U-OsおよびU-Pd系金属間化合物の磁性 (平成元年度研究会報告 超強磁場による電子制御の研究 科研費研究会報告)</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>萩原, 英俊; 木村, 光一郎; 浜口, 佳孝; 西岡, 孝; 紺谷, 雅昭; 安達, 健五; 松井, 尚之</td>
</tr>
<tr>
<td>項目</td>
<td>物性研究, 超強磁場による電子制御の研究, 科研費研究会報告</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/94032</td>
</tr>
<tr>
<td>ページ</td>
<td>物性研究 (1990), 54(2): A59-A60</td>
</tr>
<tr>
<td>発行日</td>
<td>1990-05-20</td>
</tr>
<tr>
<td>ライブラリ</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
U-Au, U-Os および U-Pd系金属間化合物の磁性

名大理　　荻原英俊、木村光一郎、浜口佳孝
西岡　孝、紺谷雅昭、安達健五
名大工　　松井尚之

ウランと4d-, 5d- 遷移金属および貴金属元素の間の金属間化合物は、5f 電子の拡がりとウラン原子間距離の関連で、局在性と遷移性磁性および高濃度近藤効果ならびに重電子効果の発生が期待される。我々はU-Au系化合物において重電子効果を見出したが、参照した状態図に問題があり、その再検討を行った。今回は併せてU-Os系およびU-Pd系化合物も研究対象として採り上げた。

1. U-Au系
 (1) U_{14}Au_{51} [Gd_{14}Ag_{51}型]
 比熱：重電子効果 $\gamma(0) \approx 300 \text{mJ/K}^2 \cdot \text{mol} \cdot \text{U}$
 電気抵抗：$T=50K$ で抵抗極大、高濃度近藤的
 (2) UAu_{2} [CeCd_{2} 型]
 比熱：重電子効果 $\gamma(0) \approx 180 \text{mJ/K}^2 \cdot \text{mol} \cdot \text{U}$
 磁性：反磁磁性 $T_N=43K$, $T>T_N$ で $\theta_p \approx -180K$, $P_{xx} \approx 2.7 \mu\text{m}$, 低温 $T<T_N$ で弱磁磁性が寄生
 (3) UAu_{3} [1500℃より急冷、Cu_{3}Ti 型]
 比熱：重電子的 $\gamma(0) \approx 180 \text{mJ/K}^2 \cdot \text{mol} \cdot \text{U}$
 磁性：反磁磁性 $T_N=26K$, $T>T_N$ で $\theta_p \approx -135K$, $P_{xx} \approx 3.3 \mu\text{m}$, 磁化は $T<T_N$ でメタ磁性 ($H<6T$)

2. U-Os系
 (1) UOs_{2} [急冷はMgCu_{2}、徐冷はMgZn_{2}型 Laves相]
 (2) U_{x}Os_{4}, U_{2}Os_{3}, U_{3}Os [構造未定]
 比熱：(1), (2) 何れも正常の金属型比熱を示す
 $\gamma \sim 10 \text{mJ/K}^2 \cdot \text{mol} \cdot \text{U}$
 電気抵抗：何れも正常金属型
 磁性：何れもパウリの常磁性 $\chi(T) \leq 1 \times 10^{-3} \text{emu/mol} \cdot \text{U}$

3. U-Pd系
 UPd_{4+x} [構造はCu_{3}Au 型、余分のPdはU-サイトに乱雑に入れる]
 (1) UPd_{3.78}, UPd_{4}, UPd_{4.1}
 (2) UPd_{4.2}
 電気抵抗：電気抵抗は残留抵抗が大であるが、何れも高濃度近藤効果的傾向を示す。
 (2) では $T \leq 36K$ で抵抗値は急に下がる。
磁性: 帯磁率はT≤36K 以下で反強磁性的傾向、T>36K でキュリーワイス型常磁性
θp= -120 〜 -130K. Pₖₐₜ=3.2〜3.4 μₜ
比熱: (2) だけS型異常がありTₙ=36Kの反強磁性と判定。低温比熱はC(T)= γT+βT²
(1) はC(T)= γT+δT²+ βT³で表わされ、δ項によりスピングラスの可能性を含む。(1), (2) 共γ(0)=10〜20mJ/K²·mol·U
(3) (1) では低温でショットキー型比熱 (Tₘₐₓ≈20K) が重なる。
磁気抵抗: T=1.5K〜40K, H<6Tで、(1) は殆ど抵抗の変化なし、(2) はT<Tₙで正の磁気抵抗を示す。
結晶場効果: (1) のx⁻¹(T) 曲線とショットキー比熱は、U⁺⁺.5f² を仮定して立方結晶場を導入し、基底状態Γ₃と直上(ΔE=70K上)の励起状態Γ₅用い定性的に説明される。

以上の結果を、最近接U-U原子間距離dと局在性、遍歴性磁性に関するHillプロットに当てはめてみると、Hillリミットdₜ₃=3.6Åに関して、d₃=3.2 ÅのOs化合物は遍歴的パウリ常磁性、d≈3.9 ÅのPd化合物は局在性反強磁性（スピングラスも含む）を示し、抵抗は高濃度近藤的傾向を持つ。他方U-Au系化合物は、d=dnに位置し、重電子効果と高濃度近藤効果を含む反強磁性とみなされる。

今後は、更に他のウラン遷移金属化合物について調べると共に、単結晶を作成して、磁化、帯磁率、電気抵抗、磁場中比熱などの異方性を求め、電子構造の関連のもとに、研究を進めたい。