<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>11.MBE法により段差基板上に成長したGaAs/AlAsヘテロ構造の光学的・電気的特性(大阪大学大学院基礎工学研究科物理系専攻修士論文題目・アブストラクト1989年度)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>岡本 直哉</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1990), 55(1): 86-86</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990-10-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/94298</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
11. MBE法により段差基板上に成長した GaAs/AlAs
ヘテロ構造の光学的・電気的特性

岡本直哉

(111)A面を対面としても対段差基板（図1）
上のGaAs、AlGaAsのMBE成長は電子デバイ
スや光デバイスの新しい作製技術として注目
されており、多くの研究グループによりその
斜面上の特性が調べられている。1,2) しかし、
今までに段差基板上のGaAs/AlAsヘテロ
構造の特性について報告された例はない。

そこで段差基板上に井戸幅 ((100)面上) が
48,72,120,240ÅのGaAs/AlAs量子井戸構造を
図2
基板温度540℃で成長し、その斜面上のGaAs/
AlAsヘテロ構造の光学的特性を調べた。図2
は段差基板上の量子井戸のPLスペクトルで
ある。 (100)面からの発光以外にも発光がみ
られ、これは斜面からの発光と思われる。こ
れより斜面上の量子井戸の量子単位がで
ていることが確認され、その斜面上の井戸幅は
90,180Åになり、それぞれ (100)面上で 120、
240Åに相当することから斜面上のGaAsの成長
速度は (100)面上の75%になることがわかった。

またその応用として段差基板上にGaAs/AlAs
共鳴トンネルダイオードを作製し、その斜面
上のトンネル電流の観測を行うことにした。
図3は (100)面上の共鳴トンネルダイオードの
I- V測定の結果である。しかし、段差基板
上の共鳴トンネルダイオードのI-V特性は
その素子作製がかなり難易で、まだ測定できていな。現在、実験中で、修論発
表会で報告できるかもしれない。