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Chapter I
Scalar Chiral Order

1 Introduction

It is a very interesting problem to study chiral orders in the two-dimensional frus-
trated quantum spin systems, especially for the understanding of high-T, superconductors[1].
Recently a new chiral order, namely scalar chiral order, was proposed by Wen,
Wilckzek and Zee.[2,3]. The scalar chiral order which is defined by S; - (S; x Si) .
breaks the parity (P) and the time reversal (T) symmetry. _

We have studied the scalar chiral order in the two-dimensional spin 1/2 Heisen-
berg model by using the super-effective-field theory, which was proposed by Suzuki[4].
The super-effective-field theory, being a generalization of the mean field approxima-
tion, is very useful to study exotic phase transitions in strongly correlated systems.
It has been already applied to vector chiral orders[4,5] and spin glasses[4,6]. To-
gether with the coherent-anomaly method (CAM)[7,8], it reveals the non-classical
critical behavior of such exotic phase transitions. In the present paper, we apply
SEFT to scalar chiral orders in the quantum Heisenberg model to investigate the
possibility of chiral phase transitions. |

2 Scalar Chiral Order

2.1 Review

Recently Wen, Wilckzek and Zee(W. W. Z.)[2] pointed out the possibility of a
new kind of symmetry breakdown in the two-dimensional antiferromagnetic Heisen-
berg model. It is the emergence of the non-zero expectation value of the scalar chiral
order X, ;x = S; - (S; x Si) , which implies the parity(P) and the time reversal(T)
symmetry breaking. W. W. Z. considered the antiferromagnetic Heisenberg model
on the two-dimensional square lattice with next nearest neighbor interactions, and
they suggested, by using the fermionic mean field theory, that “the chiral épin liquid
state” characterized by (X; ;) # 0 is a possible ground state .

Baskaran(9] studied the scalar chiral order for the triangular lattice case. He
introduces the pseudo scalar variables m;;x by using the functional integral method,
and expands the free energy in powers of m. Based on the symmetry of the free
energy as a function of m, Baskaran suggests that the symmetry breakdown does
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not occur if the next nearest neighbor interactions are absent, but that if the next
nearest neighbor interactions are present there may be an Ising like phase transition.

There are also numerical calculations in small lattices about .the.scalar chiral
order. Imada[10] calculated the expectation value of the square of the scalar chiral
order at the ground state of the Heisenberg model, and suggested that the correlation
is too small for the existence of the chiral order. Dagotto and Moreo[11] calculated
the expectation values of several order parameters, including the scalar chiral order,
at the ground state of the two-dimensional Heisenberg model with next nearest
neighbor interactions. They measure also the square of the scalar chiral order, but
there is no indication of its existence.

2.2 Properties of the scalar chiral order
Let us consider the expectation value of the scalar chiral order defined by |
E,'J'k = (0',‘ . (0')' X O’k)) =8- (Xijk) (21)

where ‘o = (0%, 0¥, 0%) denote the Pauli matrices[2]. We rewrite E;;j in the fermionic
representation. We then have the following relations(Appendix A).

P1123 - P1132 = %.E123 (2'2)
Pligsy — Plyy, = E(Em + Er3s + Er24 — En3q) (2.3)
where
Pl = (XijXseXki) (2.4)
Plijm = {XijXjxXxiXi) (2.5)

and  x;; >ocheis (2.6)
Here c!,(ci,) is a creation(annihilation) operator of an electron with spin ¢ on site
¢, and the brackets denote the thermal average. In denvmg eq.(2.2) and eq.(2.3),
we have used the following relations:

st f

= 1.+ _ .
;=300 = c;,c.1
S; =350, = Cizc;t (2.7)
z — 1,z 1 . t .. '
Si =307 = 2_(‘.:610!1 - c,-lc.i).

It is to be noted that eq.(2.2) is satisfied as an operator identity, but eq.(2.3) is
satisfied under the constraint 3, n,; = 1i. e. , the half-filled condition. -

The quantity x;; is an operator which transports an electron on site j to site 1.
~ Thus Ply23 is the expectation value for the electron hopping around the loop(123) in
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" Fig. 1.1: Closed loop(123).

the direction 1 — 3 — 2 — 1. Therefore eq.(2.2) means that the expectation value
of the scalar chiral order (F;2;) is the difference between the expectation values for
the hopping around the closed loop(123) in opposite directions(Fig.1.1).

The existence of the expectation value of the scalar chiral order (E)23) can be
regarded as the fact that there is a flux through the loop(123). The relation between
E;jx and the Berry phase is also discussed by W. W. Z. [2].

The following remarkable properties of the scalar chiral order X;2;3 was pointed
out[2](Appendix B):

1 15
X1223 = —1—6(51 + Sg + 53)2 + EZ ’ and (28)
| [X123,8]=0 ,where S=S5;+S5+S;. (2.9)

Because of eq.(2.9), both the chiral order X;,3 and the total spin S can be diago-
nalized simultaneously. It is easily seen from eq.(2.8) that the total spin S = 3/2
states are the eigenstates of X,; with eigenvalue 0. Let us consider the total spin
S = 1/2 states. There are two different spin 1/2 states denoted by |S = 1/2,5,)*
and [S = 1/2,5,)7[2]. The + states |S = 1/2,S, = £1/2)* are explicitly given as
follows,

1
|S=1/2,8,=1/2)* = -\/—§(I T +w| 111) + | 111)) (2.10)
1
|S=1/2,8, =-1/2)" = ‘"—3'(| UD +ol 1T +? 11)  (211)
where w denotes the cube root of unity so that 1 + w + w? = 0. The — states
|S =1/2,S, = £1/2)~ are obtained from (2.10) and (2.11) by replacing w by w?.

We see that |S =1/2,5;)* is an eigenstate of X3 with the eigenvalue —/3/4, and |
|S =1/2,S,)” is an eigenstate with the eigenvalue V/3/4.
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b 4
J |,

2 3 Fig. 1.2: The plaquette we con-
sider.

We can construct two spin singlet states corresponding to the above two spin
1/2 states by adding the forth spin. It is easily shown that the total spin singlet
states are given by :

S=0r =1S=1/2,5 =12 8| )~ |S=1/2,5, = =1/2° 8| 1) (212

for & = #1. Thus |S = 0)° is an eigenstate of X,,3 with a non-zero eigenvalue,

3
XizlS = 0 = —§a|s = 0)°. (2.13)

If we consider the following Hamiltonian:
H=J(S + 8+ S3+ 5,), (2.14)

for J > 0, the ground state is a spin singlet state |S = 0)® for @ = +1. Therefore, in
this 4-spin system, the ground states have the Ising-like £+ degeneracy with respect to
the eigenvalues of X;53. It should be noted that the Hamiltonian (2.14) is equivalent
to the Heisenberg Hamiltonian with the next nearest neighbor interaction ; the
strength of which is equal to that of the nearest neighbor ones(Fig.1.2). In section
3, we will see that this degeneracy of ground states in a four-spin system occurs only
in the case where the strength of n.n.n. and n.n. interactions are equal. In other
cases the ground state is unique and symmetric even if the n.n.n. interactions are
present.

'3 Super-Effective-Field Theory (SEFT) of the Scalar Chi-
ral Order

3.1 General Fbrmalism'

The Hamiltonian we consider here is the antiferromagnetic Heisenberg Hamilto-
nian with next nearest neighbor interactions:

H=ZJS,'-SJ'+ Z J'S,'-SJ' (3.1)

n.n.n.
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where J(> 0) and J'(> 0) are the nearest neighbor and next nearest neighbor
couplings, respectively. The next nearest neighbor couphng (J' > 0) introduces
frustrations in this system. :

In order to construct the mean-field-type approximation, we consider the cluster
(22) shown in Fig.1.3. The elementary domain D is a triangular or square plaquette
in which the scalar chiral order parameter Q; is defined. The domain Dy is the one
which lies in the center of the cluster 2 and the other domains Dy, D,,..., D, € 32
are the boundaries of the cluster. '

Fig. 1.3: The cluster Q.

Then following Suzuki[4] we consider the following effective Hamiltonian:

Hegg =Ha— ) MQi - (3.2)
k€an
where Hq is the Heisenberg Hamiltonian (3.1) in the cluster 2, A; is a super-
effective-field conjugate to the chiral order parameter @Q; and @y is the chiral order
parameter defined in the plaquette D). The second terms introduced in the eq.(3.2)
~ are the effective interaction which represent the most relevant effect of the outside
of the cluster which induces the chiral order.
We put the following self-consistency condition{4]

(Qo)=(Q) for all ledn - (33)

to determine the super-effective-fields {A;}, where the brackets denote the thermal
average for H.yy:

(A) = TrA exp(—fHeys)/Trexp(—BHery). (3.4)

When T > T, eq.(3.3) has only trivial solutions {A; = 0}, whereas for T < T,
it has non-trivial solutions {Ax}. The emergence of non-zero solutions {Ax} means
the breakdown of symmetry of the original Hamiltonian H and the corresponding
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(Qo)a is no longer equal to zero. We assume that the phase transition is of second
order and therefore {A;} are small near T' = T,. Expanding eq.(3.3) with respect
to Ax, we obtain[4]
| Y {(Qo; QiYa — (Q1; Qi)a}r = 0 (3.5)

k€an
for I=1,2,...,z, where Ay = BAx, and (A; B)q denotes Kubo’s canonical correlation:

I

(4; B)a % / * (AB(iEM)adA (3.6)
B(z) = exp(izHq)B exp(—izHg). (3.7)

Here {...)q denotes the thermal average for the cluster Hamiltonian Hg. We have
used the fact that {(Q,)q = 0 because of the symmetry of Hq.

The critical point T, in this approximation is determined from the zero of the
determinant of eq.(3.5). If the relevant cluster is isotropic, eq.(3.5) to determine 7,
is reduced[4] to

fT)=0 ; f(T)= 3 (Qo;Qk)a—(QrQda (3.8)

k€O

because of the symmetry of the cluster. v
We see also that the corresponding susceptibility xo diverges at T' = T.. We
consider[4] the Hamiltonian :

H=Ho— 3 MQi—-HY Qj, (3.9)

kean jEQ

where H is a uniform field conjugate to the chiral order Q. The susceptibility xg is
given[4] by

= 2
= B _(Qo; Qda+ Y zx{Qo; Qi)a) (3.10)
J€Q k€an
where oA
_ OAg
Ty = 3—H H=0, (311)
and the self-consistency condition at T' > T, becomes[4]
> ((Qo; Qi)a — (Qi; Qi)a)zk = > (Q1;Q5)a — (Qo; Qj)a) (3.12)

k€an JEN
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up to the first order of H and ). If we write the eq.(3.12) as Fj,zx = hy where

F; = (Qo;Q5)a —(Qi; Qj)a (3.13)

hi = Y (Qi;Qr)a— (Qo; Qk)a (3.14)
ken .
ijean , keq, | (3.15)

the susceptibility x¢ is expressed{4] as
xe =B((Q0Qi)a+ Y. F'h(QoQuda). (3.16)

JEQ k€09
Thus the susceptibility xo diverges at det(F;;) = 0.

We can easily construct the systematic series of approximations by enlarging the
cluster Q. By applying the CAM analysis(7,8] to the series of approximations, we
can obtain information about the true critical tempera.tures; T and the relevant
exponents.

3.2 Bethe-like approximation

11 12
10 ] 4 5
% 2 3 6
. Fig. 1.4: The cluster of the Bethe ap-
8 7 proximation.

The cluster we consider is shown in the Fig.1.4. In this case, the equation to
determine T, is given by eq.(3.8) and the susceptibility xq is explicitly given[4] by

_ e Tieal@; @5)a — (Qo; Q;) . .
Xe = ﬂ(j%,(Qo’ Qidat ,gﬂ Y keon{Qo; Qkda — (Q1; Qk)a (Qo; Qo) (3.17)

Now if we make a further approximation[4], namely the “Kirkwood” approximation

(Qi;@,)a = (Qi; Qo)a(Qo; @;)a/(Qo; Qoda (3.18)
for i # j € 0Q and

(Qo; Qo)a = (Qi1; @), for €09, (3.19)
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then we obtain[4] the following expression of the susceptibility xq:

(Qo; Q0)a({Qo; Qo)a + (Qo; Q1)a)
,(Qo; Qo)a —'(z — 1){Qo; Qi)a (3.20)

where | € 0. Therefore the equation to determine T is reduced[4] to

xXQ=2p8

, _ (2 =1){Qo; Qi)a

F(T)=1 ; F(T)= Q00000 (3.21)

Here z denotes the number of nearest neighbors. The quantity F.(7") is a normalized

canonical correlation function. Physically it describes the tendency to order or

cooperate. At high temperatures, the correlation (Qo; Q;)q is considered to be small

compared with the auto-correlation (Qg; Qo)q, namely F, < 1. As the temperature

decreases, the correlation (Qo; Q;)q increases and at the critical temperature T, the
function F_ passes through ¥, = 1.

Next let us consider the limit 77 — 0. In this limit we find that the canoni-

cal correlations (Q;; @;)a goes to zero for finite quantum systems. The canonical
correlations at T = 0 are given by[4]

1 N’ N’
lim(4; B) = (4; B), = A 2 D> (x| Al @) (2i| B| D) (3.22)
9 k=11=1

where ®; denotes the k-th ground state and N, denotes the degeneracy of the
ground states. In the case of finite quantum systems, the ground state is usually
non-degenerate and symmetric. Therefore if the operators A and B violate the
symmetry of the original Hamiltonian, we have[4]

lim(4; B)q = (4),(B); = 0 - (3)

where (---), denotes the expectation value for the ground state. The normalized
correlation functions have finite values at T = 0, because the numerator and the
denominator go to zero in the same order as T' — 0.

Thus F.(T) is an almost monotonically decreasing function of T', and the above
physical interpretation of F(T') is justified. We can study a possibility of the phase
transition by investigating the T-dependence of F (7).

We can also consider the direct correlation (AB) instead of the canonical cor-
relation (A4; B). It is based on the decoupled density-matrix formalism[4]. In this
case, the equation to determine T, becomes

fT)a=0 ; M= T (Qo@u)a - (QQu)a, (3.24)

k€aQ
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and if we make the “Kirkwood” approximation we get[4]

_ (2 =1){Qo@1)a ' |
P = 0ana - (32

The threshold is also given by F; = 1. In most cases, F, is larger than F .. At high
temperatures direct correlations coincide with canonical correlations, however at
T — 0 they are different because the direct correlation remains finite if the product
of two operators does not violate the symmetry of the original Hamiltonian.

Anyway, in the SEFT formulation, we can study a possibility of phase transitions
from the behavior of the normalized correlation function F.(T') or F4(T) evaluated
in finite clusters.

4 Numerical Calculations

4.1 4-Spin Cluster Approximation

First we consider the 4-spin cluster shown in the Fig. 1.8.(a) to determine how
to choose the order parameter Q defined on the square plaquette. The Hamiltonian
is given by

Hao=J(S1-82+52-85:4+S53-5S,+84-81)+J(5:,-5S3+852-85,) (4.1)

where J > 0 and J’ > 0. The important parameter is the ratio of the nearest
neighbor interaction J and the next nearest neighbor interaction J’. Thus we take
J =1and t = J'/J through out this section. Then Hq is written as

Ho=(S1-S2+85,-8S3+S3-5:+5,-51)+(51- S3+ S+ S4). (4.2)

We calculated the correlations of the chiral operators {X;;x} in the plaquette.
We obtain

(X123; Xa3a)a <0 (4.3)
(Xi123; Xza1)a > 0 (4.4)

for any T. The above inequalities hold even in the case of direct correlations as is
shown in Appendix C. We choose the order parameter Q234 on the plaquette(1234)
as

Q1238 = X123 — Xoag + X341 — X412- (4.5)

Here Q1234 is different from the difference (Ply34 — Ply432), because the sign of X4;5
is negative. The physical meaning of Q234 in the fermionic representation is not
clear, but to avoid the cancellation of X’s in the plaquette we adopt this order
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r | [ Eigenvalues of Hq

Eigenstates of Hq

[ 2 /241 |[1111)
2 /2 +1 172{]1) + |2) + |3) + |4)}
3 —-t/2 1/2{|1) + i|2) + ?[3) + 3|4)}
4 t/2 -1 1/2{|1) + i?|2) + |3) + i2[4)}
5 —t/2 1/2{|11) + i)2) + i%|3) + i]4)}
6 t/2 -2 1/V3{1/2[112) + [23) + [34) + [41)] — [[13) + [24)]}
7 t/2 +1 1/V6{[12) + |23) + |34) + |41) + |24) + |13)}
8 —t/2 1/2{]12) + i|23) + i|34) + i3|41)}
9 —-3t/2 1/2{(12) + i%|23) + |34) + 2[41)}
10 —t/2 1/2{|12) + i3|23) + 12|34) + i|41)}
11 /2 — 1 1/2{|13) — |24)
12 t/2+1 1/72{1) + |2)’ + {3)’ + |4)'}
13 —t/2 1/2{|1) + i|2)’ + i3|3)’ + i°|4)'}
14 1/2 —1 1/2{|1) + 2|2)’ + |3)’ + i2|4)'}
15 —t/2 1/2{]1) + 3|2) + 2|3) + i|4)'}
16 t/2+1 | 1411)

Table I.1: Here i> = —1, the numbers in the kets |- - -) denote the sites of down spins
and the numbers in the kets |- --)’ denote the sites of up spins, e. g. ,|4) = [123).

parameter QQq234. In the case of the Hubbard model or t-J model, we have to choose
Ply234 — Plyys> as an order parameter, for its physical meaning is clear.

We can explicitly write down the eigenstates and the eigenvalues of the Hamiltonian(4.2)
as in the table I.1. In the following we denote the state | 11}]) by [34) ; the

numbers in the kets |-

-) denote the sites of down spins. The ground state is

(1/v3){1/2[112) + |23) + [34) + |41)] — [|13) + |24)]} with the ground state energy
t/2 —2for 1 >t > 0. This ground state is a total spin S = 0 state and symmetric.
Therefore the expectation value of X23 for this ground state vanishes ;

(Ground State|X;23]/Ground . State) = 0. (4.6)

From the table I.1, we see that when ¢t = 1 another total spin S’ = 0 state (1/2){|12)—
|23) + |34) — |41)} is also the ground state. Thus at t = 1 the ground states are
degenerate. They are written as the linear combinations of two spin singlet states
|S =0)* and |S = 0)~, which are defined previously. We can easily find that

1 .1
7—5{5[

112) + [23) + [34) + [41)] = [|13) + [2)]} = |A)+ V3E[B) (47)

3112~ 129) + [34) - 41}

|4) %w) (4.8)
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where
- 1 — 0Vt — 0V
14) = HlIS=0"+|S=0)}
1 1
= 73t +12) - 5l124) + [14) +23) + 113)]} (4.9)
— 1 — - —_ -
|B) = —.\/——2-{IS—0)+ |S=0)"}
= {024 +13)] - [114) + [23)]} (4.10)
and |
IS =0y = [34) +[12) + w|24) + w[13) + &|14) + F[23)  (4.11)
S =0)" = |34) +|12) + w?|24) + w?|13) + w|14) + w|23). (4.12)

Here w denotes the cube root of unity. Therefore the ground state for ¢t # 1 is the
superposition of the states |S = 0)* and |S = 0)~, which are eigenstates of Xjz;,
with equal weight. Only at ¢ = 1 another state, which is also the superposition of
|S = 0)* and |S = 0)~, has the same energy. Thus each of the eigenstates of X23
can be the ground states at ¢ = 1.

Now let us consider the behavior of normalized correlation functions.

a) Direct correlations

We define the normalized direct correlation functions F ) and F3 as fol-
lows

FaT)
and  FiT)

(X123 Xa3s)o /(X Ds)a (4.13)
(X123 X3a)a/(X{as)a- (4.14)

Note that |F}| and | F2| are monotonically decreasing functions of T° and
that

FY0)=—-1 Fi(oo)=0 ,
FA0)=1 F3(co)=0. (4.15)

The exact expressions of the direct correlations are given in Appendix
C. In the case of the vector chiral order, the correlation at the high tem-
perature limit remains non-vanishing, if the two chiral operators share
the same bond, but in the case of the scalar chiral order the correlation
goes to zero even if the two chiral operators share the same bond.

b) Canonical correlations
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In the same way, the normalized canonical correlations .Ti and f'z are
defined as follows:

- FD).
and FX(T)

(X123; X234)n/(X123._; X123)a (4.16)
(X123; X341)a/(X123; X123)a. (4.17)

The behavior of the normalized canonical correlations is almost the same
- as that of the direct correlations as follows:

Fi0)=-1  Fifeo)
Fi0)=1 Fico)

Il

0
0. (4.18)

However, bare canonical correlations behave quite differently near T' = 0.
For 0 <t < 1, we have

(Xijk; Ximn)a —0 as T —0 (4.19)

but for ¢ = 1, the canonical correlation (X; X )q goes to a non-zero value
at T = 0, because X commutes with the Hamiltonian (4.2) and the
ground states are degenerate. In fact, we have

(X;X)g = (*(S=0]X|S=0))’

(é)z - %, | (4.20)

The behavior of the canonical correlations at t = 1 and ¢t = 1/2 are shown
in the Fig. 1.5 and Fig. 1.6. It is quite interesting that the normalized
canonical correlation shows almost the same behavior at t = 1 and t =
1/2, though the bare canonical correlation behaves differently near T =
0.

4.2 6-Spin Cluster Approximation

Next we consider the cluster of six spins shown in the Fig. 1.8.(b). We calculate
the correlations between the chiral orders {Q;;u} defined on the square plaque-
tte(ijkl). The Hamiltonian is

Ha = (51824 52-S3+S3-Si+51-5:+ S, S5+ S5 Se + Se - Sa)
+t(S1-S3+8;- 84+ Sy Se+ S3- S5). (4.21)

— 241 —



RLIVY

0.2
PYS

A

a) Direct correlations

Fig. 1.5: Temperature-dependence
of canonical correlations of 4-Spin
System at J'/J = 1/2. Curve
A denotes (Xi23; X234}, Curve B
denotes (Xjq3; X123)a and Curve
C denotes FL(T) = (X123; X23s)a
/(X123;X123)n- \

Fig. 1.6: Temperature-dependence
of canonical correlations of 4-Spin
System at J'/J = 1. Curve
A denotes (X123; X234)0, Curve B
denotes (Xj23; X123)a and Curve
C denotes F(T) = (X123; Xa3sda
/(X123; Xlzs)n-

The normalized correlation function is given as

fd(T) = (z

1234Q4365)Q (4 22)

(Q%234)ﬂ

where z is the number of nearest neighbors and in the present case z = 4.
The behaviors of F4(T) at t = 0.1,0.5,0.9 are shown in the Fig. 1.7. In
each case we obtain F; < 1 and consequently there is no critical point
T.. Furthermore the tendency to ordering is suppressed by enlarging the
parameter ¢ ; by the introduction of frustrations. |

b) Canonical correlations

In the case of the canonical correlation :

(Q1234; Q4365)Q
(Q1234; Q1234)n ’

Fe(T)=(z-1)

(4.23)
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Fig. 1.7: F4(T) of 6-Spin Cluster for
J'/J = 0.1,0.5,0.9.

2 1 n 12
1 4 10 ] 4 5
3 4
9 2 ' 3 6
2 3 | |
(a) ¢ (b) 3 8 (c) 7 Fig. 1.8: Clusters we con-

sider.

the result is shown in the Figs.1.9-1.12. The quantity . is much smaller
than F,;. Thus there is no critical point T,. The t-dependence of the
tendency to ordering is the same as that of the direct correlations. In
the present case, the order parameter Q does not commute with Hq for
any t, so that the bare canonical correlations go to zero as T' — 0. |

4.3 12-Spin Cluster Approximation
We consider the 12-spin cluster shown in the Fig.1.8.(c). The Hamiltonian is

Hq = Z S, - SJ' + Z S;- S_,'. (4.24)

n.n.n.
a) Direct correlations

The T-dependence of the normalized correlation function defined by

FuT) - (z—1) (QZZ}Z;:)“ | (4.25)
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J'/1=0.1

B

Fig. 1.9: Temperature-dependence
of canonical correlations of 6-Spin
Cluster at J'/J = 0.1. Curve A
denotes (Q1234; Qa365)q, Curve B de-
notes (Q1234; Q1234)a and Curve C
denotes F.(T) = 3 - (Q1234; Qu3es)a
[{Q1234; Q1234)Q-

J'/1=0.5
1.2 7
1.0 7 B
0.8{ Fig. 1.10: Temperature-dependence
0.6'; of canonical correlations of 6-Spin
1 Cluster at J'/J = 0.5. Curve A
0.4 ] ~denotes (Q1234; Qu365) 0, Curve B de-
0.2 7 C notes (Q1234; @1234)a and Curve C
0.0- N denotes F.(T) = 3 - (Q1234; Quaes)a
0 1 T 2 [{Qizss; Qr2ss)a-

is shown in the Fig. 1.13 and Fig. 1.14. The behavior is almost the same
as that of the 6-spin cluster and we have F4(T') < 1 for any T. We also
investigate the T-dependence of f(T"); without making the “Kirkwood”
approximation. Our result is shown in the Fig. 1.15. The T-dependence
of f(T), is interpreted as follows. By definition, we have

fMa = > (Qo;Qxa — (Qi; Qx)a (4.26)

k€SN
= 4<Q1,2,3,4Q4,3,6,5)Q - 2(Q11,1,4,12Q4,3,s,5)n

—(Q10,9,2,1Q4,365)0 — (Qu365Q4365)2 - (4.27)

and T, is determined from the condition that f(7.); = 0. The right
hand side of eq.(4.26) involves the auto-correlation —(@Q;; Qi)q. Thus at
high temperatures f; is negative. As the temperature decreases, other
correlations increase, and consequently the critical point T, is obtained as
the point where the boundary to boundary correlations are equal to the
center to boundary correlations. However, our result shows that f(7"),; <
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J'/1=0.9

Fig. 1.11: Temperature-dependence
of canonical correlations of 6-Spin
Cluster at J'/J = 09. Curve
A denotes (Qi234; Qusss)a - 107,
Curve B denotes {Q1234; @1234) and
Curve C denotes F (T) - 10 =

3 - ((Q1234; Quass)a/(Q1234; Q1234)0) -
102, .

0.2

Fig. 1.12: F.(T) of 6-
—— Spin Cluster at J'/J =
0 1 T 2 0.1,0.5,0.9.

0.0 -¥—~‘.

0 for any T as in the Fig. 1.15. Thus, we arrive finally at the conclusion
that there exists no T, even in the 12-spin cluster approximation.

5 Discussion

We have calculated the normalized correlations of the scalar chiral orders in the
small lattices. In the 6-spin cluster and 12-spin cluster approximations we have
obtained no critical temperature 7.. The correlations between the scalar chiral
orders are too small and the tendency to order is suppressed by the introduction
of frustrations. Thus from our calculations we get no indication of the existence of
the scalar chiral order in the two-dimensional spin 1/2 Heisenberg model with n.n.n.
interactions. However, our clusters used here are small and calculations for larger
clusters are needed to get more reliable results. '

Classically this model has two phases. When 0 < ¢ < 1/2 the ground state is the

— 245 —



FRK &

1
12
F
6
o . ' S Fig. 1.13: F4(T) of 6-Spin Cluster and
0.0 KT 20 12-Spin Cluster at J'/J = 0.1.
1
F
6
] 12 |
0 ; | - - Fig. 1.14: F4(T') of 6-Spin Cluster and
0.0 kT 20 12-Spin Cluster at J'/J = 0.5.
10
K(r)
0.0-1
-10 N Fig. 1.15: f4(T) of 12-Spin Cluster at
oo ' 20 TH=0S
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Néel state. But when ¢ > 1 /2 the ground state decouples into the two Néel sublat-
tices with an energy independent of the angle between the corresponding staggered
magnetizations. Thus the ground states for ¢ > 1/2 are highly degenerate. Therefore
we expect that the drastic charige of the property of the ground state at ¢t = 1/2 also
occurs in quantum systems. In our calculations, however, there occurs no expected
change at t = 1/2. This seems to be caused owing to the smallness of our clusters.
In the clusters we consider here, the number of the nearest neighbor interactions is
larger than that of the next nearest neighbor ones because of the boundary effect,
so that the influence of the n.n.n. interactions is suppressed. In a system of 20
spins, the change of the ground state property at ¢ = 0.6 has been reported[11].
The property of the ground state is important but at finite temperatures the orders
in the ground state are often destroyed by thermal fluctuations especially in two
dimensional systems..

Thus ,to know what really happens in quantum spin systems in the thermody-
namic limit, we have to investigate larger systems not only at 7' = 0 but also at
finite temperatures. -

Chapter 11
Vector Chiral Order

1 Introduction

It is proved using Bogoliubov’s inequality that no vector chiral order appears
at finite temperatures in the two-dimensional antiferromagnetic Heisenberg model
with short-range interaction.

In this chapter, we discuss the vector chiral order defined by @Q; ;, o (S; x S; +
S; X Sk+ Sk x S;) at the three lattice points 7, j and k, while the scalar chiral order
is defined by X.'a"kv= S,‘ . (S_, X Sk) ’

Since Villain[12] pointed out two-fold degeneracy in fully frustrated spin systems,
there have been reported many numerical calculations and approximate theories[12-
20,4,5] about the vector chiral order in frustrated spin systems. Especially in quan-
tum spin systems, Fujiki and Betts[17,18] and Nishimori and Nakanishi[19] have
investigated the ground state of the antiferromagnetic X-Y model and Heisen-
berg model on the triangular lattice by exact diagonalization. Matsubara and
Inawashiro[20] studied the antiferromagnetic X-Y model on the trlangular lattice at
finite temperatures by using a Monte Carlo method.

Their calculations suggest that there is no vector chiral order in the Heisenberg
model.
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2 Absence of the Vector Chiral Order in the Two-Dimensional
Heisenberg Model

We consider here the two-diimensional square lattice and triangular lattice. For
quantum spin systems, the normalized chirality operator

2 V3

Qijk=—73"

is defined[17,18] in each plaquette on the triangular lattice, following definitions for

classical spins[12-16]. We consider the z-component of this operator and define a

chiral order parameter for each lattice as follows.
i)For the square lattice, the total chiral order Q,q is defined by

Q,q = Za;Qf i & =exp(ik-r;)) and k= (m, ) (2.2)

(S,‘ X SJ' + Sj X Sy + S) x S,) : (21)

where ¢, is a modular factor and @Q? is the z-component of the chirality operator
defined on the plaquette shown in the Fig.2.1. It is explicitly given by

V3

Q; = T(Qi,i+u,i+u+u + Qituitutvite T Qitutvitoi + Qi-{-v,i,i-l-u)z
= (St X Si+u + Si-l—u X Si+u+v + Si+u.+v X Si-}-u + Si+u X Si)z) ‘ (23)

where u(v) is a unit vector of the z(y)-direction and 7; is the position vector of the
site 7. Lattice spacing is taken as a unit length.
ii)For the triangular lattice, we have

~ V3 .
Qtr = _2_— Z(Qi,i+a,i+a+b - Qi,i+a+b,£+b) (24)
where a and b denote unit vectors shown in the Fig.2.2.

The Hamiltonian to consider here is of short range. Thus we assume the Hamil-
tonian

Ho=-)_J;5;- S, (2.5)
| i<
with the couplings which satisfy the following condition.

Jg = Z IJ,’]‘”T‘,' - lez < 0o (26)

J

The present argument is similar to that of Mermin and Wagner[21]. Bogoliubov’s

inequality for quantum systems states that

SB(aat +atay([[c, H),¢)) 2 ([C, 4P @)
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[+V [+Uu+Vv

. » . Fig. 2.1: A typical plaquette to define
I I+U the chirality operator Q7 in the square
lattice. '

Fig. 2.2: A typical plaquette to define
the combined chirality operator @,, in
the triangular lattice.

i I+a

where # = (kpT)™!, H is an hermitian matrix(H = H'), and C and A are arbi-
trary matrices of the same size. The angular brackets denote the following thermal
average:

(B) = Tx[B exp(—fH)]/Trexp(—fH) (2.8)

and the square brackets denote a commutator.
One of the keypoints in our argument is to consider the following Hamiltonian
with a super-effective field A[4] conjugate to the chiral order Q:

H=Hy+H ; H =-AQ, (2.9)

where Hy is the Heisenberg Hamiltonian(2.5), and @ is the chiral order parameter,
given by Q,q(ét,) in the case of the square lattice(triangular lattice).
We choose C' in eq.(2.7) as

C(k) = Zexp(ik -1;)- S, (2.10)

where k is the wave vector restricted to the first Brillouin zone. Furthermore we
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choose A in eq.(2.7) as

A(k) = —2Zexp(—-ik . Tj) -7 I sz : [S;".‘.u + S;!_,‘ - S;"-f-u - S;'J—u (2'11)
J

in the case of the square lattice, and

A(k) = =2 exp(—ik-17;) ST [S¥yq =S¥ o+ Sy = Sty 4+ SV gy — Stians) (2.12)
D

J+a

in the case of the triangular lattice. The direct calculation shows that
i{C(k), A(R)] = Q (2.13)
and

[lc), 1, c(r)]
=AQ+23 Ji;(1—cosk- (r; — 7;))(SFST + SES7) (2.14)

1<y

for any k, where @ is the chiral operator defined previously.
It follows from eq.(2.14) that

(e, 11, €]y < V(1Ag] + 20652 1k[?) (2.15)

where V is the volume of the system and s = S(S + 1) and § = (Q)/V is the
chiral order parameter per site. Substituting eqs.(2.13) and (2.14) into Bogoliubov’s
inequality(2.7), and using eq.(2.15), we obtain

1 . V2'q'2
=B{A(k)A(k) + A(k) A(K)) > 2.16
Taking the summation over k’s, and taking the limit V — co , we obtain
~2 '
q
M > [ kdk (2.17
M 2 / |AG| + 2Jo52|k|? (2.17)

where M is some finite constant. It is clear that for finite temperatures § has to go
tozeroas A — 0. - '

Thus we have shown that no chiral order exists at finite temperatures in this
system. It is easy to extend the proof to the case in which the y or z-component of
Q, ; x is an order parameter. The present proof is also valid even if the Hamiltonian
has anisotropy in the y-direction.

Appendix A

— 250 —



BAMHERIC L BZRTENA L L NV TERIZBII B A TV — 5 — DT
Fermionic Representation of the Scalar Chiral
Order

The expectation value of the scalar chiral order parameter is given by
E123 = (0’1 . (0‘2 X 0'3)). : (Al)
~ We rewrite the scalar chiral order using the fermion operators ¢ and ct.

01-(02x03) = of(0Yo3 — 0503)

+o1(0303 — 050%)

+0oi(0503 — 0303) (A.2)
= (of03 —gi03)o3.

+(030] — 0307)0;

+(0503 — 0303)a} - (A3)

Using the expression (A.3) and the following relations(A.4),

of =3(0f +07) (A4)
ot = ot —07) '
we obtain
i 1, _ _ _
51’7123 = (Z(al ofo;+0tos05 +050507 — (2 < 3)))
= ((01102105103&:'3:01: - 0110310:21"210%1011
+Cltc2lcgtc3tcgtcll - c{,cstcglcg,cgicu -
+CLCQIC£103‘C§'C” - CLCMC:'SICZ]C'IHCU o
=(23))) ~ (A5)
((x12x23X31) — (X13X32X21)) ‘ (A.6)
Plyaz — Plya,. (A7)

In the case of the square plaquette(1234) shown in the Fig.A.1, we transform the
left hand side of eq.(2.3) in chapter I as follows.

— A} R t t
X12X23X34X41 — X14X43X32X21 = C€14C2aC23C38C3,C4+4C45C15
t
—Cla'C4a'°1,3'°3ﬁ'c:ts1'°2-1’025'016'
1 t t 1
= C1aC4+C€45€38C34C2aC25C15

—'Cla:C4a'013103ﬁlC;71C2-7" CENC]&’ (A-S)
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2 3 2 3

Fig. A.1: Plaquette(123) and Plaquette(1234)

Here Greek indices stand for spin indices and the summations over the same indices
are assumed. Among the first terms, the terms arising from the summation with
o = v and f = § are cancelled by the second terms. Thus the terms arising from the

summation with & = —v or f# = —§ remain non-vanishing and therefore we obtain

that
X12X23X34X41 — X14X43X32X21 — CL.C4—a01g0356§_062q055015 (A.9)
+c{ac4ac1_ﬂcwc§aczac;,,c,_g (A.10)

+c{ac4_aci_.ﬁc3ﬂc§__aczac{,ﬁcl_p (A.11)
—c{a,cm-clﬂ.cspucga.cza:c;_ﬂ.cl_ﬁ: (A.12)
—-c{a,c.m:clﬂ.csp:cg_a.CZ_a:cz,ﬂ,cm: (A.13)
-—c{a,c4a:ciﬂ.c;;p:cg_a.c2_a:cg_ﬂ,cl_ﬁ: (A.14)

Because a(o) is either B(B') or —B(—4'), the sum of eq.(A.9) and eq.(A.12) can be

transformed as follows:

Eq.(A4.9) + Eq.(4.12) = c1-acl_aCsach_almia(l = n24))
| b c1—acact_o (1 = ne—a)(1 — n3_y)
——cm:ci_a,ca_,,:cf,a,(nla:(1 — Ngar)
—c{a.cl_a:cz,,:c;_a,(l — Nyt )(1 — nae)  (A.15)
= c}acl_acgaég_a{(l ~Ny—a)(1 = n3-4)
—(1 — n4o)(1 — n3q) }
+C4—aChaCraCloa{nia(l —ng,)
—n1-a(l = n3-4)}. (A.16)

Using the following relations

(1= neca)(1 = n3—0) — (1 — naa)(1 = naa)
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= Sl (1= ) + (1= naa)(1 = ns)
= (1 = n4a)(1 = n3a) = (1 = n4a)(1 = n3-a)
+ (1 — ngaa)(1 — n3—a) + (1 — 140 )(1 — n3q)
"‘(l_nm)(l_n-'ia) — (1 = ng—o)(1 — n3a)) .

= (1 =1n3-a)— (1 —n4a) + (1 — ng—p) — (1 — n3a), (A.17)

we obtain

Eq.(A.9) + Eq.(4.12)

1 N
= E[C{acl—achcg—a{03—00;-0: - 040,01“ + C4—a Cl—a - C3ac:f3a }]
1
+-2—[C4—€'!Clac3acii3—a{c?acga - Cl—acl—'a + Clacla - c2-acg—a}] (AIS)

1 ,
=. -2'[CIQC2aC%_a03—aC§_a61-a"'(One of the elements of Plyy;)

—c}acmclacz,,cg_acl_a ---(one of the elements of Plyy,)
4! cracl_aCi—acl_oCroa---(one of the elements of Plyoy)
—c}ac3ac§a C2a c{,_acl_a ---(one of the elements of Ply3;)
—c! ot Csacl_oCia - -(one of the elements of Plyys)
—cl_ac4_ac10c3acg_acl_a ---(one of the elements of Pliy;)
+c10c3°c§_ac4_a clacla ---(one of the elements of Ply3,)

+CIa C3a C."S—ac2—a C;—a Ciea )
---(one of the elements of Plg,)] (A.19)

Where n,, = C!,Caa and we have used the constraint }_, n,, = 1. In the same way
we obtain the following relations:

Eq.(A.10) + Eq.(A.13)
1
§[Cla620(c;—ac3"acitiacla - C{aCmCI-aCz—aC;—aCl—a

t t t t 1 1
+Cla C2a€2q€4aC4—aCl1—a — €1-4C3-aC34C2aC2-aC1~a

t 1 1 t 1 1
—C4aC2aC2-aC3-aC3aC4a ~ C14C4aC4-aC3-aC3-aCl-a

+CIQC3QC;(,C4061_°CI-Q + Cl—ac3—ac.'t3a620 C;—acl—a] (A20)
and

Eq.(A.11) + Eq.(A.14)

= t 1 t t t 1
= ‘2‘[C1a02a62a03a03-a01—a — C1-aC4-aC4aC2aC2-aC1-a
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t 1 1 t 1 1
+C1aC2aC2-aC4—aCiaCla — €1aC3aC3~aC2~aC2—aCl—a

1 t 1 t 1 t
~C4aC2aC2-aC3-aC3—aCi—a — C1aC1aC4aC3aC3—~aCl-a

+c! caa c;t,.._,,c‘;_a e Cica + cocaactacaact_ocizal- (A.21)

From eq.(A.19), eq.(A.20) and eq.(A.21), we arrive finally at the relation

1
{x12x23X34X01) — (X14X43X32X21) = E[Pll% — Pliza + Plyag — Plyy2
+Ply3g — Plygs + Plys; — Plyos) (A.22)

]
= —[E123 + Ejo4 + Ei34 — E234]. (A23)
4

Appendix B |
Properties of the Scalar Chiral Order X;;;

The scalar chiral operator X,3 is expressed by

1
X123 = 50’1 . (0’2 X 0'3). (Bl)

-

Then the square of X is

1

X a(az - (02 % 03))?

' 1
= —{oi(0§o;5 — 0303) + 01(0303 — 0303) + 0i(0308 — 0303)}* (B.2)

Using the following algebra of the Pauli matrices

(=1 k=291 (B3)
0’in = ie;jkok ’ €123 = 1 (B4)
we obtain
(o3(c305 — o3t = (o30f — ood)?
= 2-—o03oi0}0y —aiodo}o}
= 2-20503 (B.5)

and

ofo3(0203 — 0303)(0305 — 0303)
= io{{(i03)(i03) — (—i03) — (—i03) + (i03)(i03)}

= —ojo; — ojoi —ioi(o503 + 030}). (B.6)
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Substituting eq.(B.S) and eq.(B.6) into éq.(B.Z), we finally obtain
X}s = EZ{G —2(01-02+02:-03+03-01)}
1
= a{lf) - (0'1 + 0, + 0'3)2}
15 1

= g1~ g5t 52+ 8 (B.7)

Next we consider the commutation relation between the chiral order X and the
total spin S. As {X;23} have the following symmetry property : '

X123 = X231 = Xz, (B.-8)
we can write [S?, X,3] for j=1,2,3 as follows:

(5, Xuas) =[S}, S7(S5 x S5)° + SU(S2 x 55)
= iSY(S; x S3)F + (=i)SZ(S; x S5  (B.9)
55, Xus] = [S5, Xam] =iSL(S3 x 81)7 + (=i)S3(Ss x §,)° - (B.10)
[S3, Xaza) = [S5, Xa2] =1iS3(51 x §2)* + (—9)S5(S1 x §2)*.  (B.11)

Thus some easy calculations show that
[ST + 53 + 55, X125] = 0. (B.12)
From the symmetry of X, we obtain
[S, X123] = 0 (B.13)

where § = §, + S, + S is the total spin.
Appendix C

Analytic Results in a System of Four Spins

In the systems of four spins, we can easily diagonalize the Hamiltonian(4.2) (see the
Table I.1). Thus we get the following results. .

From the Table 1.1, the partition function Z of the relevant Hamiltonian is given
by |

Z = 6exp(~p(~3)) +Sexp(=B(5 + 1)) +Iexp(—H(5 — 1)

+exp(=B(5 —2)) + exp(~B(~31)), | (o)
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b | (X123Xa34) | (X123 X3a1) | (X35 Eigenvalues
1 0 0 0 t/2 + 1
2 0 0 0 t/2+1
3 | (1/16)(1 —4) 0 1/8 —t/2
4 0 ~1/8 1/8 t/2—1
5 | (1/16)(1+4) | 0 1/8 —t/2
6 | (-3/16) 3/16 3/16 | t/2-2
7 0 0 t/2+1
8 | (1/16)(1 — 1) 0 1/8 —t/2
9 | —(3/16) 3/16 3/16 —3t/2
10 | (1/16)(1 + 4) 0 1/8 —t/2
11 0 -1/8 1/8 t/2 -1
12 0 1 o 0 /2 4+ 1
13 | (1/16)(1 —3) 0 1/8 —t/2
14 0 -1/8 1/8 t/2 -1
15 | (1/16)(1 + 1) 0 1/8 —t/2
16 0 0 0 t/2+1

Table C.1: The expectation values of X123X234, X123 X341 and X?,; for each eigen-

state of H.

where B = (kpT)~'. From the Table C.1, the expectation values of Xi53Xo34,

X123X341 and X3, are given as follows:

(XisXp)Z = 3 exp(=B(5)) — e(exp(~B(5 —2)) +exp(f
(XizsXon) 2 = —-3—exp( ~B(5 ~ 1)) + 2(exp(~A(5 — 2) + exp(85))C.3)
(X2 = zexm ~B(~2)) + 3 exp(—B(5 ~ 1)
415 (ep(=B(5 — 2) + expl(—B(-3))-

It follows from eqs.(C.2), (C.3) and (C.4) that

(X123X234) 0 as T — oo
(X123 X234) — —-1% as T—-0

(X123 X34) — 0 as T — o0
(X123 X341) — —3- as T—-0

16
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3
(X1223) - 32 as T— o0

3 .
(X1223) - 16 as T—0

and

(X123 X234) <0
(X125X341) > 0

for-a.ny T and t.
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