<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>分子の高い振動励起状態の理論的研究　カオスとその周辺研究会報告　</td>
</tr>
<tr>
<td>著者</td>
<td>青柳 睦</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究　カオスとその周辺研究会報告</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/94529</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
分子の高い振動励起状態の理論的研究

化学技術研究所 基礎部 青柳 睦

【はじめに】分子内原子の運動は小数多体・保存系カオスの研究テーマの一つとして物理・化学両分野から大きな興味が寄せられている。原子の運動がカオス的かそれとも準周期的かという運動様式の質的な違いが、素過程に反映されているような現象には主として、①単分子反応、②赤外光子解離、モード選択性による励起された分子の解離およびその解離生成物の振動・回転・並進分布、③電子・振動励起状態からの蛍光と無放射遷移との競合、化学発光、④倍音スペクトル、高い振動励起状態の振動回転スペクトルの帰属の問題がある。近年③に関連する分光手法の進歩によって、孤立分子の高い振動励起状態に関する直接的かつ詳細な情報が得られるようになった1。

Daliら2は誘導放出励起（Stimulated Emission Pumping）分光法を用いてホルムアルデヒド分子の7000-9000cm⁻¹領域の振動回転スペクトルの解析を行った。強い振動の非調和性および振動回転相互作用のために、通常の振動論的手法では解釈できない複雑な振動回転ラインがJ（全角運動量）の増加と共に現れることを報告している。また彼らは、本来①～③に関連する理論的取扱いでは分子の振動自由度を回転自由度から切り離して考察するのはならないと考えている。

以上の点を理論的に考察するために、我々はホルムアルデヒド分子の全ての内部自由度を考慮した量子力学的変分計算を行い高振動励起状態における振動回転相互作用の機構を解析した。そして、振動回転状態密度が約1準位/cm⁻¹以上の励起準位では、低い振動励起状態において弱い振動として扱うことができたコリオリ相互作用が、振動モード間のエネルギー移動に重要な役割を果たしているという結果を得た。

【計算方法】ホルムアルデヒド分子の電子基底状態（X¹A₁）のポテンシャルエネルギー曲面を高精度で決定するため、電子相関の効果を取り入れた分子軌道計算の結果を基準座標による8次元ホイール展開の形に関数フィットした。振動回転運動を記述するハミルトニアンは、Watson3によってもので用い、変分計算には振動自由度の基底関数としてエルミートガウス型関数の積を、回転自由度に対して対称な分子の固有関数系を用いた。試行関数は約4万個の零次の振動状態関数の線形展開形を採用した。ハミルトニアン行列の対角化はDavidsonの繰り返し法4により行った。ここで用いた方法は低い励起状態の振動回転相互作用について考察した文献5の中で使った計算方法を拡張したものである。

【結果と考察】変分計算によって得られた振動回転固有状態を、コリオリ相互作用の対称性選択性に従い分類することにより、ある状態がa軸（CO結合）、b軸（分子面内）、c軸（面外）の内、どれのタイプ（または複数のタイプ）の相互作用によって強く影響を受けているかを知ることができる。ホルムアルデヒド分子の場合、低い振動励起状態の精密な測定結果から、a軸タイプの相互作用がb軸、c軸に比べて約10倍ほど強い
ことが分かっている。図1に2000-8500cm⁻¹の間に計算されたJ = 1 6の振動回転状態（約2千個）を対象に上記の分類を行った結果を示す。図2は振動の非調和性を無視して上と同様の分類を行った結果である。

図1から6000cm⁻¹以上の励起エネルギーでは、a軸またはb軸、c軸に関する個々のコリオリ相互作用の影響を受けた振動回転状態（図中a-axisまたはb,c-axisと表示）の数は励起エネルギーの上昇に伴う変化が小さいのに対して、複数のタイプのコリオリ相互作用が関与し、結果として振動対称性が大きく崩れた状态（図中mixedと表示）の数が急激に増加していることが分かる。つまり低い振動状態では弱い振動として扱うことができたb軸、c - 軸タイプの相互作用がこのエネルギー領域では顕著な働きを示すからである。他方、振動運動の非調和性を考慮せずに上と同様の解析を行った結果（図2）、コリオリ相互作用の影響が小さい状態（図中pureと表示）と強いa軸によって結合した状態の数が全サンプルの半数以上を占め、mixedと分類された状態の急激な増加は見られなかった。

![Eigenstate model](image1.png)

![Normal mode state model](image2.png)

図1. コリオリ相互作用タイプのエネルギー依存性

図2. 図1に同じ（非調和性を無視）

図3は、8000cm⁻¹付近の振動回転エネルギー準位を、コリオリ振動パラメータの関数として変分計算した結果である。図より、振動運動と回転運動が分離されている状態（ε = 0）が、コリオリ相互作用によって近接準位と状態間反発を繰り返しながら混合してゆく様子が分かる。また、ここで得られたような多準位間の相互作用は、振動自由度の非調和性を無視したモデルでは見られなかった。

図4は、面外屈曲振動モード（モード4）の6倍振動に対応する初期状態（約7000cm⁻¹）を系に与えた（t = 0）後、他のモードのエネルギー（図ではエネルギーを調和振動数で割った各振動子の変子数を総軸にとってある）の時間変化をプロットしたものである。図から、振動運動の周期に比べて比較的長いタイムスケール（20ピコ秒程度）をもつモード間のエネルギー移動があることが分かれる。また振動自由度と回転自由度を
研究会報告

分離したハミルトニアン（\(\varepsilon = 0 \)）を用いて同様の計算を行った場合、この様な周期の長いモード間のエネルギー移動は見られなかった。

以上の結果からホルムアルデヒド分子内のエネルギー移動に振動回転相互作用が重要な役割を果たしていること、また回転自由度を媒介した振動モード間のエネルギー移動を問題にする場合、振動自由度の非調和性の評価が不可欠であることが示唆される。

図3. コリオリ相互作用による状態間反発　 図4. 分子内のエネルギー移動

【参考文献】