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BRAID GROUP AND ANYONS ON AN ANNULUS AND A TORUS
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1. Introduction

In quantum mechanics, phase factors of wave functions present a delicate problem.
Typical examples are the Aharonov-Bohm effect and Berry phase. In the path integral
formulation, the statistics phase factors characteristic of a many-particle system
originate from the non-trivial topology of the many-particle configuration space [1].
They form a representation of the fundamental group of the latter. In three or higher
dimensions, the allowed statistics is either Fermi or Bose statistics. In two dimensions,
however, fractional statistics is allowed to exist . The realization of fractional statistics is
first recognized in the FQH effect [2]. The discovery of the high temperature
superconductivity brings a renewed interest in strongly correlated electron systems.
Recently, the possibility of realizing anyons in the high-temperature superconductivity
is argued by Laughlin [3]. Although it is not clear yet whether anyons are relevant to
real high-Tc materials, the behavior of an anyon system is an interesting problem to
investigate (at least theoretically).

2. Braid group and anyons on the annulus (cylinder)

The representation of the fundamental group of the N-body configuration space
1t1(CnN) determines the allowed statistics. Thus let us discuss 7t1(CN) on an annulus first.
For a two-dimensional system, 1t1(CN) is the braid group Bn. If the system is a plane, it
is generated by the local exchange operators oj, (i=1,-, N-1) where oj represents an
interchange of i-th and i+1-th particle counter-clockwise without other particles
enclosed in the exchange loop. For an annulus, there is another type of generators pj,
which represents moving the j-th particle around the hole once in the positive direction.
Further the following important relation holds

Pj+1 = 0jPj Oj.
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When we consider one-dimensional representation which corresponds to the usual one-
component wavefunction, we get the representation o; = ¢i® for ¢;. and we can interpret
0 as the anyon statistics. Thus we get pj=py exp[ i 20 ( j-1) ] for each pj. To fix the
braid group representation, we need to fix the phase of p; [4]. Physically the effects of a
central flux ® threading through the hole is included by p; so we get

pi(®) = expli (20 (j-1)}+2nD}].

We have to pay a special attention to it when we construct an anyon on the annulus
which is absent in a two-dimensional plane geometries.

3. Symmetry and restriction for a cylinder system
Unlike the annular case, the two edges of a cylinder are symmetric; one $hould be

able to identify the phase for the generator at the two edges. Using the representation for
pj» this condition is expressed as

P1(P) = pNI(-D).
Then one obtains the constraint for the cylindrical system as
expli 20(N-1)] =1

where N is the number of anyons. With N given, the allowed values of 0 are restricted to
be

mrv
0= N-T* (m =0,--,2N-3).

If 6/r is fixed to be fractional, then the total number N of the anyons can not be
arbitrary.

This restriction also appears in the sphere case [S]. Further we get some relations for
the ground state energy E(0,®) by a similar discussion. There is a symmetry as
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E(6,0) = E(6,-®)
for a cylinder with general ®. However, E(0,0) # E(6,-®) for an annulus.
4. Numerical calculation and mean-field calculation

There are several studies of anyon on the lattice [4, 6]. Here the braid group
representation is realized by string rules. We perform numerical calculations on a finite
lattice[6]. In Fig.1(a), we show ground state energies from an exact calculation and a
MF calculation from boson. We also perform a MF calculation from fermion in
Fig.1(b). They confirm that the MF results is good unless level crossing occurs. After
the level crossing, however, the MF approximation is not so good. In the MF
calculation from boson, the region where the MF is good is wider than that of the MF
calculation from fermion, because there are fewer level crossings near the hard-core

boson point.
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S. Anyon on a torus

Wen, Dagotto and Fradkin 7] proposed how to put anyons on a torus. Einarrson[8]
gives a mathematical structure of the braid group on the torus. We explicitly construct
anyons on a toroidal lattice by starting from the braid group. The resultant rules to
define anyons are basically the same (with some corrections) as those of Wen et al. We
have investigate a symmetry and the Aharonov-Bohm effect of the system. The
existence of non-contractible loops on the torus leads to the appearance of additional
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generators pj and 7j in the braid group corresponding to moving an anyon along the non-
contractible loops. This in turn requires more parameters to fix the braid group
representation, which can be identified as the central fluxes ®x and ®y threading
through the two holes of the torus. We get the representations for pj and t; including the
effect of ®x and ®y which are given by

. I+n
0 1 0 7 » c 0
P00 . 0 ¢* O
7, = exp[-i{26(j - 1) + 27D, }] 0 . , p; =expli{26(j -1)+ 27D }] . 0
. . 0 .
0 .- 0 i 0 "]

where 0 =1t (p/q), ¢ = exp(i 20) and m is an arbitrary integer. Further the number of the

particles N must satisfy exp[i 20N] = 1. The representation has inevitably higher
dimensions than one. Thus the wavefunction of the anyons has multi-components. To
change n by 1 is a gauge transformation and it is equivalent to increase ®y by 0/r. This
means that in addition to the usual unit period for ®x and @y, there is a smaller period
given by 6/n. If 8 = =t (p/q) with p and q mutually prime, then the smallest period is
actually 1/q rather than 1. So we are led to expect that the energy spectrum of anyons
on the torus exhibits a period of 1/q in ®x and ®y, For example, an eigen energy E,
must satisfy En(®yx,Py) = En(Px + 1/q,Dy) = En(®x ,Oy + 1/q).

Ground state energy
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Since in general a given energy level does not necessarily have this period ( it may
have a larger period), we naturally expect the emergence of spectral flow and level
crossing. In particular, energy levels may be rearranged as ®x or @y changes by 1/. In
Fig.2, we show the spectrum of 3x3 with 3 anyons (6 =n/3) as a function of ®x . In Fig.
3, we show the ground state energy as a function of @y and ®y for 3x3 with 4 anyons (6
=mn/4) system.

6. Fractional Quantum Hall effect

Finally let us consider the relation of our results for the torus and the FQH effect.
~ 'When the Landau level filling is v =1/q, excitations of the system are quasiparticles with
charge e*= e/q and statistics © = nt/q. There are two types of gauge invariance in this

system. The period ®g*=hc/e* implies the gauge invariance of the fractionally charged
quasiparticle. We note that in this case the period ®¢*/q = @ coincides with that for

gauge invariance of the constituent particles (electrons). Using the argument that there
are two kinds of gauge invariances, we can discuss the FQH effect in the way of
Laughlin [9] and Halperin [10] for the integral case. An argument for the FQH effect by
the gauge invariance for electrons was discussed by Tao and Wu [11] and by Thouless
[12]. We treat it in the anyon’s point of view. Let us assume that the fermi energy lies in
a gap. The FQH system has the property that when we increase the central flux by A® =
®*, the system returns to its original state. In the process, exactly n electrons are
transported across the potential difference V. (Notice that the transported particles are
not anyons but electrons because the anyons are only quasiparticles in the FQH effect.)

Thus the change in energy is given by AE = neVy. We use a formula for the current by
Byers and Yang [13] Iy = ¢ (AE/A®). This implies that Hall conductance is fractional as

Oxy = (n/q) (e2/h). |
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