<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>臨界点近傍の流体水銀の物性 基研モレキュール型研究会「凝縮系物理学における遅い動的過程」研究会報告</td>
</tr>
<tr>
<td>Author</td>
<td>八尾 善</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 基研モレキュール型研究会「凝縮系物理学における遅い動的過程」研究会報告</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/94568</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
臨界点近傍の流体水銀の物性

京大・理 八尾 誠

最近、高溫高圧下での実験技術の進歩により、アルカリ金属や水銀の液-気体臨界領域における高精度の物性測定が可能になり、臨界領域近傍で起る金属-非金属転移の機構や静的臨界現象についての研究が進められている[1-4]。

研究会では、温度1478K、圧力1670barに臨界点をもつHgを中心に、研究の現状を紹介した。Hgの臨界密度は5.8g/cm³であるが、電気伝導度やナイトシフトの測定より、液体の約9g/cm³で金属-非金属転移が起ることが知られている。我々は高精度の光吸収スペクトル測定を行い、光学ギャップが9g/cm³近傍の密度で閉じることを見出した[5]。すなわち流体Hgにおける金属-非金属転移は価電子帯と伝導帯の重なりの有無によると結論される。

臨界点近傍の密度ゆらぎの大きい領域では誘電率に異常が現われる。希薄気体において誘電率はClausius-Mossotti則を満たすが、4g/cm³以上の密度では異常に大きく、この効果は臨界温度近傍で顕著になる[6]。この現象を、Frenkel型動起子の凝縮として取り扱う興味ある理論が提出されている[7]。

流体Hgの気-液共存曲線の形状を表す臨界指数βは、3次元イジング系の値に近いが、共存領域の直径は「直線径の法則」から大きくずれていることが、見出されている[8]。Rehr-Merminの理論では、直線径からのずれは換算温度の1-α乗で表せる異常をもつ[9]。これを流体Hgに適用するとα=0.11となる。直線径からのずれが誘電率の異常とはどのように関係しているか、興味深い問題である。

金属元素についての動的臨界現象の研究は未開拓であるが、臨界点近傍では大きな密度ゆらぎに伴って、高密度の金属領域と低密度の非金属領域が生成・消滅を繰り返していることが予想され、今後のダイナミックス研究の発展が望まれる。

文献