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Confluent Transfer-Matrix and Coherent-Anomaly Method

in the Generalized Cactus Trees
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1 Introduction

To study critical phenomena, it is the most reliable way to solve the problem
exactly. Actually, Onsager’s exact solution [1] of the two-dimensional Ising model
is quite valuable. It is, however, difficult to solve realistic models. For example,
even the two-dimensional Ising model is not yet exactly solved in a magnetic field.
For this reason, various kinds of approximations have been made. Especially,
since Weiss [2] introduced the mean-field approximation into the study of critical
phenomena, mean-field type approximations have been performed actively.

Recently, a new approach to critical phenomena, the coherent-anomaly method
(CAM) was proposed by Suzuki [3]. According to it, a systematic series of gen-
eralized mean-field approximations is extremely useful to study the true critical
behavior of the corresponding realistic model. Therefore, various types of ap-
proximations have been used as systematic series for the CAM theory [4].

Now we introduce a new systematic series which is constructed by exactly
solvable models, the generalized cactus trees [5]. Although each model shows
a mean-field critical behavior, these models approach systematically the corre-
sponding regular system.

In the present thesis, the CAM theory is reviewed in Section 2, and a system-
atic series is constructed by the generalized cactus trees in Section 3. In Section
4, we review the confluent transfer-matrix (CTM) method introduced by Suzuki
[5] to solve these new models exactly. In Section 5, some examples of calculations
are given, and critical exponents are estimated using the CAM theory. In Section
6, we try to evaluate the correlation length by use of the CTM method. These
results are discussed in Section 7.
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2 Coherent-Anomaly Method (CAM)

In considering a critical phenomenon, the relevant physical quantity f(z) is ex-
pected to show such behavior as

C

flz) = (2.1)

near the critical point z*, with the critical exponent ¢*. On the other hand,
ordinary mean-field approximations yield such behavior as

fule) = fu (=2=), (22)

T —2z,

where the exponent ¢ is not necessarily the same as ¢*.
Consider a series of approximations; n = 1,2,3,.... If the series converges to
the realistic system, or

Jggom" = 2%, (2.3)
lim fu(e) = f(z), (2.4

from the discrepancy between the exponents ¢* and ¢, f, shows anomaly [3]:
" fa— o0 asn — oo, or T, — " (2.5)

Suzuki [3] proposed that in general there exist some systematic series of approx-
imations for which f,, can be written in the form

- C’

fa ¥ ————asn— o0, Or T, — ", 2.6)
(znp — z*)?

and correspondingly, the relevant physical quantity takes the form

L_ ¢ Ty
fn(x) - (xn _ :L‘")‘/’ (32 -z,

")
) as z, — z*, ¢ — z". (2.7)

This behavior is called the ”coherent-anomaly”, and the series which shows this
anomaly is called a ”canonical series”. Therefore, the asymptotic behavior of the
relevant physical quantity is given [3] by

1
f(z) ~ (m - z*)¢+¢,’ (2'8)
and the ”coherent-anomaly relation” can be derived as follows:
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In the CAM theory, it is quite important how to construct the canonical series
in order to study the true critical behavior of the corresponding regular system.
Hitherto, various kinds of the systematic series of approximations have been made
and yielded fruitful results [4]. In the next section, we introduce some systematic
series of exactly solvable models [5], which play a role of systematic mean-field
approximations in the CAM theory. ‘

3 Generalized Cactus Trees

We now discuss how to construct systematic series of exactly solvable models. The
simplest model of phase transition which can be solved exactly is the Cayley tree
shown in Fig. 1. This model yields the same result as the Bethe approximation

Figure 1: A Cayley tree (z = 3).

does [6]. The square cactus tree shown in Fig. 2 is also easily solved. The

AN 7/
N 7

/ N\
/7 N\

Figure 2: A square cactus tree [5].

critical point of this model is, however, lower than that of the corresponding
regular system (i.e. the two-dimensional Ising model), for the connectivity of the
model is very small. Then it is quite natural to extend to more complicated
- cactus trees as shown in Fig. 3, in which each cell connects at each boundary
site. The critical points of these series do not approach the correct one, as shown
[3] in Fig. 4. This is because the connectivity of such systems corresponds to
the infinite dimensionality even in the limit where the cell size becomes infinite.
Consequently the limiting critical point T{*) is different from the true one T7, or
such a series is not canonical for the CAM.
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Figure 3: A cactus tree connected at each boundary site [5].

. ) (2) (M

T, T, T, T,

Figure 4: The series [5] of the critical points {7{™} of the cactus trees connected
at each boundary site as shown in Fig. 3.

P T

Now we explain the generalized cactus trees [5] as shown in Fig. 5. The
generalized cactus trees have a novel feature that they are connected not with

Ve
N Ve
N : .

: } The size of cactus cells

[_The connection distance

N
7 N
/7

Figure 5: A generalized square cactus tree [5].

points but with lines (or surfaces). These fractal systems have the connection
distance, that is, the distance between the connecting sites. Our criterion on the
canonical series for the CAM is that the connection distance should be of the
same order as the size of cactus cells [5].

4 Confluent Transfer-Matrix (CTM) Method

In the present section, we explain the confluent transfer-matrix (CTM) method [5]
to solve such fractal systems exactly as the generalized cactus trees. The ordinary
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transfer-matrix method [7] has been successfully used in studying regular systems
as shown in Fig. 6. In this method, various physical quantities are derived from

S
L—L
|
|
|
X1y
|
!

2 2
1 1

Figure 6: Transfer-matrix in the two-dimensional square lattice.

the following linear equation:

Af(z) = TryS(=; ¥)f(y), (4.1)

where z and y are defined by the set of variables {o;,0,,---,0.} on the line.
f(z) is the canonical probability functions on some contact region whose state -
specified by . On the other hand, in the new confluent transfer-matrix method,
the canonical probability function f(x) is given [5] by the following nonlinear
equation:

f(z) = Tf{yj}S(x;yp Yo, :yz—l)f(yl)f(yz) Tt f(yz-l)7 (4~2)

where S(x; ¥y, Y2, -+, ¥.—;) denotes the partial Boltzmann factor due to the in-
teraction on the relevant cell shown in Fig. 7. The kernel S in eq. (4.2) transfers

Figure 7: A general cactus cell with z connection-lines and the corresponding
confluent transfer-matrix S [5].

fluctuations at the states y,,¥,,--- and y,_; to those at . Therefore, S is called
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the confluent transfer-matrix. The eigenfunction f(z) gives an effective Hamilto-
nian induced through the half region of the system connected by y,,¥,, - and

Y-
The canonical average of any physical quantity Q(x) specified by the state x

is given [5] by
TrzQ(z)f*(z)D(=)
z)) =
(Q(=)) Trz /(2)D(2)
where the square f?(z) comes from the sum of the effective fields due to the both
sides at the region {} and the factor D(x) denotes the partial Boltzmann factor

at the region {«}. Therefore, the effective Hamiltonian H.g() at the region {x}
for the total infinite system is defined [5] in

) (4.3)

fA(z)D(z) = exp{(—=B)Her(2)}; B = T (4.4)
Provided an external field is absent, the original Hamiltonian H is symmetric and
consequently the confluent transfer-matrix S is also symmetric with respect to
the inversion transformations

T — -z, y; > -y, (4.5)

Therefore, there exists always a symmetric solution f()(z) in eq. (4.2). The
nonlinear eq. (4.2) has, however, another symmetry-breaking solution Flos)(z)
in some temperature region i.e. below the critical point. In the CTM method, we
determine the critical point by the point where the eigenfunction f(z) of eq. (4.2)
bifurcates to the symmetric and symmetry-breaking solutions. Since the effective
Hamiltonian is given by

{7®+)(=)}’ D(z) = exp{(-A)H"*)(2)} (4.6)

below the critical point, we can formulate the spontaneous broken symmetry of
an effective Hamiltonian.

5 Examples and CAM Analyses of Numerical
Results

In the present section, some examples of calculations are given. We treat here
the generalized honeycomb cactus trees and the generalized square cactus trees,
which correspond to the two-dimensional Ising model in the limit where the cell
size becomes infinite. The Hamiltonian of the Ising model is given by

=-=J Z g:0; — /JBHZO'J'; g; = *1. (5.1)
<> J
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The two-dimensional Ising model is already solved exactly [1] and the critical
exponents are known. Our aim is, however, to confirm the effectiveness of the
CTM method by use of the well-known results.

5.1 Generalized Honeycomb Cactus Trees

The simplest model in the generalized honeycomb cactus trees is shown in Fig. 8.
The unit cell of this model is a honeycomb cell shown in Fig. 9. Our general

1
h" O o hil

Kll

Figure 9: A honeycomb cactus cell.

eq. (4.2) is expressed [5] as

f(o1,02) = TraneS(01, 02, - ,Us)f(03a04)f(05, T6), (5.2)

where
S(O’l, Ogyr e, 06) — eK(azcrs+as<n+a'4<rs+asas+asa'1); K = B8J, (5.3)

and Tr3.e denotes > Z Z Z , in this model without an external field.

oy=xloy=xl os=%xl og==1
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We assume the following form for f(o1,02)
f(o1,02) = a(K)eX rroathlouten), (5.4)

where K" and kA" denote even- and odd-effective fields, respectively. Above the
critical point, we can set A” = 0. Then we obtain [5]

a(K) = (16)"*(cosh K)~3(cosh K')~*(cosh K", (5.5)
%2 =1, (5.6)
where
| K' =K+ K", (5.7)
t = tanh K, t' = tanh K', t" = tanh K". (5.8)

Below the critical point, as far as the term linear in A" is concerned, we obtain
from eq. (5.2),

(1+ "' (o) + 02) =t(1 + ) (1 + ' )R" (01 + 02). (5.9)

The critical point T, is determined at the temperature where eq. (5.9) has a
non-vanishing selution h". Then we obtain

1+ " = t(1+)(1 +teth), (5.10)
where ‘ .
t. = tanh K, t. = tanh K/, t! = tanh K. (5.11)

Consequently we obtain the critical point [5]
t, = 0.52167 (5.12)

from egs. (5.6), (5.7) and (5.10).
The susceptibility x(T) is calculated as follows [5]. If we apply an external
field H, then we have

(1+t")r" =t(1 +t")(1 + ') (A" + h); (5.13)
_psH o
=T (5.14)
The total susceptibility is given by
. - J _ K Tro,f?D
- %(1 + tanh(2K" + K))(2K" + h). (5.15)
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Then we obtain

T

X(T) ~ 1. —_— 5.16
X(T) = 133957, (5.16)

near the critical point T,. We define the critical coefficient ¥(T¢) in
$(T) = (L)t (517)

C T — TC’
then we have x(7.) as follows:

%(T:) = 1.33957. (5.18)

We also calculate the critical point T, and the critical coefficient x(7¢) of
some models whose unit cells are shown in Figs. 10b, 10c and 10d. Since unit

NQ‘( ’ S
V.o
a
>

= re
100
O ¢
' d

v v

c

Figure 10: Unit cells of treated models.

cells shown in Fig. 10b do not connect without deformation, the model may not
be canonical. Therefore, we consider also a model which has two unit cells A and
B as shown in Fig. 10c.

All the results obtained by the CTM method and by the Weiss and Bethe
approximations are listed in Table 1. The models whose unit cells are shown in
Figs. 10c and 10d yield T¢, where T. < T. We do not use these data in the CAM
analyses. |

In the following, we analyze the obtained data by the CAM theory, and es-
timate the critical exponent 4. According to the CAM theory [3], the critical
coefficient ¥,(7,) may show the anomaly

C’
(Tn - Tg')"’ ,
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Table 1: Results of the generalized honeycomb cactus trees.

unit cell || kgT./J | x(T¢)
Weiss 3.00000 | 0.33333
Bethe | 1.82048 | 1.00000
a 1.72822 | 1.33957
b 1.58131 | 2.33344
c 1.45546 -
d 1.40148 -

where T,, and x,,(T,,) are the critical point and coefficient of the n-th approxima-
tion, respectively, and T* denotes the exact critical point. The total susceptibility
x(T) is expected to show such behavior as

C

X(T) 2 ——— 5.20

AT = (5.20)
near the critical point. Then the ”coherent-anomaly relation” is given by

y=1+1 ‘ (5.21)

from eq. (2.9). 4
The least-square-fitting of the data to the function (5.19) using the exact value
T are plotted in Fig. 11, and we obtain the critical exponent v as follows:

~v = 1.705(17). (5.22)

This is consistent with the exact value:
y = 1.75. (5.23)
Figure 11 suggests that the model whose unit cell is shown in Fig. 10b is not

canonical.

5.2 Generalized Square Cactus Trees

We also calculate the critical data in the generalized square cactus trees. The unit
cells of treated models are shown in Fig. 12. We calculate the critical point T,
and the critical coefficient ¥(7%) in the same way as shown in Section 5.1. All the
results obtained by the CTM method and by the Weiss and Bethe approximations
are listed in Table 2. The least-square-fitting of the data to the function (5.19)
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Generalized Honeycomb Cactus Trees |

0.6 T

0.4

0.2

0.0

log(x(T,))

llll|7lllllll|ll1IIIIIT—,IIII

v=1.705(17)

I 1 )

s

T ¥

lllIllJllIlllllll]lllllllllL

0.5

—log(Tc—T:)

Figure 11: The data points, ” Weiss”, "Bethe” and ”a”, are fitting to the function

(5.19).

——

¥
B
a

v

a

<

\

b

l<

v

Cc

Figure 12: Unit cells of treated models.

Table 2: Results of the generalized square cactus trees.

unit cell || kgTe/J | x(To)
Weiss 4.00000 | 0.250000
Bethe || 2.88539 | 0.500000
. a 2.62717 | 0.764496
b 2.13645 -
c 2.54112 | 0.953922
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using the exact value T are plotted in Fig. 13, and we obtain the critical

Generalized Square Cactus Trees

o.o—-llluul | |
= e
- y=1.721(22) :
— =02 ]
> L .
& - ]
| ><¢ L 4
S’
Q0 L .
o
—~ 0.4 — -
-0.6 — —
I-l 1 l 1 1 1 L I 1. 1 1 l.l 1 1 i 1 l J L 1 1. l A ]

-0.2 0 0.2 0.4 0.6
—log(T.—Tc)

Figure 13: The data points, ”Weiss”, ”Bethe”, ”a” and ”c”, are fitting to the
function (5.19).

exponent v as follows:
v = 1.721(22). (5.24)

This is also consistent with the well-known result.

6 Evaluation of the Correlation Length Based
on the CTM Method

In the present section, we try to evaluate the correlation length in the generalized
cactus trees by the CTM method.

6.1 Correlation Functions

In order to evaluate the correlation length, we have to define a correlation func-
‘tion. :
First, we define two kinds of correlation functions in the Cayley tree. The
point correlation function defined by

CP(R) = (5005) (6.1)
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is calculated as ‘ »
C®(R) =t%; t = tanh B/, (6.2)

where 0 and R denote Oth and R-th generation sites as shown in Fig. 14. In this

)

Oth generation

1st generation

surface

Figure 14: 0 to R-th generation spins.

definition (6.1), the correlation length £ defined [8] in

B
e ¢

(6.3)

does not diverge at the critical point.
The surface correlation function defined by

CY(R) = > (g00i) (6.4)

i€R—th
is calculated as ' ,
CO(R) = {(z - t}%, -~ (6.5)

where z denotes the coordination number. In the definition (6.4), the correlation

length £ is given by .
= —1—, (6:5)

log (z—-1)t

and diverges at the critical point
1

z—=1

te =

(6.7)

Therefore, we had better to define, in general, a correlation function of the gen-
eralized cactus trees in the same way as the surface correlation function of the
Cayley tree.
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6.2 Correlation Functions of the Generalized Cactus Trees

In order to define the surface correlation function of the generalized cactus trees,
we first consider the surface of the generalized cactus trees.
We define the surface of the generalized cactus trees as shown in Fig. 15. In

n=0 N=1 n=2

Figure 15: The surface of the n-th generation of a generalized cactus tree.

this definition, the number of sites of the surface of the n-th generation a, is
given by

| an ~ (z = 1)" (6.8)
as that of the Cayley tree. Then we define the surface correlation function of the

generalized cactus trees by the correlation between the spins of the Oth generation
and the n-th generation in the whole infinite system, or in

Cln)y= > > ({oic)). (6.9)

t€0th j€n—th

By use of the CTM method, the correlation functions (6.9) of the generalized
cactus trees are given exactly.

For example, we consider the generalized cactus tree shown in Fig. 8. The
correlation function C(n) takes the form

C(n) ~e % (6.10)
as shown in Fig. 16, and the correlation length € is given by

1 .
€= - I I} ) (6'11)
log (t(1+t)(1+tt ))

1+ t3t72

where ¢ and ¢’ are defined by eqgs. (5.7) and (5.8). The correlation length £ diverges
at the critical point. Then we estimate the critical exponent v defined [8] in

E~(T-T,)" (6.12)

v=1. (6.13)
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Correlation Functions
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Figure 16: Correlation functions in some temperatures, where ¢ = tanh §J.

The surface correlation function is expected [8] to show such behavior as

Wé obtain also

~&
s e ¢ d—1
C(R) ~ i
&
e ¢
= o
In this model, C(n) is given by eq. (6.10). Then we have
n=1
v=1

from eq. (5.16). Therefore, the scaling relation (8]

is satisfied.

7=(2-n

7 Discussions and Summary

(6.14)

(6.15)

(6.16)

(6.17)

We have studied some generalized cactus trees as the canonical series for the
CAM using Suzuki’s confluent transfer-matrix method in order to solve these
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models exactly. We have obtained 4 = 1.705(17) in the generalized honeycomb
cactus trees and vy = 1.721(22) in the generalized square cactus trees using the
CAM theory. These results are consistent with the well-known results. There-
fore, we have confirmed the effectiveness of the CTM method to study the true
critical behavior of the corresponding regular system. We have also calculated
the correlation length £ by use of the CTM method. The scaling relation, '

Y= (2_77)1/;

is satisfied with v =1, n =1 and v = 1. However, we had better to confirm this
relation in the limit where v approaches the exact value, using the CAM analyses
of  and v.
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