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A random walk with random obstacles and
a tagged particle of an infinite hard core particle system in R

Hideki Tanemura (Chiba University)

Let 9 be the set of all countable subsets 7 of R? satisfying Nx(n) < oo for
any compact subset K , where N4(n) is the number of points of 7 in 4 C R¢
(d > 2). We regard 7 € M as a non-negative integer valued Radon measure on R?

: 9(-) = 2aeq 6a(+) and accordingly equip 90 with the vague topology, where &,
denotes the §-measure at z. We define o-fields B(9) and By (9N) by

B(9M) = o(Ny4; A € B(R?)),

and

Bg(9M) = o(N4; A € B(R%), A C K).

The o-field B(N) coincides with the topological Borel field of 9.
For any 7 € M we define a measurable kernel g, (z,dy) on R? x B(R%) by

@y (2, dy) = p(|le — y)x(z|n)x(¥|n)dy,

where p(-) is a non-negative function on [0, co) satisfying

ey [ dealle =1,

®2) [ delel(el) <o
(#3)  {ac[h,0):p(a)>0}=[0,k), for some h & (0,00,
(p-4) ess.inf{p(a) : @ € [0,¢)} >0  for any c € (0, h),

and for any 7 € 9 and z € R¢

x(z|n) = exp{->_ ¥(|z — y|)}.

yEq

Here ¥ is a given measurable function on [0, 00) which is bounded from below and
satisfies

(2.1) . ¥(a) =00 ifand onlyif @ € [0,7),
(2.2) ¥(a)=0 if a € [rg, 00),

for some positive constants » and »o with » < »p.
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Let Co(R?%) be the space of continuous functions ¢ on R? such that p(z) — 0

as |z| — oco. We denote by (2, F, P,,z(t)) the right continuous Markov process
starting from 0 with generator

Log(e) = [ (@ dn)e(s) - 9@}, € Col®?)

For any probability measure v on 90 we write P, = [y, v(dn)P,. We call the process
(2, F,P,,2(t)) a random walk with random obstacles.

Denote the r-neighborhood of A C R? by U, (A) and abbreviate U, ({z}) to U, (z).
For z € R¢ and 7 € 9 put

Am,-,-,\U, (’7)’ z ¢ U,(ﬂ),

Cleva) = { ) 2 € T (),

where A, , is the connected component of UQ(U, (7)¢) containing z. We call the
set C(z,7) the cluster containing z for 7. Define a measurable subset 90 of 9 by
M = {n € M:|C(0,9)| = oo}

For a probability measure on 9 sétisfying p(9*) > 0, we define

pt(dn) = Lg?m(zn; p(dn),

where |4 stands for the indicator function for a set A.

We study the asymptotic behavior of (2(t), P,-) in the case where p is a Gibbs
state. We introduce terminologies for Gibbs states. Let ¢ be a real valued mea-
surable function on [0, 00) which is bounded from below and satisfies the following
condition (#.1) called regularity condition:

(3.1) / dz| exp(—&(|2])) — 1] < oo.
R4 .
Next we assume either one of the following conditions ($.2) and ($.2’):

(®.2) ®(:) 2 0,

(®.2') (i) There exists a positive number #' such that

$(a) = 0o, if and only if @ € [0,7'),

(1i) There exists a non-negative number cg such that

Z: ®(|2i}) > —co
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for all m and 24,23, - , 2, € R® with |2; — zj| > fori#j.

® is regarded as a pair potential which is rotation invariant and translation invariant.
For 21,22, * ,2n, € R?% and 1 € 9 we associate a potential energy

U(z1,zz,-~-,zn|n)= Z §(|2i—25|)+22§(|2;——y|).

1<i<j<n i=1 y€y

For any compact subset K C R?, we denote by 9(K) and (K, n) the set of all
finite subsets of K and the set of all subsets of K having n points, respectively. An
alternative description of 9(K,n) is given by

{0},  ifa=0,

@ ) = { (K")/Sa, 21,

where (K™)' = {(21,22,°* ,2,) € K™ : 2; # z;if i # j} and S, is the symmetric
group of degree n. By means of the factorization (1) we introduce a measure Ag ,

on M(K) = U IM(K,n) (direct sum) such that

n=0
/\K_,(G) =1,

and

/\K.z(A) = i‘?/;d%dfcz ceedey,

for a Borel set A in 9 K,n),n > 1, where z > 0 and A is a preimage of A by the
factor mapping in the factorization (1.3).
Now, we are going to define a Gibbs state.

Definition 1.1. A probability measure g on 9% is called a Gibbs state with
respect to the activity z > 0 and the potential @, if for any compact subset K of
R4, :

p( - [Br(MM))(n) = pxm:( ), pas.

where pg , ; is the probability measure on 9M(K) defined by

e (dx) = exp{~U (x|7 N K)}Ax, . (dx),

K,n,z

Dicms = / Akc»(dx) exp{~U (x|n N K*)}.
M(K)

Denote by G(z, ®) the set of all Gibbs states with respect to the activity z > 0
and the potential ®, and by Ge(z, ®) the set of all elements of G(z, ®) which are
translation invariant.
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Remark 1.1. (i) The set §o(z,®) is convex and any element of Go(z,®) is
represented by the extremal points of Ge(z,®), which are characterized by their
ergodicity under translation (see [1]). We denote the set of all extremal points
of Go(z,®) by exGo(z,®). If §G(z,2) = 1 and p € G(z,®), then pu is rotation
invariant, translation invariant and ergodic under translation.

(i) There exists a positive constant z; > 0 such thatif z € (0,2;) and g € G(z, @),
then p(97*) > 0. In particular, z; = oo in case h = co.

Now, we shall state our first main result.

Theorem 1.1. There ezists z; € (0, 21] such that if z € (0, 23) and p € exG(z, ®),
then the process ez(%5) on (Q, F, P,) converges to D*B(t) as ¢ — 0 in distribution
with respect to Jy-topology on Skorohod’s funciion space D0, 00), where B(t) is
a d-dimensional Brownian motion and D* is a positive definite d x d-matriz. In
particular, z3 = oo in case h = oco.

In the previous paper [2] we studied a system of infinitely many hard balls with
the same diameter » moving discontinuously in R¢. We denote the configuration

space of hard balls by X:

x:{f:{z;}:Iz,——-—szZT,i?éj}a

the position of a ball being represented by its center. The space X is a compact
subset of 901 with the vague topology.

Let C(X) be the space of all real valued continuous functions on X and Cg(X)
be the set of functions of C(X) each of which depends only on the configurations in
some compact set K. The system is described by the X-valued Markov process &
whose generator is the smallest closed extension of the operator K on Co(X) given

by

Kf() =3 | au{f(e>") - F(©In(lz — vDx(vle\{2}), f € Co(X),
Rd

a€é

where
' ec,y — { (ﬁ\{z}) U {y} ifz e 6’ Yy ¢ 61

13 otherwise.

We study the behavior of a tagged particle in the process. In order to follow the
motion of the tagged particle it is convenient to regard the process £; as a Markov
process (y(t),{:) on the locally compact space R% x Xg, where -

Xo={¢ € X:¢NT,(0) = 0}.

y(t) is the position of the tagged particle and (; is the entire configuration seen from
the tagged particle. We can see that (; is a Markov process whose generator X is

— 224 —



[T 2 B RRAN DI B R S DA E» 50T 71 —F

the smallest closed extension of the operator on Cy(Xp) given by
K=K+ Kz,

Kif(¢) = / du{ F(r-0) = F(O)}p(u)x(ul),
Q)= / ay{£(¢7*) ~ H(OIplle ~ sx(wlC\=h),  F € Colo),

s€(

where C(Xp) and Co(.%o) are defined by the same way as C(X) and Cy(X), re-
' spectively We denote by S; the semigroup associated with generator X and by
(Q, F, P2, ;) the associated process with initial distribution v.
For any p € G(z,¥) we define

po(dn) = X2 1,.(an),

where c3 = [, x(0|n)p(dn)r In [2] we proved that there exists z3 € (0,00) such
that if z € (0,23) and if §G(2,¥) =1 and p € g(z ¥), then (PJ ,(¢) is an ergodic

reversible Markov process.
The process y(t) is driven by the process (; in the following way. Let A € B(R?)
and let Z(A4) be the measurable subset of Xy x Xq defined by

E(A4) = {(n,¢) € (Xo x Xo)\A : { = 7_,7n for some u € A},

where

A={(¢(,¢): (e X} U({¢ € Xo:(=r7_y( for some u € Rd\{O}}z).

Define a o-finite random measure N by

N((O t X A) Z n..".'.(A)("Ia ,77:)) t>0.
36(0 t]

Then, t
y(t) = y(0) + A fR  N(dsdu)u.

Our second main result is the following theorem.

Theorem 1.2. If z € (0,23 A z3) and if §G(2,%¥) = 1 and p € G(2,9), then
the process ey(%) on (Q,F, P2 ) converges to oo B(t) as € — 0 in distribution with
respect to J1-topology on Skorohod’s function space D[0, 00), where og s a positive
constant,
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