A random walk with random obstacles and a tagged particle of an infinite hard core particle system in \mathbb{R}^d

Hideki Tanemura (Chiba University)

Let \mathfrak{M} be the set of all countable subsets η of \mathbf{R}^d satisfying $N_K(\eta) < \infty$ for any compact subset K, where $N_A(\eta)$ is the number of points of η in $A \subset \mathbf{R}^d$ $(d \geq 2)$. We regard $\eta \in \mathfrak{M}$ as a non-negative integer valued Radon measure on \mathbf{R}^d : $\eta(\cdot) = \sum_{x \in \eta} \delta_x(\cdot)$ and accordingly equip \mathfrak{M} with the vague topology, where δ_x denotes the δ -measure at x. We define σ -fields $\mathcal{B}(\mathfrak{M})$ and $\mathcal{B}_K(\mathfrak{M})$ by

$$\mathcal{B}(\mathfrak{M}) = \sigma(N_{\boldsymbol{A}}; \boldsymbol{A} \in \mathcal{B}(\mathbf{R}^{d})),$$

and

$$\mathcal{B}_{K}(\mathfrak{M}) = \sigma(N_{A}; A \in \mathcal{B}(\mathbf{R}^{d}), A \subset K).$$

The σ -field $\mathcal{B}(\mathfrak{M})$ coincides with the topological Borel field of \mathfrak{M} .

For any $\eta \in \mathfrak{M}$ we define a measurable kernel $q_\eta(\boldsymbol{x}, d\boldsymbol{y})$ on $\mathbf{R}^d imes \mathcal{B}(\mathbf{R}^d)$ by

$$q_\eta(x,dy) = p(|x-y|)\chi(x|\eta)\chi(y|\eta)dy,$$

where $p(\cdot)$ is a non-negative function on $[0,\infty)$ satisfying

- (p.1) $\int_{\mathbf{R}^d} d\boldsymbol{x} p(|\boldsymbol{x}|) = 1,$
- (p.2) $\int_{\mathbf{R}^d} d\mathbf{x} |\mathbf{x}|^2 p(|\mathbf{x}|) < \infty,$

 $(p.3) \qquad \{\alpha \in [0,\infty): p(\alpha) > 0\} = [0,h), \qquad \text{for some } h \in (0,\infty],$

 $(p.4) \qquad \text{ess.inf}\{p(\alpha): \alpha \in [0,c)\} > 0 \qquad \text{for any } c \in (0,h),$

and for any $\eta \in \mathfrak{M}$ and $\boldsymbol{x} \in \mathbf{R}^d$

$$\chi(\boldsymbol{x}|\boldsymbol{\eta}) = \exp\{-\sum_{\boldsymbol{y}\in\boldsymbol{\eta}}\Psi(|\boldsymbol{x}-\boldsymbol{y}|)\}.$$

Here Ψ is a given measurable function on $[0,\infty)$ which is bounded from below and satisfies

- $(\Psi.1) \qquad \qquad \Psi(\alpha) = \infty \quad \text{if and only if } \alpha \in [0,r),$
- (Ψ .2) $\Psi(\alpha) = 0$ if $\alpha \in [r_0, \infty)$,

for some positive constants r and r_0 with $r \leq r_0$.

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX

Let $C_{\infty}(\mathbb{R}^d)$ be the space of continuous functions φ on \mathbb{R}^d such that $\varphi(x) \to 0$ as $|x| \to \infty$. We denote by $(\Omega, \mathcal{F}, P_{\eta}, x(t))$ the right continuous Markov process starting from 0 with generator

$$L_\eta \varphi(\boldsymbol{x}) = \int_{\mathbf{R}^d} q_\eta(\boldsymbol{x}, dy) \{ \varphi(y) - \varphi(\boldsymbol{x}) \}, \quad \varphi \in \mathbf{C}_\infty(\mathbf{R}^d).$$

For any probability measure ν on \mathfrak{M} we write $P_{\nu} = \int_{\mathfrak{M}} \nu(d\eta) P_{\eta}$. We call the process $(\Omega, \mathcal{F}, P_{\nu}, \boldsymbol{x}(t))$ a random walk with random obstacles.

Denote the *r*-neighborhood of $A \subset \mathbf{R}^d$ by $U_r(A)$ and abbreviate $U_r(\{x\})$ to $U_r(x)$. For $x \in \mathbf{R}^d$ and $\eta \in \mathfrak{M}$ put

$$C(\boldsymbol{x},\eta) = \begin{cases} A_{\boldsymbol{x},\eta} \setminus \overline{U_{\boldsymbol{r}}(\eta)}, & \boldsymbol{x} \notin \overline{U_{\boldsymbol{r}}(\eta)}, \\ \emptyset, & \boldsymbol{x} \in \overline{U_{\boldsymbol{r}}(\eta)}, \end{cases}$$

where $A_{x,\eta}$ is the connected component of $U_{\frac{h}{2}}(U_r(\eta)^c)$ containing x. We call the set $C(x,\eta)$ the cluster containing x for η . Define a measurable subset \mathfrak{M}^* of \mathfrak{M} by

$$\mathfrak{M}^* = \{\eta \in \mathfrak{M} : |C(0,\eta)| = \infty\}.$$

For a probability measure on \mathfrak{M} satisfying $\mu(\mathfrak{M}^*) > 0$, we define

$$\mu^*(d\eta) = \frac{I_{\mathfrak{M}^*}(\eta)}{\mu(\mathfrak{M}^*)}\mu(d\eta),$$

where I_A stands for the indicator function for a set A.

We study the asymptotic behavior of $(x(t), P_{\mu^*})$ in the case where μ is a Gibbs state. We introduce terminologies for Gibbs states. Let Φ be a real valued measurable function on $[0, \infty)$ which is bounded from below and satisfies the following condition $(\Phi.1)$ called *regularity condition*:

$$(\Phi.1) \qquad \qquad \int_{\mathbf{R}^d} d\mathbf{z} |\exp(-\Phi(|\mathbf{z}|)) - 1| < \infty.$$

Next we assume either one of the following conditions $(\Phi.2)$ and $(\Phi.2')$:

- $(\Phi.2) \qquad \qquad \Phi(\cdot) \ge 0,$
- $(\Phi.2')$ (i) There exists a positive number r' such that

$$\Phi(\alpha) = \infty$$
, if and only if $\alpha \in [0, r')$,

(ii) There exists a non-negative number c_0 such that

$$\sum_{i=1}^{m} \Phi(|\boldsymbol{x}_i|) \geq -c_0$$

-222 -

for all m and
$$x_1, x_2, \cdots, x_m \in \mathbf{R}^d$$
 with $|x_i - x_j| \ge r'$ for $i \ne j$.

 Φ is regarded as a pair potential which is rotation invariant and translation invariant. For $x_1, x_2, \dots, x_n \in \mathbb{R}^d$ and $\eta \in \mathfrak{M}$ we associate a potential energy

$$U(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_n | \eta) = \sum_{1 \leq i < j \leq n} \Phi(|\boldsymbol{x}_i - \boldsymbol{x}_j|) + \sum_{i=1}^n \sum_{y \in \eta} \Phi(|\boldsymbol{x}_i - y|).$$

For any compact subset $K \subset \mathbb{R}^d$, we denote by $\mathfrak{M}(K)$ and $\mathfrak{M}(K,n)$ the set of all finite subsets of K and the set of all subsets of K having n points, respectively. An alternative description of $\mathfrak{M}(K,n)$ is given by

(1)
$$\mathfrak{M}(K,n) = \begin{cases} \{\emptyset\}, & \text{if } n = 0, \\ (K^n)'/\mathbf{S}_n, & \text{if } n \ge 1, \end{cases}$$

where $(K^n)' = \{(x_1, x_2, \dots, x_n) \in K^n : x_i \neq x_j \text{ if } i \neq j\}$ and S_n is the symmetric group of degree *n*. By means of the factorization (1) we introduce a measure $\lambda_{K,z}$ on $\mathfrak{M}(K) = \bigcup_{n=0}^{\infty} \mathfrak{M}(K, n)$ (direct sum) such that

$$\lambda_{K,z}(\emptyset)=1,$$

and

$$\lambda_{K,z}(A) = \frac{z^n}{n!} \int_{\tilde{A}} dx_1 dx_2 \cdots dx_n,$$

for a Borel set A in $\mathfrak{M}(K, n), n \geq 1$, where $z \geq 0$ and \tilde{A} is a preimage of A by the factor mapping in the factorization (1.3).

Now, we are going to define a Gibbs state.

Definition 1.1. A probability measure μ on \mathfrak{M} is called a Gibbs state with respect to the activity $z \geq 0$ and the potential Φ , if for any compact subset K of \mathbb{R}^d ,

$$\mu(\ \cdot \mid \mathcal{B}_{K^{c}}(\mathfrak{M}))(\eta) = \mu_{K,\eta,z}(\ \cdot \), \qquad \mu ext{-a.s. } \eta,$$

where $\mu_{K,\eta,z}$ is the probability measure on $\mathfrak{M}(K)$ defined by

$$\mu_{K,\eta,z}(d\mathbf{x}) = \frac{1}{Z_{K,\eta,z}} \exp\{-U(\mathbf{x}|\eta \cap K^c)\}\lambda_{K,z}(d\mathbf{x}),$$
$$Z_{K,\eta,z} = \int_{\mathfrak{M}(K)} \lambda_{K,z}(d\mathbf{x}) \exp\{-U(\mathbf{x}|\eta \cap K^c)\}.$$

Denote by $\mathcal{G}(z, \Phi)$ the set of all Gibbs states with respect to the activity $z \geq 0$ and the potential Φ , and by $\mathcal{G}_{\Theta}(z, \Phi)$ the set of all elements of $\mathcal{G}(z, \Phi)$ which are translation invariant. **Remark 1.1.** (i) The set $\mathcal{G}_{\Theta}(z, \Phi)$ is convex and any element of $\mathcal{G}_{\Theta}(z, \Phi)$ is represented by the extremal points of $\mathcal{G}_{\Theta}(z, \Phi)$, which are characterized by their ergodicity under translation (see [1]). We denote the set of all extremal points of $\mathcal{G}_{\Theta}(z, \Phi)$ by $\exp \mathcal{G}_{\Theta}(z, \Phi)$. If $\# \mathcal{G}(z, \Phi) = 1$ and $\mu \in \mathcal{G}(z, \Phi)$, then μ is rotation invariant, translation invariant and ergodic under translation.

(ii) There exists a positive constant $z_1 > 0$ such that if $z \in (0, z_1)$ and $\mu \in \mathcal{G}(z, \Phi)$, then $\mu(\mathfrak{M}^*) > 0$. In particular, $z_1 = \infty$ in case $h = \infty$.

Now, we shall state our first main result.

Theorem 1.1. There exists $z_2 \in (0, z_1]$ such that if $z \in (0, z_2)$ and $\mu \in \operatorname{ex} \mathcal{G}(z, \Phi)$, then the process $\varepsilon z(\frac{t}{\epsilon^2})$ on $(\Omega, \mathcal{F}, P_{\mu^*})$ converges to $D^*B(t)$ as $\varepsilon \to 0$ in distribution with respect to J_1 -topology on Skorohod's function space $\mathbf{D}[0, \infty)$, where B(t) is a d-dimensional Brownian motion and D^* is a positive definite $d \times d$ -matrix. In particular, $z_2 = \infty$ in case $h = \infty$.

In the previous paper [2] we studied a system of infinitely many hard balls with the same diameter r moving discontinuously in \mathbb{R}^d . We denote the configuration space of hard balls by \mathfrak{X} :

$$\mathfrak{X} = \{ \boldsymbol{\xi} = \{ \boldsymbol{x}_i \} : | \boldsymbol{x}_i - \boldsymbol{x}_j | \geq r, i \neq j \},$$

the position of a ball being represented by its center. The space \mathfrak{X} is a compact subset of \mathfrak{M} with the vague topology.

Let $C(\mathfrak{X})$ be the space of all real valued continuous functions on \mathfrak{X} and $C_0(\mathfrak{X})$ be the set of functions of $C(\mathfrak{X})$ each of which depends only on the configurations in some compact set K. The system is described by the \mathfrak{X} -valued Markov process ξ_t whose generator is the smallest closed extension of the operator \bar{K} on $C_0(\mathfrak{X})$ given by

$$\mathbf{K}f(\xi) = \sum_{\boldsymbol{x}\in\boldsymbol{\xi}}\int_{\mathbf{R}^d} dy \{f(\xi^{\boldsymbol{x},\boldsymbol{y}}) - f(\xi)\} p(|\boldsymbol{x}-\boldsymbol{y}|) \chi(\boldsymbol{y}|\boldsymbol{\xi} \setminus \{\boldsymbol{x}\}), \quad f \in \mathbf{C}_0(\mathfrak{X}),$$

where

$$\xi^{x,y} = \begin{cases} (\xi \setminus \{x\}) \cup \{y\} & \text{if } x \in \xi, \ y \notin \xi, \\ \xi & \text{otherwise.} \end{cases}$$

We study the behavior of a tagged particle in the process. In order to follow the motion of the tagged particle it is convenient to regard the process ξ_t as a Markov process $(y(t), \zeta_t)$ on the locally compact space $\mathbf{R}^d \times \mathfrak{X}_0$, where

$$\mathfrak{X}_{0} = \{ \zeta \in \mathfrak{X} : \zeta \cap U_{r}(0) = \emptyset \}.$$

y(t) is the position of the tagged particle and ζ_t is the entire configuration seen from the tagged particle. We can see that ζ_t is a Markov process whose generator $\bar{\mathcal{K}}$ is

the smallest closed extension of the operator on $C_0(\mathfrak{X}_0)$ given by

$$\begin{split} &\mathcal{K} = \mathcal{K}_1 + \mathcal{K}_2, \\ &\mathcal{K}_1 f(\zeta) = \int_{\mathbf{R}^d} du \{ f(\tau_{-u}\zeta) - f(\zeta) \} p(|u|) \chi(u|\zeta), \\ &\mathcal{K}_2 f(\zeta) = \sum_{\boldsymbol{x} \in \zeta} \int_{U_r(0)^c} dy \{ f(\zeta^{\boldsymbol{x},\boldsymbol{y}}) - f(\zeta) \} p(|\boldsymbol{x} - \boldsymbol{y}|) \chi(\boldsymbol{y}|\zeta \setminus \{\boldsymbol{x}\}), \quad f \in \mathbf{C}_0(\mathfrak{X}_0), \end{split}$$

where $C(\mathfrak{X}_0)$ and $C_0(\mathfrak{X}_0)$ are defined by the same way as $C(\mathfrak{X})$ and $C_0(\mathfrak{X})$, respectively. We denote by S_t the semigroup associated with generator $\bar{\mathcal{K}}$ and by $(\Omega, \mathcal{F}, P_{\nu}^0, \zeta_t)$ the associated process with initial distribution ν .

For any $\mu \in \mathcal{G}(z, \Psi)$ we define

$$\mu_0(d\eta)=rac{\chi(0|\eta)}{c_3}\mu(d\eta),$$

where $c_3 = \int_{\mathfrak{M}} \chi(0|\eta) \mu(d\eta)$. In [2] we proved that there exists $z_3 \in (0,\infty)$ such that if $z \in (0, z_3)$ and if $\sharp \mathcal{G}(z, \Psi) = 1$ and $\mu \in \mathcal{G}(z, \Psi)$, then $(P^0_{\mu_0}, \zeta_t)$ is an ergodic reversible Markov process.

The process y(t) is driven by the process ζ_t in the following way. Let $A \in \mathcal{B}(\mathbb{R}^d)$ and let $\Xi(A)$ be the measurable subset of $\mathfrak{X}_0 \times \mathfrak{X}_0$ defined by

$$\Xi(A) = \{ (\eta, \zeta) \in (\mathfrak{X}_0 \times \mathfrak{X}_0) \setminus \Delta : \zeta = \tau_{-u} \eta \text{ for some } u \in A \},\$$

where

$$\Delta = \{(\zeta,\zeta): \zeta \in \mathfrak{X}_0\} \cup (\{\zeta \in \mathfrak{X}_0: \zeta = \tau_{-u} \zeta \text{ for some } u \in \mathbf{R}^d \setminus \{0\}\}^2).$$

Define a σ -finite random measure N by

$$N((0,t]\times A)=\sum_{s\in(0,t]}I_{\Xi(A)}(\eta_{s-},\eta_s), \qquad t>0.$$

Then,

$$y(t) = y(0) + \int_0^t \int_{\mathbf{R}^d} N(dsdu)u.$$

Our second main result is the following theorem.

Theorem 1.2. If $z \in (0, z_2 \wedge z_3)$ and if $\#\mathcal{G}(z, \Psi) = 1$ and $\mu \in \mathcal{G}(z, \Psi)$, then the process $\varepsilon y(\frac{t}{\epsilon^2})$ on $(\Omega, \mathcal{F}, P^0_{\mu_0})$ converges to $\sigma_0 B(t)$ as $\epsilon \to 0$ in distribution with respect to J_1 -topology on Skorohod's function space $\mathbf{D}[0, \infty)$, where σ_0 is a positive constant.

References

- 1. Georgii, H.O., "Canonical Gibbs Measure, Lecture Note in Math.," Springer, 1979.
- 2. Tanemura, H., Ergodicity for an infinite particle system in R^d of jump type with hard core interaction, J.Math.Soc.Japan 41 (1989), 681-697.