A random walk with random obstacles and a tagged particle of an infinite hard core particle system in \mathbf{R}^{d}

Hideki Tanemura（Chiba University）

Let \mathfrak{M} be the set of all countable subsets η of \mathbf{R}^{d} satisfying $N_{K}(\eta)<\infty$ for any compact subset K ，where $N_{A}(\eta)$ is the number of points of η in $A \subset \mathbf{R}^{d}$ （ $d \geq 2$ ）．We regard $\eta \in \mathfrak{M}$ as a non－negative integer valued Radon measure on \mathbf{R}^{d} $: \eta(\cdot)=\sum_{x \in \eta} \delta_{x}(\cdot)$ and accordingly equip \mathfrak{M} with the vague topology，where δ_{x} denotes the δ－measure at \boldsymbol{x} ．We define σ－fields $\mathcal{B}(\mathfrak{M})$ and $\mathcal{B}_{K}(\mathfrak{M})$ by

$$
\mathcal{B}(\mathfrak{M})=\sigma\left(N_{A} ; A \in \mathcal{B}\left(\mathbf{R}^{d}\right)\right)
$$

and

$$
\mathcal{B}_{K}(\mathfrak{M})=\sigma\left(N_{A} ; A \in \mathcal{B}\left(\mathbf{R}^{d}\right), A \subset K\right)
$$

The σ－field $\mathcal{B}(\mathfrak{M})$ coincides with the topological Borel field of \mathfrak{M} ．
For any $\eta \in \mathfrak{M}$ we define a measurable kernel $q_{\eta}(\mathfrak{x}, d y)$ on $\mathbf{R}^{d} \times \mathcal{B}\left(\mathbf{R}^{d}\right)$ by

$$
q_{\eta}(x, d y)=p(|x-y|) \chi(x \mid \eta) \chi(y \mid \eta) d y
$$

where $p(\cdot)$ is a non－negative function on $[0, \infty)$ satisfying

$$
\begin{equation*}
\int_{\mathbf{R}^{d}} d x p(|x|)=1 \tag{p.1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbf{R}^{d}} d x|x|^{2} p(|x|)<\infty \tag{p.2}
\end{equation*}
$$

（p．3）$\quad\{\alpha \in[0, \infty): p(\alpha)>0\}=[0, h), \quad$ for some $h \in(0, \infty]$ ， （p．4）\quad ess．inf $\{p(\alpha): \alpha \in[0, c)\}>0 \quad$ for any $c \in(0, h)$ ，
and for any $\eta \in \mathfrak{M}$ and $x \in \mathbf{R}^{d}$

$$
\chi(x \mid \eta)=\exp \left\{-\sum_{y \in \eta} \Psi(|x-y|)\right\}
$$

Here Ψ is a given measurable function on $[0, \infty)$ which is bounded from below and satisfies

$$
\begin{array}{lc}
\Psi(\alpha)=\infty & \text { if and only if } \alpha \in[0, r) \\
\Psi(\alpha)=0 & \text { if } \alpha \in\left[r_{0}, \infty\right)
\end{array}
$$

for some positive constants r and r_{0} with $r \leq r_{0}$ ．

Let $\mathbf{C}_{\infty}\left(\mathbf{R}^{d}\right)$ be the space of continuous functions φ on \mathbf{R}^{d} such that $\varphi(\boldsymbol{x}) \rightarrow 0$ as $|x| \rightarrow \infty$ ．We denote by $\left(\Omega, \mathcal{F}, P_{\eta}, x(t)\right)$ the right continuous Markov process starting from 0 with generator

$$
L_{\eta} \varphi(x)=\int_{\mathbf{R}^{d}} q_{\eta}(x, d y)\{\varphi(y)-\varphi(x)\}, \quad \varphi \in \mathbf{C}_{\infty}\left(\mathbf{R}^{d}\right)
$$

For any probability measure ν on \mathfrak{M} we write $P_{\nu}=\int_{\mathfrak{M}} \nu(d \eta) P_{\eta}$ ．We call the process （ $\Omega, \mathcal{F}, P_{\nu}, x(t)$ ）a random walk with random obstacles．

Denote the r－neighborhood of $A \subset \mathbf{R}^{d}$ by $U_{r}(A)$ and abbreviate $U_{r}(\{\boldsymbol{x}\})$ to $U_{r}(\boldsymbol{x})$ ． For $\boldsymbol{x} \in \mathbf{R}^{d}$ and $\eta \in \mathfrak{M}$ put

$$
C(x, \eta)= \begin{cases}A_{x, \eta} \backslash \overline{U_{r}(\eta)}, & x \notin \overline{U_{r}(\eta)} \\ \emptyset, & x \in \overline{U_{r}(\eta)}\end{cases}
$$

where $A_{x, \eta}$ is the connected component of $U_{\frac{h}{2}}\left(U_{r}(\eta)^{c}\right)$ containing x ．We call the set $C(\boldsymbol{x}, \boldsymbol{\eta})$ the cluster containing \boldsymbol{x} for η ．Define a measurable subset \mathfrak{M}^{*} of \mathfrak{M} by

$$
\mathfrak{N}^{*}=\{\eta \in \mathfrak{M}:|C(0, \eta)|=\infty\}
$$

For a probability measure on \mathfrak{M} satisfying $\mu\left(\mathfrak{M}^{*}\right)>0$ ，we define

$$
\mu^{*}(d \eta)=\frac{\|_{\mathfrak{M}} \cdot(\eta)}{\mu\left(\mathfrak{N}^{*}\right)} \mu(d \eta)
$$

where $\|_{A}$ stands for the indicator function for a set A ．
We study the asymptotic behavior of $\left(x(t), P_{\mu^{*}}\right)$ in the case where μ is a Gibbs state．We introduce terminologies for Gibbs states．Let Φ be a real valued mea－ surable function on $[0, \infty)$ which is bounded from below and satisfies the following condition（ $\Phi .1$ ）called regularity condition：

$$
\int_{\mathbf{R}^{d}} d x|\exp (-\Phi(|x|))-1|<\infty .
$$

Next we assume either one of the following conditions（ $\Phi .2$ ）and（ $\Phi .2^{\prime}$ ）：

$$
\Phi(\cdot) \geq 0
$$

（i）There exists a positive number \boldsymbol{r}^{\prime} such that

$$
\Phi(\alpha)=\infty, \quad \text { if and only if } \alpha \in\left[0, r^{\prime}\right)
$$

（ii）There exists a non－negative number c_{0} such that

$$
\sum_{i=1}^{m} \Phi\left(\left|x_{i}\right|\right) \geq-c_{0}
$$

$$
\text { for all } m \text { and } x_{1}, x_{2}, \cdots, x_{m} \in \mathbf{R}^{d} \text { with }\left|x_{i}-x_{j}\right| \geq r^{\prime} \text { for } i \neq j
$$

Φ is regarded as a pair potential which is rotation invariant and translation invariant． For $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\boldsymbol{n}} \in \mathbf{R}^{d}$ and $\boldsymbol{\eta} \in \mathfrak{M}$ we associate a potential energy

$$
U\left(x_{1}, x_{2}, \cdots, x_{n} \mid \eta\right)=\sum_{1 \leq i<j \leq n} \Phi\left(\left|x_{i}-x_{j}\right|\right)+\sum_{i=1}^{n} \sum_{y \in \eta} \Phi\left(\left|x_{i}-y\right|\right)
$$

For any compact subset $K \subset \mathbf{R}^{d}$ ，we denote by $\mathfrak{M}(K)$ and $\mathfrak{M}(K, n)$ the set of all finite subsets of K and the set of all subsets of K having n points，respectively．An alternative description of $\mathfrak{M}(K, n)$ is given by

$$
\mathfrak{M}(K, n)= \begin{cases}\{\emptyset\}, & \text { if } n=0 \tag{1}\\ \left(K^{n}\right)^{\prime} / \mathbf{S}_{n}, & \text { if } n \geq 1\end{cases}
$$

where $\left(K^{n}\right)^{\prime}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in K^{n}: x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\}$ and S_{n} is the symmetric group of degree n ．By means of the factorization（1）we introduce a measure $\lambda_{K, z}$ on $\mathfrak{M}(K)=\bigcup_{n=0}^{\infty} \mathfrak{M}(K, n)$（direct sum）such that

$$
\lambda_{K, z}(\emptyset)=1
$$

and

$$
\lambda_{K, z}(A)=\frac{z^{n}}{n!} \int_{\tilde{A}} d x_{1} d x_{2} \cdots d x_{n}
$$

for a Borel set A in $\mathfrak{M}(K, n), n \geq 1$ ，where $z \geq 0$ and \tilde{A} is a preimage of A by the factor mapping in the factorization（1．3）．

Now，we are going to define a Gibbs state．
Definition 1．1．A probability measure μ on \mathfrak{M} is called a Gibbs state with respect to the activity $z \geq 0$ and the potential Φ ，if for any compact subset K of \mathbf{R}^{d} ，

$$
\mu\left(\cdot \mid \mathcal{B}_{K^{c}}(\mathfrak{M})\right)(\eta)=\mu_{K, \eta, z}(\cdot), \quad \mu \text {-a.s. } \eta
$$

where $\mu_{K, \eta, z}$ is the probability measure on $\mathfrak{M}(K)$ defined by

$$
\begin{aligned}
& \mu_{K, \eta, z}(d \mathbf{x})=\frac{1}{Z_{K, \eta, z}} \exp \left\{-U\left(\mathbf{x} \mid \eta \cap K^{c}\right)\right\} \lambda_{K, z}(d \mathbf{x}) \\
& Z_{K, \eta, z}=\int_{\mathfrak{M}(K)} \lambda_{K, z}(d \mathbf{x}) \exp \left\{-U\left(\mathbf{x} \mid \eta \cap K^{c}\right)\right\}
\end{aligned}
$$

Denote by $\mathcal{G}(z, \Phi)$ the set of all Gibbs states with respect to the activity $z \geq 0$ and the potential Φ ，and by $\mathcal{G}_{\odot}(z, \Phi)$ the set of all elements of $\mathcal{G}(z, \Phi)$ which are translation invariant．

Remark 1．1．（i）The set $\mathcal{G}_{\odot}(z, \Phi)$ is convex and any element of $\mathcal{G}_{\odot}(z, \Phi)$ is represented by the extremal points of $\mathcal{G}_{\odot}(z, \Phi)$ ，which are characterized by their ergodicity under translation（see［1］）．We denote the set of all extremal points of $\mathcal{G}_{\odot}(z, \Phi)$ by $\operatorname{ex} \mathcal{G}_{\odot}(z, \Phi)$ ．If $\sharp \mathcal{G}(z, \Phi)=1$ and $\mu \in \mathcal{G}(z, \Phi)$ ，then μ is rotation invariant，translation invariant and ergodic under translation．
（ii）There exists a positive constant $z_{1}>0$ such that if $z \in\left(0, z_{1}\right)$ and $\mu \in \mathcal{G}(z, \Phi)$ ， then $\mu\left(\mathfrak{M}^{*}\right)>0$ ．In particular，$z_{1}=\infty$ in case $h=\infty$ ．

Now，we shall state our first main result．
Theorem 1．1．There exists $z_{2} \in\left(0, z_{1}\right]$ such that if $z \in\left(0, z_{2}\right)$ and $\mu \in \operatorname{ex} \mathcal{G}(z, \Phi)$ ， then the process $\varepsilon x\left(\frac{t}{c^{2}}\right)$ on $\left(\Omega, \mathcal{F}, P_{\mu^{*}}\right)$ converges to $D^{*} B(t)$ as $\varepsilon \rightarrow 0$ in distribution with respect to J_{1}－topology on Skorohod＇s function space $\mathbf{D}[0, \infty)$ ，where $B(t)$ is a d－dimensional Brownian motion and D^{*} is a positive definite $d \times d$－matrix．In particular，$z_{2}=\infty$ in case $h=\infty$ ．

In the previous paper［2］we studied a system of infinitely many hard balls with the same diameter r moving discontinuously in \mathbf{R}^{d} ．We denote the configuration space of hard balls by \mathfrak{X} ：

$$
\mathfrak{X}=\left\{\xi=\left\{x_{i}\right\}:\left|x_{i}-x_{j}\right| \geq r, i \neq j\right\}
$$

the position of a ball being represented by its center．The space \mathfrak{X} is a compact subset of \mathfrak{M} with the vague topology．

Let $\mathbf{C}(\mathfrak{X})$ be the space of all real valued continuous functions on \mathfrak{X} and $\mathbf{C}_{0}(\mathfrak{X})$ be the set of functions of $C(\mathfrak{X})$ each of which depends only on the configurations in some compact set K ．The system is described by the \mathfrak{X}－valued Markov process ξ_{t} whose generator is the smallest closed extension of the operator $\overline{\mathbf{K}}$ on $\mathbf{C}_{0}(\mathfrak{X})$ given by

$$
\mathbf{K} f(\xi)=\sum_{x \in \xi} \int_{\mathbf{R}^{\mathbf{d}}} d y\left\{f\left(\xi^{x, y}\right)-f(\xi)\right\} p(|x-y|) \chi(y \mid \xi \backslash\{x\}), \quad f \in \mathbf{C}_{0}(\mathfrak{X})
$$

where

$$
\xi^{x, y}= \begin{cases}(\xi \backslash\{x\}) \cup\{y\} & \text { if } x \in \xi, y \notin \xi \\ \xi & \text { otherwise }\end{cases}
$$

We study the behavior of a tagged particle in the process．In order to follow the motion of the tagged particle it is convenient to regard the process ξ_{t} as a Markov process $\left(y(t), \zeta_{t}\right)$ on the locally compact space $\mathbf{R}^{d} \times \mathfrak{X}_{0}$ ，where

$$
\mathfrak{X}_{0}=\left\{\zeta \in \mathfrak{X}: \zeta \cap U_{r}(0)=\emptyset\right\} .
$$

$y(t)$ is the position of the tagged particle and ζ_{t} is the entire configuration seen from the tagged particle．We can see that ζ_{t} is a Markov process whose generator $\overline{\mathcal{K}}$ is
the smallest closed extension of the operator on $\mathbf{C}_{0}\left(\mathfrak{X}_{0}\right)$ given by

$$
\begin{aligned}
& \mathcal{K}=\mathcal{K}_{1}+\mathcal{K}_{2} \\
& \mathcal{K}_{1} f(\zeta)=\int_{\mathbf{R}^{d}} d u\left\{f\left(\tau_{-u} \zeta\right)-f(\zeta)\right\} p(|u|) \chi(u \mid \zeta) \\
& \mathcal{K}_{2} f(\zeta)=\sum_{\boldsymbol{x} \in \zeta} \int_{U_{\boldsymbol{r}}(\mathbf{0})^{c}} d y\left\{f\left(\zeta^{\boldsymbol{x}, y}\right)-f(\zeta)\right\} p(|\boldsymbol{x}-y|) \chi(y \mid \zeta \backslash\{\boldsymbol{x}\}), \quad f \in \mathbf{C}_{0}\left(\mathfrak{X}_{0}\right),
\end{aligned}
$$

where $C\left(\mathfrak{X}_{0}\right)$ and $C_{0}\left(\mathfrak{X}_{0}\right)$ are defined by the same way as $C(\mathfrak{X})$ and $C_{0}(\mathfrak{X})$ ，re－ spectively．We denote by S_{t} the semigroup associated with generator $\overline{\mathcal{K}}$ and by $\left(\Omega, \mathcal{F}, P_{\nu}^{0}, \zeta_{t}\right)$ the associated process with initial distribution ν ．

For any $\mu \in \mathcal{G}(z, \Psi)$ we define

$$
\mu_{0}(d \eta)=\frac{\chi(0 \mid \eta)}{c_{3}} \mu(d \eta)
$$

where $c_{3}=\int_{\mathfrak{M}} \chi(0 \mid \eta) \mu(d \eta)$ ．In［2］we proved that there exists $z_{3} \in(0, \infty)$ such that if $z \in\left(0, z_{3}\right)$ and if $\sharp \mathcal{G}(z, \Psi)=1$ and $\mu \in \mathcal{G}(z, \Psi)$ ，then $\left(P_{\mu_{0}}^{0}, \zeta_{t}\right)$ is an ergodic reversible Markov process．

The process $y(t)$ is driven by the process ζ_{t} in the following way．Let $A \in \mathcal{B}\left(\mathbf{R}^{d}\right)$ and let $\Xi(A)$ be the measurable subset of $\mathfrak{X}_{0} \times \mathfrak{X}_{0}$ defined by

$$
\Xi(A)=\left\{(\eta, \zeta) \in\left(\mathfrak{X}_{0} \times \mathfrak{X}_{0}\right) \backslash \Delta: \zeta=\tau_{-u} \eta \text { for some } u \in A\right\}
$$

where

$$
\Delta=\left\{(\zeta, \zeta): \zeta \in \mathfrak{X}_{0}\right\} \cup\left(\left\{\zeta \in \mathfrak{X}_{0}: \zeta=\tau_{-u} \zeta \text { for some } u \in \mathbf{R}^{d} \backslash\{0\}\right\}^{2}\right)
$$

Define a σ－finite random measure N by

$$
N((0, t] \times A)=\sum_{s \in(0, t]} I_{\Xi(A)}\left(\eta_{s-}, \eta_{s}\right), \quad t>0
$$

Then，

$$
y(t)=y(0)+\int_{0}^{t} \int_{\mathbf{R}^{d}} N(d s d u) u
$$

Our second main result is the following theorem．
Theorem 1．2．If $z \in\left(0, z_{2} \wedge z_{3}\right)$ and if $\sharp \mathcal{G}(z, \Psi)=1$ and $\mu \in \mathcal{G}(z, \Psi)$ ，then the process $\varepsilon y\left(\frac{t}{\varepsilon^{2}}\right)$ on $\left(\Omega, \mathcal{F}, P_{\mu_{0}}^{0}\right)$ converges to $\sigma_{0} B(t)$ as $\epsilon \rightarrow 0$ in distribution with respect to J_{1}－topology on Skorohod＇s function space $\mathbf{D}[0, \infty)$ ，where σ_{0} is a positive constant．

References

1．Georgii，H．O．，＂Canonical Gibbs Measure，Lecture Note in Math．，＂Springer， 1979.
2．Tanemura，H．，Ergodicity for an infinite particle system in \mathbf{R}^{d} of jump type with hard core interaction，J．Math．Soc．Japan 41 （1989），681－697．

