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Abstract

We present a family of multivariable solvable vertex models associated with

representations of the Temperley-Lieb algebra. We discuss free energy and

correlation lengths for the multivariable models and also for the fusion mod­

els. We also discuss connection of the multivariable vertex models to Jones

polynomials and link polynomials given by Akutsu - Wadati, which are as­

sociated with representations of Uq(sl(2, e)).

*Talk given at Research Institute of Fundamental Physics, July 19, 1991. The talk is

based on the manuscript to be published in Phys. Lett. A (1991).
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1 Introduction

Yang-Baxter relation: A Key to recent developments of mathemat-:

ical physics

Recently various fields and branches of mathematical physics have been

extensively developed. The key of this development is the Yang-Baxter re­

lation. [1,2,3] Actually, the Yang-Baxter relation plays an important role in

various interesting branches of mathematical physics such as solvable models

in statistical mechanics and field theories, quantum groups, link polynomials

(topological invariants for knots and links), integrable models in field theories

("Toda" field theory), rational conformal field theory (monodromy matrice),

3 dim. quantum gravity, etc ..

In statistical mechanical physics, solutions of the Yang-Baxter relation

give exactly solvable models We note that originally the Yang-Baxter relation

was introduced as a sufficient condition for existence of commuting family of

transfer matrices.

Importance of the Temperley-Lieb algebra

The Temperley-Lieb algebra plays an important role in the study of math­

ematical structure of intergrable systems. The algebra gives a short cut to

the mathematical formulations related to exactly solvable models (the "Yang­

Baxterization") [4-15]

Origin of the Temperley-Lieb algebra

The Temperley-Lieb algebra was introduced from the unification of the

following two analytic approaches. [4]

(1) the Bethe ansatz method

Bethe-Hulthen, Yang-Yang, Sutherland, Lieb - Wu

(2) Transfer matrix method

Onsager, Kaufman-Onsager, Schultz-Mattis-Lieb
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Presentation of the Temperley-Lieb algebra The generators {Ei } of

the Temperley-Lieb algebra satisfy the following relations.

EiEi-:!;.lEi - Ei,

E·E· - EjEi , for Ii - jl > 1,• J

E~ - Ql/2Ei . (1)•

(We call the operator Ei Temperley-Lieb operator. )

2 Multivariable vertex models

Let us introduce a family of exactly solvable vertex models that have multi­

variable parameters. We construct multivariable solvable vertex models for

any given regular matrices. [16] We note that recently a new hierarchy of

vertex models have been introduced, which also have multivariables. We call

the vertex models colored vertex models. [17]

Multivariable rep_ of TL algebra

(1) Let kab( a, b = 1, ... , No) be an arbitrary regular matrixof the size No x No.

(No denotes the number of state variables.) We denote the inverse matrix of

kab by kab•

L kabk bc = 8~. (2)
b

(2) We introduce an operator Ei

Ei = L kcdkab1(1) ~ ... ~ 1(i-l) (8) e~iJ (8) e~+l) (8) ••. (8) I(n). (3)
abed

I(i) denotes the identity matrix and eab a matrix such that (eab)jk = 8ja 8kb .

(3) The quantity Ql/2 is

Ql/2 = L kabk
ab

•

a,b
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We define crossing parameter ,\ by the following relation:

2 cosh(;\) = Ql/2 - I: kabk
ab

, if Q > 4,
a,b

2cos('\) = Ql/2 - I: kabk
ab

, if Q < 4.
a,b

(5)

Yang-Baxter operator

We introduce an operator Xi( u), which is a unit of the diagonal-to­

diagonal transfer matrix. [2]

Xi(u) = I: Xj>(u)I(l) (8) ••• (8) e~2 (8) e~+l) (8) I(i+2) (8) ... (8) I(n). (6)
abed

Here X~%(u) = w(c, d, b, a; u).

Construction of YBO from TLO

From the Temperley-Lieb operator (3) we construct the Yang-Baxter op­

erator Xi( u) . [6]

Functions p(u) and f(u) are

f(u) = { sinh u/sinh(,\ - u), if Q > 4,

sin u/sin(;\ - u), if Q < 4,

(7)

(8)

p(u) = { sinh('x - u)/sinh A,
sin('x - u}/sin'x,

if Q > 4,

if Q < 4.
(9)

3 Free energy of the multivariable model

Using the inversion relation method [2,6 ,18] we can calculate the free energy

(partition function) of the multivariable model.

x;(u):' the partition function per site

Assumptions
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(a) K(u) an analytic function of the spectral parameter u.

(b) the spectral parameter is in the physical domain 0 < u < A.

(This domain is invariant under the replacement u ~ A- u, and therefore

invariant under the crossing symmetry.)

Expressions of the free energy

i) Q > 4 (massive regime) ,

I () I ()
~ exp(-2nA) sinh(nu) sinh(n(A - u))

n K u = n K 0 + 2 L.J h( ') .
n=l ncos nl\

ii) Q < 4 (massless regime),

(10)

ln~(u) = InK(O) + 100
cosh((1r - 2.A)t)sinhutsinh(A - u)t dt. (11)

-00 t slnh(1I"t) cosh At

(Here we have assumed that 0 < A < 11".)

Key Points

(1) The free energy of the model is a function of the crossing parameter

A (or Ql/2) in (5).

(2) There are two types of the multivariate parameters {k ab }. One type

is related to the crossing parameter A, and the other type is not.

4 Fusion models

We construct fusion models of the general multivariable model. We apply

the fusion method. [19,20,22,12] The fusion models can be considered as

special cases of Z-invariantly generalized inhomogeneous models. [21,22]

They are generalization of the fusion models associated with higher spin

representations of SU(2). [19,23,24,25] Construction of fusion models from

the viewpoint of the Temperley-Lieb algebra was discussed in the reference

[12].
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(a) The Yang-Baxter operator Xi(u) becomes a projection operator when

the spectral parameter u is ±A. [20,12]

(b) The projection operators pPk]], which are q-analogues of the Young oper­

ators acting on the k-th order tensor product space. [26,27,12] ([[k]] denotes

the symmetry of the projection operator. )

Hereafter the symbol p[k] denotes the symmetric projection of the k-th

order tensor product space.

Composite Yang-Baxter operator

where
k

A C)
X/ -(u) = II Xik+m-j(u - (k - j - m + l)A).

m=l

For example we consider the case k = 2.

(12)

(13)

Yi[2](U) = pJ:~lPJ:~lX2i(U - 'x)X2i - 1(U)X2i+1(u)

XX2i(U + A)PJ:~lPJ:~l. (14)

We can calculate the free energy of the fusion models by inversion relation

method assuming the analyticity of the free energy. We discuss the fusion

model with the symmetry [k] that is constructed from the multivariable ver­

tex model with the value Q and the crossing parameter A.

(a) The fusion model has the crossing symrrietry with the same crossing

parameter 'x.

(b) The physical domain 0 < U < A.

Expression of free energy

i) Q > 4

In K(U) = In K(O) +
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00 e-n(k+l)' sinhnkAsinhnusinhn('\ - u)
+2 L: .''\'

n=l n cosh nA sInh n
(15)

The above expression for the free energy in terms of the crossing parameter A

is equivalent to that for the N -state vertex models, which are fusion models

of the 6-vertex model. [25] It is noted that the parameter A is given by the

crossing parameter of the fusion model.

ii) Q < 4

In K(U) = In K(O) +t 100 cosh((1r - 2{ nA} )t) sinh ut sinh()' - u)t d
+n=l -00 t sinh(1ri) cosh At t.

(16)

Here the symbol {p} denotes the following: {p} = p - n1r for n1r < j.1, <
(n + 1)1r. The expression of the free energy for the fusion model of the

multivariable model is consistent with that given in the reference [25] .

5 Inversion Identity

Let us discuss correlation length for the general multivariable vertex models.

We can derive inversion identity [28,29] for the multivariate vertex models,

and also for the fusion models of the multivariable models. [30,16] We denote

the row-to-row transfer matrix for the multivariable vertex model by TN ( u).

N is the size of the lattice. Then we have

Here IN is the identity operator. The function C(u) is given by

C(u) = sinh(A - u).
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From the inversion identity we have an equation for the ratio of the eigen­

values of the transfer matrix. When Q > 4 we obtain the correlation length

~ of the multivariable vertex model as

(19)

Here the elliptic modulus k1 is related to the crossing parameter ,\ by the

relation
00 ( 1 + exp( -2n'\) )

k1 = 4 exp(-,\/2)!11 1 + exp(-(2n _ 1)'\) . (20)

We recall that the parameter A is given by (5). This result generalizes the

calculation in the reference [10].

We can apply the discussion based on the inversion identity (17) also to

the fusion models. For the fusion model with the symmetry [k] constructed

from the multivariable vertex models with Q > 4, we obtain the correlation

length as ~ f'V -1/ In k1 . The elliptic modulus k1 is related to the crossing

parameter ,\ of the fusion model by the relation (20). This result is consis tent

with the calculation of the Landau free-energy [31] and finite size correction

[32] for the N-state vertex model. We shall discuss derivation of the inver­

sion identity and calculation of the correlation length for the fusion models

elsewhere. [33]

We discuss one-dimensional integrable systems corresponding to the mul­

tivariable vertex models. We can derive the Hamiltonian of the one-dimensional
"system HN by taking the logarithmic derivative of the row-to-row transfer

matrix TN(u).

(21)

Here Hi is given by
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= L Hjl(l) ® ... ® e~i2 ® e~+l) ® I(i+2) ® ... ® len).
abed

(22)

Here H<j is the matrix elements of the local operator Hi. For the general

multivariable vertex models with Q > 4 we have

Htj = - cosh A/ sinh A. c5;c5~ + 1/ sinh A. kabkcd • (23)

Thus we have shown that we have various one-dimensional integrable systems

corresponding to the multivariable vertex models. The ground state energy

of the one-dimensional system can be obtained by the logarithmic derivative

of the free energy of the multivariable vertex model. It is noted that we can

derive an infinite number of conserved quantities of the corresponding one­

dimensional integrable system by taking the higher (logarithmic) derivatives

of the transfer matrix of the multivariable model.

6 Connection to Link polynomials

. i) From the multivariavle vertex model we have the Jones polynomial.

ii) From the fusion models of the general multivariavle vertex model we have

link polynomials given by Akutsu-Wadati, which satisfy the higher order

skein relations.

The link polynomials are also associated with higher representations of

the quantum groups Uq (sl{2, e)). [34] These link polynomials can be applied

to or connected to various promising future problems.
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7 Future problems

The following problems seems to be closely related to representations of the

Temperley-Lieb algebra.

1) Determination of the ground state of 2 dimensional antiferromagnetic

Heisenberg model (or diagonalization of the Hamiltonian)

2) Spin singlet bonding state (cf. RVB state)

3) Modified spin wave theory

4) Characterization of excitation spectrum of quantum spin chains

(cf. t-J model -- gl(211) model)
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