<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>ネマチック液晶の秩序化過程 (パターン形成、運動およびその統計) 研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>豊木 博泰 大野 克嗣 Goldbert, Paul</td>
</tr>
<tr>
<td>刊行誌</td>
<td>物性研究</td>
</tr>
<tr>
<td>刊行日</td>
<td>1992-09-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/94954</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
ネマチック液晶の秩序化過程

山梨大教育，UIUC (a) 豊木博泰，大野克嗣 (a), Paul Goldbert (a)

秩序相が連続縮退している系における秩序相の形成過程についての研究が最近進んできた。ここでは，ネマチック液晶の秩序化力学についてのセル動力学モデルを提案し，それの数値計算の結果を報告する。モデルは次元の制限を受けないが，今回行った数値計算は２次元系についてだけである。

ネマチック液晶の秩序変数の空間は \(R_P = S_2/Z_2 \) である。この系における位相変数の分類は，ホモトピー理論により，\(\pi_1(R_P) = Z_2, \pi_2(R_P) = Z, \pi_3(R_P) = Z \) と書かれる。これは，２次元における点欠陥のチャージは \(Z_2 \)，つまり，有元の区別しかないようにすることを意味する。２次元には，このほかに整数値のチャージをもつテクスチャに存在し得る。このように，秩序化過程におけるパターンは，２次元系においてもスピン系とは異なる特徴を持つはずである。

現象論的モデルとして TDGL タイプのものを考える。秩序変数は保存しないので，ダイナミクスは単純な緩和型（モデル A）でよい。問題はエネルギーである。\(R_P \) 対称性を表す自由エネルギーに必要な条件はグローバルな \(SO(3) \) 回転およびローカルな反転に対する不変性である。これを満たす例として，Khveschenko らのモデル

\[
E_{KKN} = - \sum_{ij} v_{ij} n_i \cdot n_j, \quad n_i \in S^2; \quad v_{ij} \in \pm 1.
\]

がある。[1] 彼らの目的は，トポロジカルな相転移の有無の議論にあったので，\(n \) と \(v_{ij} \) を独立変数として分配関数を計算したのだが，マクロな運動論では，エネルギーは配向ののみに依存するようにすべきである。上の例では \(v_{ij} = \text{sgn}(n_i \cdot n_j) \) とすればよい。しかし，このモデルでは不自然な局所平衡状態が多くあり，欠陥対がとなりあったままピン止めされてしまうようなことが起こる。このようなピン止めを生じさせないもっとも簡単

![Image](image-url)

図 1: 配向子と欠陥の分布の一例。左右の図はそれぞれ \(XY \) 成分と \(XZ \) 成分。
図 2: 欠陥数の時間変化。破線は傾き−0.92を表す。

\[
E = \frac{1}{2} \sum_{\langle rr' \rangle} \left[-(\psi(r) \cdot \psi(r'))^2 + \frac{1}{4} \left(|\psi(r)|^2 + |\psi(r')|^2 \right)^2 \right] + \sum_{r} f (|\psi(r)|).
\]

を得る。ただし、局所ポテンシャルは \(f(x) = -x^2/2 + x^4/4 \) とする。ここで、はじめの和の第 2 項目は、|\(\psi(r) \)| = constant のもとで \(E \) が極小値をとるようにつけ加えられた。このエネルギーに緩和方程式を加えると、次のようなセル動力学モデルが得られる：

\[
\psi(r, t + 1) = \tau \sigma \sum_{r'} z_{rr'} \left[(\psi(r', t) \cdot \psi(r', t)) \psi(r', t) - \frac{1}{2} \left(|\psi(r, t)|^2 + |\psi(r', t)|^2 \right) \psi(r, t) \right] + (1 + \tau) \psi(r, t) - \tau |\psi(r, t)|^2 \psi(r, t).
\]

ここで、和は第 2 近接セル間までとることにし、\(z_{rr'} \) は最近接に対して \(z_{rr'} = 1, \) 第 2 近接に対して \(z_{rr'} = 1/2 \) とする。パラメータ \(\tau = 0.2 \) および \(\sigma = 0.1 \) とした。

第 1 図に配向場と欠陥の分布のスナップショットを示す。XY 系における熱点と異なり一種類の欠陥しかないことに注目して頂きたい。時間発展とともに欠陥は対消滅していく。第 2 図に示すように欠陥の個数は \(t^{-0.92} \) のように減少する。

つきに、配向場の構造因子

\[
S_{ij}(k) = \langle \Xi_{ij}(k) \Xi_{ij}(-k) \rangle, \quad \Xi_{ij}(k) = \sum_{\tau} e^{ik \cdot r} \Phi_{ij}(r)
\]

を計算する。ここで、\(\Phi_{ij}(r) = \psi_i(r) \psi_j(r) - \frac{1}{2} \delta_{ij} \) である。実際には対称性を考慮し、

対角成分: \(S_{ii}(k, t) = \frac{1}{3} \sum_{\tau} S_{ii}(k, t), \) 非対角成分: \(S_{ij}(k, t) = \frac{1}{6} \sum_{\tau \neq \tilde{\tau}} S_{ij}(k, t) \)

を計算する。得られた構造因子を、平均波数 \(\langle k \rangle = \sum_k k S(k, t) / \sum_k S(k, t) \) でスケールしたもの図 3 に示す。よくスケール則 \(S(k, t) = \langle k \rangle^2 g(k / \langle k \rangle) \) を満たしている。大きな特徴は短波長でのべき則であり、\(g(x) \sim x^{-4.5} \) が得られた。短波長ギリギリのべき則は、\(g(x) \sim x^{-(N+D)} \) であることが知られているが、[2]-[4] はこれが効いている。得られた指標は \(N = 2 \) と \(N = 3 \) の間である。配向子の次元という点ではハイゼンベルグ的であり、点欠陥を持つという点では XY 的であるというこ
図3: スケールされた構造因子。挿入図における実線は傾き-4.5を表す。

とからすれば、これは自然な結果であるといえる。図4はkの時間変化である。サンプルの少なさに起因する$S_d(k)$と$S_o(k)$間の微妙なズレがあるものの、大体kの-0.42を示している。この指数は、非保存系一般に成り立つと思われている-0.5からわずかにずれている。今のところ、ズレは、有限サイズ効果なのか、相互作用項の特質によるものなのかはっきりしない。

以上、本報告の要点は、はじめてRP_2対称性の秩序化過程の数値計算モデルを提案したことと、構造因子の高波数領域での非整数べき減衰を見いだしたことである。

参考文献

図4: kの時間変化。一点鍵線は傾き-0.42を表す。