<table>
<thead>
<tr>
<th>タイトル</th>
<th>ランダム媒質中の破壊モデルパターン形成、運動およびその統計 研究会報告</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>原啓明</td>
</tr>
<tr>
<td>キーワード</td>
<td>物性研究 乱数乱数 模型形成</td>
</tr>
<tr>
<td>インデックス</td>
<td>乱数乱数 模型形成</td>
</tr>
<tr>
<td>キーワード</td>
<td>模型形成 乱数乱数</td>
</tr>
<tr>
<td>インデックス</td>
<td>模型形成 乱数乱数</td>
</tr>
<tr>
<td>キーワード</td>
<td>模型形成 乱数乱数</td>
</tr>
<tr>
<td>インデックス</td>
<td>模型形成 乱数乱数</td>
</tr>
</tbody>
</table>
ランダム媒質中の破壊モデル

岩石1)やコンクリート2)は鋼物粒子の複雑な複合体である。これ等は脆性材料とみられ、小さな変形で破壊する。金属、岩石、コンクリート、ガラスなどの破壊現象は、複雑な系の応答特性が直接現れる点で興味深い。最近、破壊のパターンはフロックタル幾何学の面から興味を集める3)・4)。

本報告では、岩石やコンクリートを複合体系とみるモデルを提案した。モデル体系に外力を加え、媒質中に発生したクラックのサイズ分布による破壊過程を調べた。図1はモデルの破壊過程の概念図を示す。

本報告の定式化は時間に関する変数に着目し、基本方程式を導出した点で文献3)と異なる。

体系は多数のクラスター群\{E\}から構成された複合系である。方向iのマイクロクラック(m.c.)が、時刻tでクラスター\(E\)内に分布しており、その長さの上限は\(L_i(E,t)\)である。また、クラスター\(E\)の体積\(L_i(E,t)\)の立方体で分解すると、\(G_i(L_i(E,t))\)個のサブセグメントが得られるものとする。

(1) 初期過程\((0 \leq t < t_0)\)

初期過程の上限\(t_0\)は\(<L_i(E,O)>_{t_0}\)をマイクロクラック(m.c.)の速度\(v\)で割った時間である。\(<A>_{t_0}\)は、方向\(i\)と個数\(G(L_i(E,O))\)に関する平均量されたものであることを示す。クラスターのサイズを不変量と見ると、\(G\)に関する時間発展方

図 1

- 590 -
程式が導出される。図1参照。

(II) スケーリング過程 (\(t_0 \leq t < t_c \))

スケーリング過程の上限 \(t_c \) は \(\Omega(E)^{1/\nu} \) [\(\Omega(E) \): クラスターの体積] で与えられる。この過程では、マイクロクラック (m.c.) は他のマイクロクラック (m.c.) 同と連結し、\(L_i(E, t) \) は不連続的に增加する。連結による増加の割合を \(\lambda_i(E) \) で表わすと連結したマイクロクラック (con.m.c) の長さは、

\[
\tilde{L}_i(E, t) = \lambda_i(E) L_i(E, t-t_0) \quad (\lambda_i \gg 1)
\]

で与えられる。この過程では、\(\tilde{L}_i(E, t) \) を変数とする \(G \) の時間発展方程式が得られる。図1の \(\rho(L_i(E, t)) \) は \(G(L_i(E, t)) \) に比例する関数である。

以上のモデル過程 (I), (II) では、初期値を与えれば、各過程の基本方程式の解は \(L_i(E, 0) \) と \(L_i(E, t_0) \) を使って表現される。

以下では、"モデル体系が一様なランダム媒質である" として、初期値 \(L_i(E, 0) \) はクラスター \((E) \) には無関係で、\(L_i(E, t) \) の増加率は方向 \(i \) に依らないとこと、つまり、

\[
L_i(E, t) = L_i e^{\Gamma t}
\]

を仮定する。\(\Gamma = \sigma_0 / m \), \(\sigma_0 \) は一様な応力、\(m \) はマイクロクラック (m.c.) の形態を考慮したフラクタル次元である。

また、初期値で決まる \(A_i(E, m), \tilde{A}_i(E, m) \) [スケールされた初期条件] は方向 \(i \) には依らないと仮定する。

(III) 終末過程 (\(t > t_c \))

\(t > t_c \) になると、クラスターは成長し破壊される。この状態をクラック \((E) \) が発生したと見られる。一般に \(t > t_c \) では、破壊されていくクラック \((E) \) が連結し、長さ \(L_i(c) \) の連結されたクラック \((con.c.) \) が形成される。

連結されたクラック \((con.c.) \) の発生確率 \(P(L_i(c)) \) と、\(k \) 個の連結されたクラック \((con.c.) \) の分布パターン \(\{ n_k \} \) を表す確率関数 \(W(n_1, n_2, \ldots, n_k; N) \) を導入する。

これにより、終末過程の \(W(N = t/t_0) \) の時間発展は
研究会報告

\[W(n_1, n_2, \ldots, n_k; N) = \sum_{\ell=1}^{k} P(L_{\ell}(c)) W(n_1, n_2, \ldots, n_{\ell-1}, n_{\ell+1}, \ldots, n_k; N-1) \]

\[\left(\sum_{\ell=1}^{k} P(L_{\ell}(c)) \right) = 1 \quad (3) \]

で規定される。ここで、連結されたクラックの組み合わせ \(\{ n_{\ell} \} \) \((\sum n_{\ell} = M_{oh}) \) もう構成されたクラックの鎖 (c-chain) を考え、総数 \(M_{oh} \) 長さ \(\tilde{L}_{oh} \) (\(= \sum n_{\ell}L_{\ell}(c) \)) を拘束条件とする。

\(\tilde{L}_{oh} \) が、体系のサイズ \(L_V \) \((=V^{1/3}, V: 体系の体積) \) に等しい場合、(3)で示した時間発展方程式は、疲労破壊やクリープ破壊において発生したクラックが伝播し、つづいて破壊にいたる過程であるとおもえることができる5)。

初期条件 \(W(0,0,\ldots)=1 \) の解に含まれる \(n_{\ell} \) を変分関数として、拘束条件のもとで、

\[S = k \log W \text{ (} k: \text{ 定数) } \text{ を最大にする。} \]

\(N (= t/t_c) \to \infty \) として、\(n_{\ell} \) を求めると、\(n_{\ell} \) と \(L_{\ell}(c) \) の関係はサイズ頻度分布として

\[n_{\ell} = e^{\alpha - \gamma} L_{\ell}(c)^{-\gamma} - \beta L_{\ell}(c)^{-\eta} \quad (4) \]

で与えられる。ここで、\(e^{\alpha}=\sum_{\ell} L_{\ell}(c)^{-\gamma} \), \(\beta \) と \(\gamma \) は拘束条件に対する未定係数である。

この結果は \(n_{\ell} \) のべき則がシステムのサイズ効果によって指数的振る舞いを示している。実際、松脂を使ったクラックの発生実験6)においてこの効果を認めることができる。

文献

1) 山口 梅太郎，西松裕一：岩石力学入門，東大出版，1991
5) 横堯武夫：材料強度学，岩波，1981