電気粘性流体の物理

1. はじめに

電気粘性流体(Electro-Rheological Fluid: 以下ERF)[1-3]とは、シリコンオイル等の 絶縁性の液体に金属や有機物等の分極しや すい物質の微粒子(1 μ m 程度の大きさ) を分散させた系で、電場によりその粘性が 飛躍的に増大することを特徴とする。具体 的には、y-方向に電場 Eをかけ、 $u_x = \gamma y$ と いうshear flow(流速はx-方向、速度勾配はy -方向)の下でのずり応力 τ を測定すると

$$\tau = \tau_{\nu} + \eta \dot{\gamma} \tag{1}$$

の様にいわゆるBingham流体として振る舞 う(図1)。そして降伏応力 $\tau_{,}$ はずり速 度 γ にはほとんど依存せず、電場の2乗に 比例することが実験的に知られている。典 型的なERFでは $E \sim 1$ kV/mm の電場に対し、 $\tau_{,} \sim 10^{3}$ dyn/cm²程度である。

本講演では、このERFの電場による応力 増加のメカニズムに関する我々の理論と計 算機シミュレーション[4,5]を紹介する。

ERFは電場により流体内部に構造が形成 されるなど、物理の研究対象として極めて 興味深い内容を持っている。一方、電場に

日産・基礎研 滝本淳一

より粘性あるいは応力が容易に制御できる ことから、クラッチやアクティブダンパ、 あるいはアクチエータなど多くの応用も考 えられいる。実用化の為の最大の課題は発 生する応力をより強くすることにあるので、 応力の強さが何によって決まっているかを 明らかにすることは、応用上も極めて重要 である。

2. 理論

静止したERFに電場をかけると粒子が数 珠状に繋がったクラスターが形成されるこ とが、顕微鏡観察などにより知られている (図2)。このことは、電場によって各粒 子に誘起された分極間の相互作用を考えれ ば容易に理解できる。

このクラスター形成が降伏応力の原因で あるとするのは自然な考えである。しかし、 ずり速度 γが存在する場合には、当然この クラスターは短い断片に切れなければなら ない。そして γが大きくなればクラスター はどんどん短くなっていくはずである。一 方、図1からわかるように、電場による応 力の増加はずり速度にはほとんど依存しな いので、クラスター形成と応力増加の間の 関係は決して自明ではない。

はる。 にあるクラスター

そこでまず、与えられた電場Eとずり速 度 γ の下で存在できるクラスターの長さの 上限を見積ってみる。そのために、図3の 様な、電場及び shear flow の下に孤立して 存在する長さ n=2m+1 のクラスターを考え る。次元解析から運動方程式の慣性項は無 視できることがわかるので、各粒子に働く 流体からの抵抗力と電気的な力は常に釣り 合っていなければならない。

簡単のためk番目の粒子に働く流体からの抵抗力はStokes抵抗 $f_k = 6\pi\eta_0 au_k$ で近似する。ここで u_k はk番目の粒子の付近での平均の流速 $u_k \sim 2a\gamma k$ である(aは粒子の半径、 η_0 は分散媒の粘性)。

一方、粒子間の電気的引力としては隣り 合う粒子間のものだけ考えることにし、粒 子 $k \ge k-1$ の間の静電引力(のx-成分)を F_k とすると、力の釣り合い $f_k - F_k + F_{k+1} = 0$ か ら F_k が

$$F_k = 6\pi\eta_0 \gamma a^2 (m+1-k)(m+k)$$
(2)

と求まる。クラスターが切れずに安定に存 在するためには、これだけの引力が粒子間 に働いていなければならない。 F_k はクラ スターの中央(k=0)で最大値

$$F_0 \approx \frac{3\pi}{2} \eta_0 \dot{\gamma} a^2 n^2 \tag{3}$$

をとるが、粒子間の静電引力には当然上限 があるはずである。その上限を*F*。とする。 つまり、図4の様に2個の粒子に横方向に 徐々に強い力を加えていったとき、粒子が 離れるときの力を F_c とするのである。そ うすると、クラスターの長さnの上限 n_c は、 $F_0 < F_c$ の条件から

$$n < n_c \equiv \left(\frac{2}{3\pi} \cdot \frac{F_c}{\eta_0 \dot{\gamma} a^2}\right)^{1/2} \tag{4}$$

と求まる。従って、ずり速度を大きくして いくと、クラスターの長さは γ¹² に比例し て短くなっていくことになる。

このようなクラスターが形成することに よる応力の増加分 τ_{e} は $\tau_{e} ~ \Phi < F_{e} > で見積$ $ることが出来る。ここで <math>\phi$ は単位面積当 たりのクラスターの本数

$$\Phi = \frac{3\phi}{2\pi a^2} \tag{5}$$

である(ϕ は分散粒子の体積分率)。また< F_{k} は粒子間の引力 F_{k} の平均であり、式(2)を 用いると

$$\langle F_k \rangle \approx \pi \eta_0 \dot{j} a^2 \langle n^2 \rangle \tag{6}$$

となる。クラスターの長さ n の平均は正確 には知ることは出来ないが、nを特徴付け る長さのスケールとしてはその上限 n_c し かないので、 $<n^2> ~< n_c^2>$ と近似して良い であろう。そうすると τ_c は

$$\tau_e \approx \frac{1}{\pi} \cdot \phi \cdot \frac{F_c}{a^2} \tag{7}$$

- 99 -

研究会報告

加があることになる。即ち、実験事実と対応するBingham 流体的振る舞いが得られたことになる。また次元解析により、簡単なモデルの場合 F_e は電場の2乗に比例するはずであることもわかるので、 τ_e も電場の2乗に比例することになり、実験結果と一致する。従って、確かにクラスター形成が電場による応力増大の原因であると言える。

次節ではこの理論を2次元での計算機シ ミュレーションにより確かめる。2次元で は(4)式はそのまま成り立つが、(7)式は

$$\tau_e = \frac{4}{3\pi} \phi_2 \frac{F_c}{a} \tag{8}$$

と変更される。但しめは面積分率である。

- 3. 計算機シミュレーション
- 3.1 シミュレーションの方法

計算方法は、粒子に働く流体からの抵抗 力と粒子間の電気的力の釣り合いに基づい ている。まず、粒子 k に働く流体からの抵 抗力はStokes抵抗で近似する:

$$\mathbf{f}_{k} = -6\pi\eta_{0}a(\mathbf{v}_{k}-\mathbf{u}(\mathbf{r}_{k}))$$
(9)

ここで $\mathbf{u}(\mathbf{r}_k)$ は粒子kの位置 \mathbf{r}_k における平均の流速(与えられたずり速度で決まる)、 \mathbf{v}_k は粒子 kの速度である。

この近似により粒子間の流体を介した相 互作用を無視することになる。しかしこの 流体力学的相互作用は、特に粒子同士がほ とんど接するような短距離では非常に強い。 実際この相互作用を正しく取り込んでシミ ュレーションすれば、粒子間に剛体的斥力 が無くても粒子同士が決して重ならない様 になる。しかし(9)式を用いたシミュレー ションの場合、粒子間に別に剛体的な斥力 相互作用を加える必要がある。流体力学的 相互作用の短距離での主な効果は粒子同士 が重ならないようにすることにあるので、 この斥力を加えることでその効果は近似的 に取り込めると考えられる。

次に、粒子間の電気的相互作用を考える。 電場 E の中に孤立しておかれた粒子は 双 極子モーメントp= $\alpha a^3 \epsilon_0 E$ を持つ。(ここで $\alpha = (\epsilon_i - \epsilon_0)/(\epsilon_i + 2\epsilon_0)$ であり、 ϵ_0, ϵ_1 は分散媒と 粒子の誘電率である。 $\epsilon_1 >> \epsilon_0$ であるから $\alpha = 1$ としてよい。)仮に各粒子が向きも大 きさも固定された双極子モーメントpを持 つとすれば、粒子間の電気的相互作用は

 $\mathbf{F}_{d} = \mathbf{D}_{d}(\theta)F_{d}(r) \tag{10}$ $\mathbf{D}_{d}(\theta) \equiv \frac{3}{16} [(5\cos^{2}\theta - 1)\hat{\mathbf{r}} - 2\cos\theta \hat{\mathbf{e}}]$

 $F_d(r) \equiv G \cdot (2a/r)^4$

で与えられる双極子相互作用になる。ここ で $G=\alpha^2 a^2 \epsilon_b E^2$ 、rは粒子間の相対ベクトル、 $\hat{\mathbf{r}} \equiv \mathbf{r}/r$, $\hat{\mathbf{e}} \equiv \mathbf{E}/E$ 、 θ はrとEの間の角 である。粒子同士が接近すると互いに相手 の粒子の持つ分極を強め合うので、本当の 相互作用は短距離では(10)式よりもずっと 強くなるが、この効果は後で考えることに し、取敢ず(10)式を用いることにする。

具体的なシミュレーションは次のように 行う:ある時刻での粒子の配置が与えらた ら、その時刻で各粒子に働く電気的力が計 算出来る。この力が流体からの抵抗力()式 と釣り合うという条件から、その時刻での 各粒子の速度が求まる。その速度で粒子を 微少時間だけ動かして次の粒子配置を求め る。

3.2 計算結果

シミュレーションは2次元モデルを中心 に行っているので、以下2次元での結果の みを示すが、3次元でのいくつかの計算で も結果はほとんど変わらない。

図4 シミュレーションで得られた典型的な粒子配置 (φ=0.196)

図4はシミュレーションの結果得られた 典型的な粒子配置である(γ は $G/6\pi\eta_0 a^2 \epsilon$ 単位に無次元している)。確かに数珠状の クラスターが形成されており、ずり速度を 増すにつれクラスターが短くなっていくこ とがわかる。

図5にクラスターの平均の大きさ<n>の ずり速度依存性を示す。図中の点線は前節 で見積ったクラスターの長さの上限 n_c で ある。n が $\gamma^{1/2}$ に比例することを含め、お よそ理論と一致する結果である。

我々のシミュレーションでは、流体力学 的相互作用を厳密に取り扱っていないので、 応力を正確に計算することは出来ないが、 体積分率があまり大きくない範囲では

 $\tau \approx \eta \dot{\gamma} + \tau_e$

 $\tau_e = \frac{1}{S} \sum_{\langle jk \rangle} \left\langle F_{jk}^x(y_j - y_k) \right\rangle \tag{11}$

で見積ることが出来るであろう。ここでSは系の面積、 F_{jk} は粒子jとkの間に働く 力である。図5にはこの τ_c の計算結果も 示してある(2次元での τ_c はG/aを単位に無 次元化している)。これから解かるように、 <n>が2程度以上ある場合は、 τ_c はずり速 度によらずほぼ一定値をとる。 これは Bingham流体的振る舞いを意味する。一方、 <n>-1となるほどずり速度が大きくなると τ_c は減少してくるが、ずり速度が大きい 場合は流体力学的相互作用が重要になるの で、今の計算からは確定的なことは言えな い。

図 6 は τ_e の面積分率依存性を示す。理 論の予想通り $\tau_e \propto \phi_2$ の関係がある。

最後に、 τ_e が F_e に比例することを確か める。そのためには電気的相互作用のモデ ルをもう少し一般化する必要がある。

既に述べた様に、粒子同士が接近したと きの電気的相互作用は、(10)式の双極子相 互作用よりずっと強くなる。そこで、電気 的相互作用 F を

$$\mathbf{F} = \mathbf{D}_d(\theta) \cdot \left[F_d(r) + F_s(r) \right]$$
(12)

の様に双極子相互作用と短距離での増加分 の和でモデル化することにする。但し、簡 単のため短距離成分も双極子相互作用と同 じ角度依存性を持つとする。一方、距離依 存性 *F*_s(*r*)に関しては

$$F_s(r) = G \cdot f_s \cdot (2a/r)^{n_s} \tag{13}$$

の様な冪関数(n_s =6,8,12の3種類)か、ある いは $r < r_s$ でのみ値 Gf_s をもつ step function (r_s/a =2.1, 2.2, または2.4)を用いる。 f_s は短 距離相互作用の強さを表す無次元パラメタ で、前節で定義した F_s は今の場合

$$F_c = \frac{G}{\sqrt{15}} (1 + f_s) \equiv F_c^{(0)} \cdot (1 + f_s)$$
(14)

となる。図7はこれら6種類のF。(r)を用い、

その強さ f_s を変えてシミュレーションし て求めた τ_s を示す。明らかに $\tau_s \propto F_c$ の関 係があり、また F_c が同じなら τ_s は $F_s(r)$ の 具体的な形にはほとんどよらないことがわ かる。これは理論の予想(8)式と一致する。 また τ_s の絶対値は式(8)の約1/2である。理 論が極めて定性的であったことを考えれば、 シミュレーションとの一致は十分であろう。

4. 終わりに

我々の得た主な結果は (i)ずり速度を増 すとクラスターは短くなるが、(ii) 電場に より誘起される応力 τ_e はずり速度に依存 せず、(iii)体積分率に比例し、(iv) F_e に比 例する、などである。

但し、これらは粒子間の流体力学的相互 作用を無視した理論とシミュレーションの 結果であるから、この相互作用が重要にな る場合、つまり体積分率が大きい場合や、 ずり速度が非常に大きい場合には成り立た なくなることも考えられる。(例えばφが 大きい場合、流体を介しての多体相互作用 が重要になる。)この点は今後の課題とし たい。

尚、応力の絶対値の実験との比較は文献 [3]で簡単に行なっており、良い一致が得 られていることを付け加えておく。

文献

- 日本レオロジー学会誌、第20巻、第2号 (1992年6月号)、ERFの特集号。
- [2] Proc. International Conf. Electrorheological Fluids, R. Tao, ed., World Scientific (1992).
- [3] H. Block and J.P. Kelly, J. Phys. D 21, 1661 (1988).
- [3] 滝本淳一、上記文献[1]のp.95.
- [4] J. Takimoto,上記文献[2]のp.53.