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1 Introduction

This note reports a ne'''' formulation of time-dependent nonequilibrium thermo field dynamics
(TFD), deYeloped in the last few years. TFD is a real-time operator formalism of thermal field
theory and well-established in equilibrium case [1, 2J. An regular attempt to extend TFD to
nonequilibrium situations started ,,··ith the paper [3], but it was not an easy task to complete
it. After many attempts in this direction (see for example [4]), our recent collaboration which
took place at Cniyersity of Alberta led to a new formulation which is rather simple in principle
[5, 6, 7, 8, 9]. This note is a brief summary of parts of these recent references.

Our formulation of TFD is designed to deal with time-dependent nonequilibrium thermal
phenomena for an isolated system of quantum field, so it ,vill find interesting applications to the
eyolution of the CniYerse, high energy particle reactions (quark-gluon plasma) and so on other than
to many problems in solid state physics, and particularly to time-dependent phase transitions.

Before presenting our theory we point out the following difference between quantum field theory
(QFT in short, quantum theory. with infinite degrees of freedom) and quantum mechanics with
finite degrees of freedom: Problems in quantum mechanics are solved by simply integrating the
Heisenberg (equiYalently Schrodinger) equation under given initial conditions. On the other hand,
one obtains yarious physical results from a single Heisenberg equation 'in QFT, due to the existence
of inequivalent representations. In quantum mechanics such a problem do not arise because of
von Neumann's theorem. Thus QFT additionally requires us to make a choice of relevant state
vector space, usually done by a self-consistent renormalization procedure. The choice of a state
Yector space corresponds to a cho~ce of a quasi particle picture. This situation is phrased in [4]
as QFT is a theory of dual language while quantum and classical mechanics are ones of single
language. In the conventional approaches in the density matrix formalism of statistical physics
and Green's function method of the path ordering method the procedure to choose state vector
spaces is forgotten or is not yet formulated properly. Our study using TFD aims at formulating
the choice of state Yector space (equivalently of thermal vacuum or of quasi particle picture) in
thermal situation.

2 Basic Structure of TFD

The basic structure of equilibrium and nonequilibrium TFD is common, and we just list it below.
(I) Every degr:e of freedom is doubled in a way that to every (nontilde) operator A is associated

its tilde partner A according to the so called tilde conjugation rules: .

(ABr - AB (1)

(CIA + C2Br
- - (Cj : c-numbers) (2)- ciA + c;B

(Atr - _4.t (3)

(·4.f - (TA (4)
10)- - 10) (5)
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(Or = (01 (6)

where ()' = +1 (-1) for bosonic (fermionic) operators and 10) is the thermal vacuum. (II) The
thermal average of (dynamical) observable A is given by

(A) = (01..110).

(III) The total Hamiltonian governing both of nontilde and tilde operators, denoted by II, is
A _

H=H-H.

(7)

(8)

\Ve better distinguish eigenvalues or expectation values of II and H and call them the hat-energy
(E) and the dynamical energy (E), respectively.

The structure of if in (8) immediately implies that the hat-energy is unbounded from below
contrary to the usual QFT without thermal degree of freedom. This nature of if is the origin of
thermal degree of freedom (also of dissipation) [5,6], as shown more explicitly next.

Let us find possible candidates for stationary thermal vacua which are the eigenvectors of if
and are invariant under the tilde conjugation, then one can prove

HIO(O) = ° (9)

Because of (8) there are uncountable number of such thermal vacua, classified by a continuous
multiple components parameter O. It is very important to note the fact that the stationary thermal
vacua, each of which gives rise to respective inequivalent representation, form an uncountable set
{IO(e)} degenerate in hat-energy. This fact enables us to deal with thermal degree of freedom in
such a manner that the thermal vacua with different e correspond to different thermal situations.
(In equilibrium case e is identified as the temperature.)

It was shown that the existence of uncountable thermal vacua is closely related to the first law
of thermodynamics; heat energy appears when one compares the thermal average of dynamical
energies (H) for different thermal vacua. Details of this subject is found in Ref. [5] and is skipped
here.

Now it is clear that the main theme in TFD is to formulate a definite way of finding a particular
thermal vacuum among uncountable ones for each thermal situation, which is given in the rest of
this note.

3 Perturbation Scheme

As is well-known in equilibrium TFD, the degeneracy in thermal vacua induces the degree of
the thermal Bogoliubov transformation, each thermal vacua being specified by each thermal Bo­
goliubov matrix or vice versa. \iVe attempt below to describe time-dependent thermal situation
simply by making thermal Bogoliubov matrix time-dependent [10, 8,9]' keeping thermal vacuum
time-independent.

In the unperturbed representation, this implies that bosonic oscillator operators a~(t) is written
as

ak(tt - B;;l(t)JlII~k(tt

6 (t)J.l _ ~~ exp[-i rt ds Wk(S)]
lto

and time-.independent ~-operators define time-independent vacuum,

(10)

(11)

~kIO) = 0,
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Here thermal doublet notation is used

a
P

- [:tr
ezP - [at -at.

For the field operator of Schrodinger type we have

(13)

(14)

(16)

(15)/,( ).p - J d
3
k ik·z ()P.v- x - (27r) (3/2) e ak t .

vVe take the following particular form for Bk(t) (so-called in the a = 1 representation and
linear in nk(t»,

nlt(t) being the number density,

nk(t)6(k - 1) = (Olat(t)az(t)IO). (17) .

The main reason for the choice in (16) is that the time-ordered Feynman method is usable as in
the usual QFT [7, 11, 8}.

From (11) follow the equations of motion,

vVe now see the two different unperturbative Hamiltonians: one for ~k(t)P,

and the other for ak(t)P,

with

(22)

(23)

(24)

In the interaction picture HQ(t) is taken to be the unperturbed Hamiltonian, and therefore
the perturbed Hamiltonian becomes because of (8)

jh(t) = Hint(t) + Q(t), (25)

where Hint consists of nonlinear terms and usual renormalization counter terms. The unperturbed
2x2-matrix propagator for Schrodinger type field t:,'(x)P to be used for internal lines in F~ynman

diagram is, in (t, k)-space,

~ (t t')PV = [B- 1 (t) [-iO(t - t') 0 ]B(i')] pv e-i J:~d6W"'(6)
k 1 k 0 iO(t' _ t) k •
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Note the structure of this propagator that the diagonal propagator is sandwiched between the
Bogoliubov matrices.

It can be shown that the full propagator corrected by interactions in (t, k)-space is put into
the following form, similar to that of the unperturbed one above,

Ck (t, t')~V = B- 1 [Xk*(t', t)]~Il' [ -it3(t - t'o)g( t, t' : k) 0 .. ] Il
'V

' B[ V (t t')]V'V (27)
it3(t' - t)g*(t', t : k) • It ,

where

-"k(t, t') - nH,k(t') + llk(t, t')

nH,k(t)6(k - l) _ (OlakH(t)laIH(t)lIO)

Vk(t, t) - o.

(28)

(29)
(30)

This expression leads us to a simple interpretation that the quasi particle experiences time­
dependent thermal effects that the particle number fluctuates around the average observable
number nH,k(t) with the fluctuation Vk.

\Ve can write dmvn a similar form in equilibrium case [8] as in (27), using the spectral rep­

resentation in (ko, k)-space [1]. Thus even in equilibrium situations the quasi particle sees the
thermal fluctuation through v.

4 Self-Consistent Renormalization on Self-energy and En­
tropy Law

In this section we first calculate the self-energy in the approximation explained soon, and then
impose a self-consistent renormalization condition. This step of renormalization condition is in­
tended to pick up a unique thermal vacuum self-consistently when interaction effects are taken
account of. As will be seen, our renormalization condition indeed derives the kinetic equation, to
which the parameter nk(t) in Bk(t) is subject [8, 9].

Let us calculate the self-energy diagram of two vertices without vertex corrections, taking
time-Independent unperturbed ;.,.)k. For definiteness we consider a model interaction of (~t~)2,

thus the corresponding self-energy diagram has three internal lines connecting two vertices. The
result [8J is

o ]"P(t _ t') [s(t')
set) 0

with

3 dS
[dq] - g«2:;3) (21r)36(k - ql - i2 + f/s) (32)

set) -
C n q1 (t)n q2 (t)(l + n qa (t))

(33)
N(t)

N(t)
n q1 nq2 (1 + nqa )

(34)-
(1 + n q1 )(1 + n q2 )nqll - n q1 n q2 (1 + n qa )

lV - W q1 + W q2 - wqa (35)

F (t _ t')JlIl [ -i8(~ - t') o ] JlV
(36)- iO(t' _ t) exp[-HV(t - t')),
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"'here C is a positive number. The last term (see (21)) in (31) is a contribution from Q in HI.
The question here is how one can separate an on-shell part from the above total self.;.energy

(31), for a renormalization condition is to be imposed on the on-shell part. In this respect, we
propose our guiding principle that a definition of an on-shell part and subsequently a self-consistent
renormalization condition should be formulated in terms of not a-operators but of ~-ones, because
the thermal vacuum is specified by ~.

Then ,ve note the fact that the diagonal matrix Vet - t')JJv represents the wave propagation of
~-operators and has the same Fourier transform as the self-energy in usual QFT,

[
1 ]JJVV(ko)JJv == Jd(t- t') eiko(t-t/)F(t - t')JJV = .. ,

ko - II + lET3

T3 being the Pauli matrix. \Ve therefore put ko on shell, ko = (.J.,'k, in this F (ko)JJv to get

(37)

(38)

and define the on-shell part of (31) by replacing V(t - t') 'with ,-,r(t - t')on-6hell. The real and
imaginary parts of this on-shell self-energy are

?RI:(t, t', k)~~-'hell - 8(t - t') J[dq] s(t)P Wk ~ IVB[N(t)]8~V (39)

~I:(t, t', k)~~-'hell - -i8(t - t') [J[dq] s(t)1r8(wk - lV)A[N(t)] - rik(t)To]~v (40)

respectively, where A = B-1T3B. The real part gives the time-dependent energy shift 8wk(t). The
imaginary part contributes to the Hamiltonian for ~-operators denoted by 8il, adding to ilo (not
HQ). vVe now require that the Hamiltonian for ~-operators, ila(t) + OH(t) should be diagonal at
any t in terms of ~~ and ~~. Thus this is called the self-consistent renormalization condition.

The result of this self-consistent renormalization condition is summarized as follows: The
condition is satisfied by the following single relation:

(41)

with the time-dependent dissipative coefficient

(42)

It is remarkable that the single equation is sufficient to fulfill the requirement on four components
(2x2-matrix).

Equation (41) is the kinetic equation for the Bogoliubov number density nk(t) in the two
vertex approximation 1vithout vertex correction. In this approximation the kinetic equation has
the structure of the Boltzmann equation, as is expected.

From this kinetic (Boltzmann) equation we can prove [8] that the entropy increases in time:
Consider the entropy density giyen by

(43)

and use the fact that nk( t) is a solution of (41), then it turns out that

(44)
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where

x - n qO n qa (l + n qt )(l + n q2 )

Y - (1 + n qo )(l + nqa)nQtnq2'

(45)
(46)

because of (X - Y) In(X/Y) ~ 0 for any positive X and Y. This is how the second law of
thermodynamics follows from TFD.

5 Future Study

Finally we just list the two subjects in future study along the line presented in this paper.
First of all extension of the analysis in this section to the self-energy of higher order (with

vertex correction) is of vital importance, it will show how interaction effects modify the Boltzmann
equation and possibly the definition of entropy.

Secondly, the present spatially homogeneous time-dependent formulation should be extended
to time-space dependent one. Practically almost all the nonequilibrium in nature take place in
spatially inhomogeneous situation. The study in this direction is at preliminary stage [12] and
is being deyeloped. So far introduction of momentum mixing thermal Bogoliubov transformation
[13J is useful. The formulation is to be applied to heat conduction.
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