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Abstract

It will be shown that many phenomena, that so far were consid-
ered to be purely spatio-temporal, can be obtained with the help of
a recently introduced Time-Delayed Map and only one (chaotic) ele-
ment. This is achieved by applying a space-time rotation to a Coupled
Map Lattice. Applications to one and two dimensional systems will be
given. A new correlation function that can be used to extract spatial
information from a time series is introduced.
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One of the approaches to efficiently study the phenomenology of complex
systems is to construct a discrete spatially extended system. The Coupled
Map Lattice (CML) [1,2] which includes space in a direct and comprehensible
way by coupling local elements, has become one of the standard models in
the study of higher dimensional chaos in recent years.

It is well known that delay differential equations can display high dimen-
sional characteristics [3]. It is to be expected then that this is also true for
discrete Time-Delayed Maps (TDM). The special feature of the the TDMs
introduced in [4,5,6] is that, in many cases, their phenomenology is either
identical or very similar to tha.t of a CML.
~ Thus, apart from being interesting in its own right, the TDM might be
useful for gainig a better understanding of a CML. Especially, the concep-
tually slightly less transparent but, due to the lack of boundary conditions,
mathematically more straigthforward coupling algorithm might simplify the-
oretical analysis. Furthermore, the TDM might be helpful for understanding
the relationship between maps with a delay or a memory term and a CML.
Recently, it was e.g. shown that under certain circumstances a map with
a memory term can relax onto an unstable fixed point [7]. In difffusively
coupled logistic maps, a Pattern Selection regime is well known to exist in
parameter regions where the single logistic map is chaotic and accordingly
possesses an infinite number of unstable orbits.

Since a TDM generates a time series, and the close relation of the TDM
and the CML is known a priori, it would be interesting to see whether it is
possible to extract any spatial information from the time series. It will be
shown that this is indeed possible by virtue of a newly introduced correlation
function. This makes it, in principle, possible to represent maps with a delay
or memory term in a time-time diagram (see below), even if a spatial inter-
pretation is not directly possible. It should be noted here, that the ’spatial’
dimension of the TDM in general does not coincide with the dimension of
the system under consideration. An infinitely long CML is e.g. infinitely
dimensional, although its spatial dimension might be as low as one.

The basic idea of the TDM consits of stretching the time axis of the CML
and folding in the spatial dimensions one for one. That is to say, a multiple
space-time rotation is performed. In one dimension it becomes

G(yn(9)) = Zizm-1)n, (1)

and in n dimensions,
G(yn(ix)) = 21, (2)
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where y, (ix) is the amplitude of lattice site ¢ at time n, z7 the amplitude
at time T', N(j) the number of lattice points in direction j and D the spatial
dimension of the lattice.

Transformation (2) is exact and reversible for all internal lattice sites. By
internal lattice sites, those lattice sites whose coupling range does not exceed
the boundary are meant. In general, it is not possible toinclude the boundary
in a natural way. Below, it will be shown that, although slightly artificial,
terms accounting for fixed boundary conditions or boundary conditions which
are a function of their location can be included in (2). In such a case, a
TDM and a CML are equivalent. It is impossible, however, to account for
the popular periodic boundary conditions without taking the rather drastic
measure of changing the coupling algorithm at set times.

In many situations, it is believed, though, that the boundary conditions
do not play an essential role for the phenomenology of the system. Accord-
ingly, one is free to chose the most simple or most transparent algorithm for
a certain problem.

Let us first have a look at the one dimensional diffusively coupled logistic
lattice which has become one of the paradigms of spatio-temporal chaos [8,9]:

bor) = F (L= )+ S @G+ D+1G-1)), @

where 7 is the discrete time, 7 the lattice site, ¢ the lattice coupling constant
and F(z,), the logistic map, which is given by

F(24) = Tpy1 =1 — az?, (5)

with o a constant. The corresponding Time-Delayed Map, obtained with the
help of (1), then looks like

€
Ty = (1= €)F(zu-n)+ 3 (F(2p-n-1) + F(Zn-n+1)) - (6)
If the exact transient time is not relevant, this is equivalent to

z, =F ((1 - e):c,._N + -;—(zn;N_l + :c,,..N+1)) , (7)
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which immediately follows by applying F' on both sides of Eq. (6), defining
z! = F(z,) and dropping the prime. The time-delay N can also be consid-
ered to be the ’pseudo’ system size, since a time-delay of N corresponds the
closest to a CML with systemsize N.

As an illustration, a time-time and space-time diagram are shown in
Fig. 1a) and 1b) respectively. The time-time diagram was constucted by
placing slices of length N next to each other, in a way that is similar as to
how a TV builds up an image. An entry was plotted black if the correspond-
ing z,, or y,(¢) was larger than the unstable fixed point @— of the logistic
map and the upper left corner is the origin. It can be clearly seen that in a
phenomenological sense, the two graphs are extremely similar.

Slte
Figure 1: (a) Time-time diagram of the Pattern Slection Regime for the
Time-Delayed Map, (b) Space-time diagram of the Pattern Selection Regime
for a Coupled Map Lattice. In both cases the parameters were identical: N
= 100, o = 1.7 and ¢ = 0.4. '

a
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The phenomenology of a TDM and a CML is, in general, not similar,
though, when the boundary plays an essential role. This can be seen in
Fig. 2, where the time-time and space-time diagrams of a TDM and CML
respectively are displayed for the case of fixed initial conditions. For a TDM,
a fixed inital condition, of course, means a fixed past. In' Fig. 2a) the homo-
geneous initial slice in the y-direction is quickly destroyed, since information
from the end of one slice is carried over to the beginning of the next one
due to the lack of boundary conditions. In the case of a CML, fixed initial
conditions effectively reduce the CML to a single logistic map. In the spa-
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tial direction, all lattice sites assume the same value yielding a bar-code like
pattern in Fig. 2b).

a

~ Figure 2: (a) Difference between a TDM and CML. Time-time diagram
for the TDM and (b) Space-time diagram for the CML. In both cases, the

parameters were identical: o = 1.7, € = 0.4. The system size is N = 100 and
the fixed initial condition was 0.0.

In the previous example, the equivalence between the TDM and CML was
not exact. Next, let us have a look at a model where an exact transformation
between the TDM and the CML representation can be found. It is a model
for open fluid flow [10,11]. A Time-Delayed Map can be constructed by
introducing a periodic interruption of the coupling algorithm. The model
can be expressed as '

= (1—€)F(zn-N)+ €F(2n-n-1) — | (
[(1—€)F(zp-n) + eF(zp-n-1) — ]6(Mod(n -1, N)),

where n is again the discrete time, ¢ the coupling constant, N the time-delay
and F(z,) the logistic map (5) . With the help of the space-time rotation

oo
~—

G(ya(9)) = Tirtnoniv — (Titmonyy — 2*) (i — 1), 9)
this can be mapped to the one-way CML
Yn+1(8) = (1 = €)F(ya(2)) + eF(yn(é — 1)). (10)
The boundary condition is fixed and chosen to be
ya(1) = 27, (11)
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where z* is again the unstable fixed point of the logistic map (5).
Some characteristics of the open fluid model are displayed in Fig. 3.
Fig. 3a) shows a periodic temporal bifurcation. For the generation of this
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Figure 3: (a) Temporal bifurcation in a time-amplitude diagram. The system
size is N = 100, a = 1.402 and € = 0.2. One hundred slices of length N were
overlaid. (b) Bifurcation diagram in «. The system size is N = 100, ¢ = 0.3
and the post-delay is j = 10. ' | |

time-amplitude diagram one hundred slices of length N were overlaid. The
bifurcations occur in what corresponds to the down flow direction. The in-
creasing complexity of the system in that direction is also reflected in in the
bifurcation diagram of Fig. 3b). The bifurcation parameter is the nonlinear-
ity o and for every value of o 100 amplitudes z;4;4xn were plotted, where
N is the system size, k is an integer larger than zero and j the post-delay.
The post-delay determines how far down flow the bifurcation diagram is con-
structed and can be viewed upon as the location of a probe in spatial terms
or as the offset in time steps of a stroposcopic observation in temporal terms.
The deformation of the bifurcation diagram can clearly be seen.

So far, two one dimensional systems were considered. The TDM for
a two dimensional diffusively coupled logistic lattice with nearest neighbor
interaction can be expressed as

z, = F ((1 - €)z,_yu+

€ .
1 [#n-NM-1 t Za-NM+1 + T NM-N + TN M+ V] ) (12)
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where N and M were chosen to be the number of lattice points in the x and
y direction respectively. In n dimensions this becomes

z, = F((1-€)zu-n,+
¢ [D-1 |

EB ‘20 m"-N“"’n;=o NG) + x”"N‘""'H;:o N(j)] ) ’ (13)
where it is assumed that II = 1. |
Two typical time-time patterns are displayed in Fig. 4. The z-axis rep-
resents the linear time and the y-axis the time modulo N. This time-time
pattern corresponds to a snapshot of CML and is constructed with the help

of N x M successive values of the time series generated by (12).
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Figure 4: Time-time pattern of a two dimensional TDM. The system size is

- 100x100 and a transient of one million steps was discarded. (a) Brownian
Motion of chaotically moving strings: a = 1.77, € = 0.1 (b) Intermittency:
a=1.91,¢=0.1.

Another interesting model uses a map with an excitable state as the local
element. The Map
F(z)=bx (z — O(z)) +¢, | (14)

was originally introduced in connection with the firing of an artificial neuron
[12]. O(=) is Heavisides step function, and b and c are real parameters. F(z)
is considered to be in an excited state if > 0 and c represents an external
stimulus. As in [8], ¢ is taken to be the sum of what corresponds to nearest
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neighbors in a CML. In our TDM we obtain,

z, = bxX (:z:,,..NM - G(mn-NM)) + | (15’)
d X (O(zn-nm-1) + O(Zn-npr+1) + O(Zn-nrm-n) + O(Tn-nm+n)) -

This map exhibits BZ-like structures as can be seen in Fig. 5, where the time
series is, as in the previous example, represented as a time-time diagram.
There seem to be two types of patterns, self-sustained patterns and noise-
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Figure 5: Time-time diagrams for an excitable media model. (a) Self-
sustained pattern at time T = 125N,,; b = 0.5, d = 0.0125. (b), (c) and (d)
Noise-sustained patterns at times T' = 12N,,, T' = 25N, and T' = 104N,;
b= 0.5, d = 0.0125. The maximum amplitude of the positive noise was 0.05.

sustained ones. When starting with a random initial past, in general, a self-
sustained pattern emerges. During the transient time, first almost all the
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points in the time series drops to a value close to zero. Then some points,
modulo M x N, become the seeds of outward moving waves. Fig. 5a) shows
a typical self-sustained pattern after the transients have died out. Since a
pattern consists of a slice of length N x M, it is natural to use the ’pseudo’
system size

No=NM (16)

as the unit for the transient time. If one starts with an initial past fixed to
zero and adds noise periodically, the points of the time series to which the
noise is added become the seeds of a noise-sustained pattern. Again outward
moving waves are created. A sequence of three patterns, Fig. 5b), c) and d),
clearly shows the evolution of the system.

In Fig. 6, the wave forms, corresponding to the self-sustained and noise-
sustained patterns respectively, are displayed. In both'cases the shape of
the 'dip’ is similar. The wavelength, however is different. The wavelength
of the self-sustained pattern is 8 time steps and the wavelength of the noise-
sustained pattern is 12. Fig. 6a) corresponds to the bottom row of Fig. 5a)
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Figure 6: Waveforms corresponding to the patterns in Fig. 5. (a) The
waveform of a self-sustained pattern. The parameters are the same as in Fig.
5a). (b) The waveform of a noise-sustained pattern. The parameters are the
same as in Fig. 5d).

and Fig. 6b) corresponds to the bottom row of Fig. 5d). In (a), between
time steps 43 and 83, five peaks can be seen that are moving to the left and
between time steps 83 and 99, two peaks that are moving to the right. When
two peaks that are moving into opposite directions meet, like around time
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step 40, they annihilate. In (b), although less clearly, the same can be seen
for the longer wavelength.

Until now, it was shown how spatxa.l information can be expressed in a
time series. It would be intersting to see whether it is possible to extract
this spatial information from the time series without a priori knowlegde of
the system size. It is obvious from e.g. Fig. 1, that a clear correlation should
exist between slices of length N. To retrieve the ’pseudo’ system size N the
following correlation function is introduced:

C(N)=-7 E(zn-a I (17)

1—0

First let us apply (17) to a time series that corresponds to a Frozen
Random Pattern and that was generated with (6). In that case we know
what the answer should be. Although this example might seem trivial, it is
not completely so since no information regarding the system size is passed
to the correlation function.

In Fig. 7a), the distance between the large peaks clearly equals AN =
100, the system size used for the generation of the time series. Looking at
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Figure 7: Correlation function. The peaks corresponding to the system size
can clearly be seen. (a) In the Pattern Selection regime, a = 1.7, ¢ = 0.4.
(b) In the Chaotic, high nonlinearity regime, o = 2.0, ¢ = 0.3

the seperate peaks, one can see that the correlation of every fourth peak
assumes the same value, implying the existence of four phases. Hence, the
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correlation function indeed correctly extracts the desired information from
the time series. ’

It should be noted here that a time series corresponding to a Frozen
Pattern provides us with quite an ideal example to demonstrate (17). A
single section, in general, cannot be translated by less than its length and
yield an (almost) exact overlap with its untranslated origin. On the other
hand, a slice and another slice N,, times the periodicity of the part with the
longest periodicity of the slice in the future, have a very large correlation,
yielding a sharp peak in the correlation function while minimizing ’false’
peaks due to correlations within a slice. In the case of the Pattern Selection
regime, e.g., the peaks in the correlation function are much less distinct while
there are many smaller peaks. This is not a drawback, though, since this only
reflects the fact that, at least in the stationary case, the effective system size
of a pattern in the Pattern Selection regime equals the wavelength of that
pattern. .

In the case of a time series generated with the TDM (6), the correla-
tion function (17) determines the correct system size even in regions of high
nonlinearity where the system is considered to be chaotic. Surprisingly clear
results were obtained even for the maximum nonlinearity o = 2.0, as can be
seen in Fig. 7b). For increasing N, the peaks decrease which is as expected
since there shouldn’t be any long time correlations in the chaotic regime.

Conclusions and Discussion. It was shown that a Time-Delayed Map can
effectively model many spatio-temporal phenomena in any dimension. For
certain types of boundary conditions an exact mapping to a Coupled Map
Lattice can be established. If such an exact map does not exist while the
boundary of the CML does not play an essential role for the phenomenology
of a model, the phenomenology of a TDM and a CML can be considered
to be identical. The construction of the TDM is, especially in more than
one dimension, not as transparent as the one of a CML. Future research will
have to show whether this disadvantage is offset by its more straigthforward
coupling algorithm.

The newly introduced correlation function, however, which is quite natu-
ral in the context of a TDM but rather unnatural in the context of a CML,
has revealed that, even in the region of maximum nonlinearity, the system
size can be extracted from a chaotic time series. It will be interesting to see
whether the correlation function can be applied to the data of a probe placed
in a spatially extended system. Since such a system would almost certainly
be continous, it might also provide us with information on how large a lattice
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that simulates the system should be. Although the application of the cor-
relation function to a system with some kind of intrinsic spatial lengthscale
seems to be the most natural, it could also be used for the analysis of time
series where a spatial interpretation is not obvious. In that case, it would
provide the proper ’system size’ for the generation of a time-time diagram
which might assist in visualizing (recurrent) patterns in a time series that
are otherwise hard to detect.

Last but not least, one could apply it to a CML with the help of the space-
time rotation (2). (At least in some cases) an ’effective’ kind of dimension
could then be obtained by taking the Fourier transform of C(N). Whether
this indeed yields any tangible results is under present investigation and the
outcome will be included in a future publication.
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