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Investigation of ensemble of unstable periodic orbits in dissipative chaos has

long been an important subject in constructing a statistical theory on chaos,

because a measure zero set of this ensemble reconstruct a chaotic attractor, pro­

vided that a single chaotic orbit wanders from one unstable· periodic orbit to

another. This wandering phenomenon is meaningful, if each unstable periodic

orbit has a stable manifold along which a chaotic orbit becomes close.

We make an attmpt to construct semi-empirical statistical theories for sta­

tistically stationally quantities such as long time averages in 3D ODE systems

and in 1D difference systems.

In the first part, we describe a theory In 3D ODE systems based on an

assumption such that

(1)

where Xo, Ul and U2 represent a unstable periodic trajectory and correspond­

ing Floquet engenvectors which are all 271"- periodic with respect to a phase de­

noted by a. Equation (1) represents a transformation from the old variables

(Xl, X 2 , X 2 ) to the new variables the phase a and two amplitudes (Xl, X2). This

transformation to a rotating coordinate enables us to rewrite a statistically sta­

tionally quantity by employing an invariant density defined on a Poincare cross

section. The derived formula must be verified by applying this formula to a con­

crete example, oecause the formula has some umbiguities such as a difficulty in

determining the invariant density and. a difficulty of finding a region of the phase

space which can be described by a phase of an unstable limit cycle. The second

difficulty mentioned above is closely related to a phase singularity phenomenon

- 406-



which indicates the fact that some· set in the phase space can not be described

by the phase of the limit cycle, as is known in 2D ODE systems, so that investi­

gation of this phenomenon of the phase singularity in a disspative chaos will be

reported elsewhere separately.

We adopt a famous Lorenz system as a representative 3D ODE system. We

adopt a fixed point approximation which implies that the deviation vectors are

always negligible. The results show that the long time· averages of < Z > and

< Z2 > are in good agreement with the directly calculated values. See the details

of calculation of statistical weights imposed on the imbedded unstable limit cycles

in Ref. I.

In the second part of our theory, we present a semi-empirical formula for

evaluating invariant desities in ID difference system in a standpoint similar to

the case of 3D ODE systems.

In this case, the situation becomes considerably simplified. We find that a

formula for an invariant density is exactly an invariant solution of a corresponding

Frobenius-Perron equation provided that an artificially constructed map which

is called a modified map satisfies a correspoding Frobenius-Perron equation.

We find that, in the case of fixed point approximation, long time averages

may be well approximated by this formula by considering several maps such as a

tent map, an r-adic transformation, and a logistic map. In the case of step-wise

approximation, we find that a Markovian property is realized for a certain class of

unimordal maps which are not of Markovian type. In fact we find that discretized

probabilities satisfy a Markov chain. This step-wise approximation enables us to

evaluate an invariant density which may possesses several discontinuous points,

by applying Frobenius-Perron operator several times. This step-wise approxima­

tion can be well..employed for a tent map, an r-adic transformation, and a logistic

map.

We make several comments here. In 3D ODE systems. the derived formula

has some umbiguities which must be clarified. For one point, we take up the
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problem of finding the well-defined Poincare cross section. In other words, each

imbedded unstable limit cycle has a different phase-zero plane, because the cor­

responding Floquet eigenvectors are different from each other in general. For

another point, the problem is to find a phase singularity set, as was mentioned.

We have derived the formulas for 3D ODE system and 1D difference system.

However, the derived formulas are mutially independent. Therefore the formula

for 3D ODE system is not possible to be derived from the one for 1D difference

system, e.g., by introducing a small time increment s:uch as an Euler difference

scheme, and vice versa. The reason is as follows; As in the case of a logistic

map, chaotic behavior may be found if the time increment becomes finite in

the Euler difference scheme, whereas a temporally continuous system exhibit a

non-chaotic behavior. Therefore existence of chaotic behavior must be treated

seperately in 3D ODE system and in 1D difference system. Instead, the derived

formulas have been constructed in the same sense such that a single chaotic

orbit or trajectory wanders in the measure zero set of unstable periodic orbits or

trajectories. Therefore the formulas exhibit a considerably similar structure in

both 3D ODE system and 1D difference system. And essential correspondence

between the formulas in 3D ODE system and 1D difference system must be be

clarified when we are confronted with the case such that both the temporally

continuous system and the temporally discretized' system which is derived by

making the time increment finite exhibit chaotic behaviors.
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