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The statistical mechanics deals with the statistical description of uncontrollable fluc-
tuations whose origin is traditionally believed to be complicated motion of a huge number
of elements. Recently however it becomes evident that tiliS is not the sufficient reason but
the unpredictability is due to the trajectory instability in the phase space, which is present

even in a system with a few degrees of freedom.

The global description of characteristics of many degrees of freedom is carried out
with the thermodynamics. I talked about the statistical-thermodynamics formalism to
temporal fluctuations in a way similar to thermodynamics, and obtained new results by

applying it to simple dynamical systems.

Fluctuation spectrum and multicorrelation

Let {u,} be a time series experimentally obtained. Consider the coarse-grained ob-
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servable

1 t
Uy = —/ u,ds,
t Jo

which is a fluctuating quantity unless the limit £ — oo is taken. The probability distribution

pt(u) for %, usually takes the form
pe(u) ~ e (™ (s(u) 20)

for a large t. The extensivity of Inp:(u) is easily derived by assuming the statistical
independence of the probability distributions as in the equilibrium statistical mechanics.
The existence of the fluctuations spectrum s(u) is one of main assumptions in our approach.

On the other hand by introducing the characteristic function ¢(g) by
M,(t) =< exp(gti,) >~ e?(Dt,
(g:real), these functions are related to each other via

¢(q) = min{qu’ — s(u)}, (s"(w) > 0).

The quantity u(q) = d¢(q)/dq is identical to the weighted average, ¢ having the meaning
of the degree of weight. The ensemble average of {u,} is equal to u(g = 0). The weighted
average u(g) for ¢ # 0 describes the fluctuation from the ensemble average. It should be
noted that the above description has a structure similar to the thermodynamics by making
a correspondence ¢ « 8, u(g) « internal energy, s(u) —entropy and ¢(q) « Bg, g being
the Gibbs free energy. S, the present approach is called the ;statistical-thermodynamics
formalism.[1].

Although the fluctuation spectrum s(u) and the characteristic function ¢(q) give global

statistics of the temporal fluctuation {u,}, they contain no explicit correlation. To see it
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we define the order-g power spectrum (2,3]
Io(w) = lim < Fy(w)(a: — u(q)) > /pe(u(g))
= tlirglo < Fy(w)e®® > [My(t)
where

Riw) = 7l [ (o = wlaerarp?

is the spectral density. Ip(w) is identical to the conventional power spectrum. Generally
there exist infinitely many correlations. I ,(w) describes the correlation singled out by the
parameter value g. In this sense I,(w) is called the.multicorrelation function.

When the dynamical law on the generation of {u,} in known, the above statistical
functions are calculated with a generalized time evolution operator Hy, H,—o being the
ordinary evolution operator such as the Frobenius-Perron operator and the Fokker-Planck

operator. Especially ¢(g) is determined by the largest eigenvalue of H, and I (w) by all

eigenvalues of H,.[2,3].

Periodic-orbit determination
The hallmark of the low dimensional chaotic systems is the strong trajectory insta-
bility. This is the reason why the prediction of future behavior is impossible in chaotic
systems. However it is interesting to note that in spite of unpredictability statistical quan-

tities can be determined in terms of unstable periodic orbits.

As a typical dyndmical system, take a one dimensional chaotic map

Znt1 = f(2a).

Let u, = u{z,} be a unique function of z,, e.g. orbit itself z,, local expansion rate
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In|f'(2,)|, coarse-grained position etc, obeying the above dynamical law. An inﬁnitely
many unstable periodic orbits is embedded in a chaotic system.

The function ¢(q) and the poles of I;(w) are determined by these periodic orbits
as follows. Let us intfoduce the generalized Frobenius-Perron operator H, with the zy

element (H,),, = 6(z — f(y))e?{¥}. The partition function

Zy(n) = TeHy =) (V)"
i

() .

where 1’ is the I-th eigenvalue of H,, turns out to be expanded as
n—1
Zy(w) = [ 8z = (@) expla Y w{F ()}e.
i=0
The contribution to the integration thus comes form periodic orbits satisfying z = f"(z).[4]
By combining the above two equations, eigenvalues are solved by calculating Z,(1),
Z4(2), Z4(3), - ++. To this end we proposed a continued-fraction expansion of the Laplace
transform of Z,(n), whose poles ):ield the eigenvalues. Figure 1 shows the results with

finite-pole approximations for a simple piecewise linear map. As the number of poles is

increased, the results tend to agree with the exact results.[4]

Anomalous correlations associated with intermittency
Intermittency is a prominent phenomenon observed in nonlinear dynamical systems.
Several years ago we reported that a new intermittency is observed when the synchro-
nization breaks down-under the change of control parameter. This is different from the
well-known intermittency classified by Pomeaﬁ and Manneville.
Yamada et al carried out an experiment on the coupled electronic circuit whose unit is

composed of a LCR circuit with a voltage-dependent capacitance.[5] They found, changing
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the coupling constant, a prominent .intermittency characteristic slightly below the critical
value where the synchronization looses its stability. |

Figure 2 shows the voltage difference between two sub-circuits, which vanishes if the
synchronization is realized.[5] They found that the order-g power spectrum I (w) for the

voltage difference has the power law
Ig(w) ~w™"s

for certain regions of w. They have reported the indication of the fact that v, depends on
a, (Fig3).[6]

Very recently Just et al[3,7] have rigorously obtained the order-q power spectra for the
type-I intermittency maps with the order of tangency z, and found that the local maxima

of peak trains obey the asymptotic law

w™” (q < qc)
I(w) ~
. Lorentzian type (¢ < qe)

for low frequency region, where g.(> 0) is a characteristic value of g, and the exponent v
is a function of z but is independent of q. This is different from the result observed in the
coupled electronic circuit.

After the talk, Yamada and myself[8] succeeded in finding rigorous results of Ij(w) for
the multiplicative stochastic process #; = (A — #? + fi)r¢, (A2 0), where 7, is a physical
quantity, f; is the Gaussian-white random force. It is known that the statistical property
of intermittency observed in the desynchronization of chaotic oscillations is well modeled
by the above stochastic process. We found that I (w) has a structure similar to that in the
above type-I intermittency case. Namely the g-dependent exponent v, of I;(w) reported
in the coupled electromnic circuit seems to be not conclusive. A more careful analysis is

needed.
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Fig1  (a) Exnct eigenvalues of H, for s piecewise linear chaotic map.[4] Twenty cigenvalues

are shown in the order of increasing values, The results from finite-pole approxima-

tions of the continued-fraction expansion sxe shown in figures (b} using 4 poles, (<)

using 6 poles and {d) using 8 poles. Solid and dolted lines respectively indicate results

of finile-pole approximation and exaci results.
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Fig.2 Intermittency observed in a coupled LCR elecizonic circuit.[5] AV is a voltage

difference between two partial circuits and x is the coupling constant. Fig3 The g-depend of the exp t vy of I(w) of the voltage difference, observed

for the coupled LOR electzonic circuit.[6)
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