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The statistical mechanics deals with the statistical description of uncontrollable fluc­

tuations whose origin is traditionally believed to be complicated motion of a huge number

of elements. Recently however it becomes evident that this is not the sufficient reason but

the unpredictability is due to the trajectory in$tability in the phase space, which is present

even in a system with a few degrees of freedom.

The global description of characteristics of many degrees of freedom is carried out

with the thermodynamics. I talked about the statistical-thermodynamics formalism to

temporal fluctuations in a way similar to thermodynamics, and obtained new results by

applying it to simple dynamical systems.

Fluctuation spect,.um and multico,.,.elation

Let {1L,} be a time series experimentally obtained. Consider the coarse-grained ob-
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servable

I1 t

iit = - u,ds,
t 0

which is a :fluctuating quantity unless the limit t -+ 00 is taken. The probability distribution

Pt (u) for 'lit usually takes the form

for a large t. The extensivity of lnpt(u) is easily derived by assuming the statistical

independence of the probability distributions as in the equilibrium statistical mechanics.

The existence of the jluctuation$ $pectrum s(u) is one of main assumptions in our approach.

On the other hand by introducing the characteristic function ¢(q) by

(q:real), these functions are related to each other via

¢(q) = min{qu' - s(u')}, (s"(u) > 0).
1£1

The quantity u(q) = d4>(q)/dq is identical to the weighted average, q having the meaning

of the degree of weight. The ensemble average of {u, } is equal to u(q = 0). The weighted

average u(q) for q =1= 0 describes the :fluctuation from the ensemble average. It should be

noted that the above description has a structure similar to the thermodynamics by making

a correspondence q ~ (3, u(q) ~ internal energy, s(u) ~entropy and 4>(q) ~ (3g, g being

the Gibbs free energy. So the present approach is called the $tatistical-thermodynamic$

formalism.[l].

Although the :fluctuation spectrum s(u) and the characteristic function 4>(q) give global

statistics of the temporal :fluctuation {u, }, they contain no explicit correlation. To see it
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we define the order-q power spectrum [2,3]

Iq(w) = lim < Ft(w)c5(ut - 1£(q)) > /Pt(1£(q))
t-HX)

where

is the spectral density. I o(w) is identical to the conventional power spectrum. Generally

there exist infinitely many correlations. I q ( w) describes the correlation singled out by the

parameter value q. In this sense Iq(w) is called the multicorrelation function.

When the dynamical law on the generation of {1£,} in known, the above statistical

functions are calculated with a generalized time evolution operator Hq, Hq=o being the

ordinary evolution operator such as the Frobenius-Perron operator and the Fokker-Planck

operator. Especially ¢(q) is determined by the largest eigenvalue of Hq and Iq(w) by all

eigenvalues of Hq .[2,3].

P e,.iodic-o,.bit dete,.mination

The hallmark of the low dimensional chaotic systems is the strong trajectory insta-

bility. This is the reason why the prediction of future behavior is impossible in chaotic

systems. However it is interesting to note that in spite of unpredictability statistical quan-

tities can be determined in terms of unstable periodic orbits.

As a typical dynamical system, take a one dimensional chaotic map

Let 1£, - 1£{z,} be a unique function of z" e.g. orbit itself z" local expansion rate
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In 1f'(z,)I, coarse-grained position etc, obeying the above dynamical law. An infinitely

many unstable periodic orbits is embedded in a chaotic system.

The function 4>(q) and the poles of Iq(w). are determined by these periodic orbits

as follows. Let us introduce the generalized Frobenius-Perron operator H q with the zy

element (Hq )"'l1 = c5(z - f(y))e qu{1/}. The partition function

Zq(n) = TrE; = L(v~l)r~,
l

where v~l) is the I-th eigenvalue of E q , turns out to be expanded as

n-1

Zq(n) =Jc5(z - fn(z))exp[q L u{fj(z)}]dz.
j=O

The contribution to the integration thus comes form periodic orbits satisfying z = /n( z ).[4]

By combining the above two equations, eigenvalues are solved by calculating Zq(l),

Zq(2), Zq(3), .... To this end we proposed a continued-fraction expansion of the Laplace

transform of Zq(n), whose poles yield the eigenvalues. Figure 1 shows the results with

finite-pole approximations for a simple piecewise linear map. As the number of poles is

increased, the results tend to agree with the exact results.[4]

Anomalous corarelations associated with interamittency

Intermittency is a prominent phenomenon observed in nonlinear dynamical systems.

Several years ago we reported that a new intermittency is observed when the synchro-

nization breaks down~under the change of control parameter. This is different from the

well-known intermittency classified by Pomeau and Manneville.

Yamada et al carried out an experiment on the coupled electronic circuit whose unit is

composed of a LCR circuit with a voltage-dependent capacitance.[5] They found, changing
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the coupling constant, a prominent intermittency characteristic slightly below the critical

value where the synchronization looses its stability.

Figure 2 shows the voltage difference between two sub-circuits, which vanishes if the

synchronization is realized.[5] They found that the order-q power spectrum I q ( w) for the

voltage difference has the power law

for certain regions of w. They have reported the indication of the fact that V q depends on

q, (Fig.3).[6]

Very recently Just et al [3,7] have rigorously obtained the order-q power spectra for the

type-I intermittency maps with the order of tangency z, and found that the local maxima

or peak trains obey the asymptotic law

{

w-v (q < qe)

Iq(w) t'.J

. Lorentzian type (q < qc)

for low frequency region, where qe(> 0) is a characteristic value of q, and the exponent v

isa function of z but is independent of q. This is different from the result observed in the

coupled electronic circuit.

After the talk, Yamada and myself[8] succeeded in finding rigorous results of I q ( w) for

the multiplicative stochastic process rt = (L\ - rl + ft)rt, (L\ ~ 0), where rt is a physical

quantity, It is the Gaussian-white random force. It is known that the statistical property

of intermittency observed in the desynchronization of chaotic oscillations is well modeled

by the above stochastIC process. We found that I q ( w) has a structure similar to that in the

above type-I intermittency case. Namely the q-dependent exponent vq of Iq(w) reported

in the coupled electronic circuit seems to be not conclusive. A more careful analysis is

needed.
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