
Title Chaotic Force in Brownian Motion(New Developments in
Statistical Physics Similarities in Diversities,YITP Workshop)

Author(s) Shimizu, Toshihiro

Citation 物性研究 (1993), 60(4): 385-391

Issue Date 1993-07-20

URL http://hdl.handle.net/2433/95115

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University



Chaotic Force in Brownian Motion

Kokushikan Univ.

Toshihiro Shimizu

A Brownian particle, which interacts with molecules of

the surrounding medium, receives the force with irregular

magnitude at irregular intervals from the surrounding

molecules. The irregular nature of the force was characterized

as the random noise in the original Langevin equation. If we

observe it from a purely mechanical point of view, however,

we may find that the magnitude of the force and the time

interval between successive collisions are determin~stic,

although they look stochastic at first sight. This situation

can be elucidated also from the derivation of a ~angevin-type

equation from the Hamiltonian equation in generalized Brownian

motion theory.

In this article we discuss a Langevin-type equation with

a deterministic random force, which is called chaotic force

The main interest is to investigate (i) what kind of

stationary state exists, (ii) how the system relaxes to the

statinary state, (iii) what kind of the fluctuation

dissipation theorem exists and (iv) how relaxation processes

depend on a bifurcation parameter, if the chaotic force is

dependent on a bifurcation parameter.

1. Model

To take into account of this deterministic nature of the

random force we employed a chaotic sequence of iterates of

some maps as a model of a deterministic random force [1].

Let ue denote the position of the Brownian particle by

x ( t) and let us assume that the velocity of the Browninan

particle changes from Yn I J X to Yn + 1 / J T at time t=n T

due to a collision and the velocity remains constant between

successive collsions, if the damping is neglected.
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Then we have a Langevin-type equation

x(t) = -yx(t) + f(t), ( 1 )

where y is a damping constant. The force f ( t) is assumed to

be constant in the time interval ~

f(t)
1

J ~ Yn + 1
for n ~ < t < (n+l) ~ , (2)

( 3 )

where Yn+l is the (n+l)th iterate of a map F(y)

Yn+l = F(Yn).

Here F(y) may depend on a bifurcation parameter.

In (2) we have chosen I/J ~ as the magnitude of the force to

get a finite diffusion constant in the limit of small time

interval, as will be shown later.

If the initial values x(O) =Xo and Yo are given, the

solution of (1) is uniquely determined,

- y (t-n ~ )
x(t,xo,Yo) = e

- y (t-n ~
1- e

x n (xo ,Yo )+-------
yJ~

Yn + 1

for n~ <t< (n+l) ~, ( 4 )

where Xn (xo , Yo .) x( n ~ , Xo , Yo ). If we observe the system

stroboscopically at time interval ~, the position at time

t= (n+l) ~ is

x n +1 (Xo ,Yo)

where

a X n (xo , Yo) + bJ ~ Yo +1 (Yo)

n
a n + 1 Xo + bJ~ L:: am Yn+l-m(Yo), (5)

m=O

- y ~

a = e b (l-a)/ y ~ • ( 6 )

2. Stationary distribution

Let us assume that the initial position Xo is definite,

but the surroundng molecules have different initial values so

that the initial distribution of Yo is given by P 0 (Yo) .
~

The initial distribution developes according to the Frobenius-

Perron equation. The distribution Pn+l(Y) of YO+l at

t= (n+l) ~ is given by
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P n +1(y) = ~ dy' 8 (y- F(y' » P n(y' ). ( 7 )

If the mapping function F( y) has an invariant density P * (y),

the arbitrary initial distribution tends to the invariant

density p * (y ) • Since we are interested in the long time

behaviour, we assume that the initial distribution of Yo is

given by p * (Yo). According to (5), the average position of

the particle over p * (Yo) at time t= (n+l) '"C is given by

n
<xn +1 (xo , Yo ) > = an +1 Xo + bf '"C L: am <Yo>.

m=O
( 8 )

Here we have used the stationary property <Yn(Yo»=<Yo> and

Xo was assumed to be statistically independent of Yo. Let us

denote the deviation of x n andYn from the average value (8)

by xn(Yo)=xn(xo,Yo)-<xn(xo,Yo» and Yn=Yn-<Yo>,

respectively. It should be noted here that x n depends on

Yo only.

For later convenience we introduce the generating

function

'l/Jn+l(X,y) = ~ dyo p *(Yo) 0 (X-Xn+l(YO»O (y-Yn+2(Yo»,

( 9 )

which satisfies the recurrence relation

'l/Jn+dx,y) = ~~ dx dy 0 (x- (ax +b f '"C Y » l/J n (x , Y ).

(10)

Then the distribution function for the position is defined by

Wn+1(x) == ~,dY'l/Jn+dx,y) (11)

with the initial distribution Wo(x)=o (x). Noting the property

of the invariant density, we get

~ dx 'l/J n + 1 (x i Y) P * (y ) • ( 12 )

However, ( 10 ) and ( 12 ) do not mean l/J n + 1 (x, Y) can be

factorized as Wn+1(x)p *(Y) and rather it has a correlation

term gn +1 ( x, y) :

'l/Jn+dx,y) .. Wn+1(x)p *(y) + gn+l(X,y). (13)

As will be shown later, the distribution Wn(x) and the

generating function 'l/J n (x, y) tend to sationary ones
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lim Wn ( x) = W* ( x ) ,
n~OO

lim 1/J n ( x, y) = 1/J * (x, y ).
n~OO

(14)

In the following limiting cases the explicit form of W* (x)

can be easily calculated.

Case ( i ) : IT» 1

If T is much longer than the decay time T d =11 I' a

Brownian particle, which starts with Xo and Yo, can follow the

change of the force f(t) very quickly and the deviation x in

( 5) reaches Yn + 1 1 1fT very rapidly during each time

interval,

Xn+l(YO) = Yn+ll 1 fT ,

because a ~ 1. Substituting this into (11), we get

Wn + 1 (x) = y f T: P * ( y f T x + <Yo».

(15)

(16)

In this case the distribution function Wn(x) converges to

the stationary distribution (16) very rapidly, whose shape

has the same form as that of the invariant density p *(y).

Let us next consider the small T limit. It should be

noted here that T is very small but not zero. We must treat

this case very carefully.

Case (i i ): small T I imi t and y T ~ 1

If T: ~ T d the position Xn+l depends on those at

previous times, because the position decays very slowly.

If we expand a and b in T, and retain the lowest order term

in (10), we can derive a Fokker-Planck type equation

8 '18 2

(yx Wn(x» +-- ~<Yo2>Wn(X»
8 x 28 x

a 2 n
+--[ L <Ym( Yo) Yo> Wn - m( X ) ] • ( 17 )

a x 2 m=1

If the correlation <Yn(Yo)Yo> decays more rapidly than

Wn-m(x), we can introduce the Markovian approximation
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n
L <Ym(Yo)Yo>Wn-m(X)
m=1

n
L <Ym(Yo )Yo>Wn(X)
m=1

CX)

L <Ym(Yo )Yo>Wn(X)
m=1

(18)

In this case ( 17) can be represented as a Fokker-Planck

equation with the diffusion constant D

1 00
D = -<Yo 2 > + L <Ym(Yo)Yo>.

2 °m=1
(19)

Then the stationary distribution W*(x) has a Gaussian form

W*(x) =~
~2;D

exp( -
2D

(20)

In this case the shape of W*(x) does not depend on the detail

of the invariant density.

By taking the logistic map as an example of F(y), we

investigated the bifurcation parameter dependence of

relaxation processes.

3. Correlation in the stationary state

Let us define the correlation functions in the stationary

state W*(x,Y) by

« x X n ( x, Y ) ~

«YYn(Y) ~

~~ dxdy x Xn (x, y) lj; * ( x, y) ,

~ dxdy Y Yn (y ) lj; * (x, Y) . (21)

The Fourier transformations are defined by

00 -inw T:
T: L e « x X n ( x, y) ~

n=- CX)

00 -inw T:
T: 2J e

n=- CX)

Y«-
J-r:

Yn (Y)
--~

J-r:
(22)

If <Y Yn (Y»is 0 -correlated, we get

2 b 2 T:D/(I-a2
),

2 (b T: ) 2 DIll-exp ( ( - y + i w) T: ) I 2 , (23)

<t> f ( w 2D.

In the small -r: l;Lmi t (23) reduces to

Diy,

2D I ( Y 2 + W 2 ) , (24)

<t> f ( w 2D.
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These relations coincide exactly with the results of the

usual Brownian motion theory, which are obtained by assuming

that f(t) is a white-Gaussian process.

4. Change from the shape of the invariant density to the

Gaussian form

As will be shown later, the recurrence relation (5) has

a fractal structure. If ~ is decreased or a is increased

from zero to one, the fractal structure will be enlaged.

If y ~ ) 1, the lowest order term of (5) is given by

Xn+l = bJ~ Yn+l

X n = bJ ~ Yn. (25)

Therefore the recurrence relation (Xn+l'Xn ) has the same form

as that of (Yn+l,Yn).

If ~ is slightly decreased, we must take into account of

the first order term in a, and we get

X n + 1 = bJ ~ (Yn + 1 + a Y n ) ,

X n bJ~ (Yn + a Yn-l·). (26)

It was shown that the recurrence relation (26) exibits

doubling of (25), if F(y) is a non-invertible function with

two-to-one correspondence. In a similar way we get for the

recurrence relation up to the second order in a,

X n + 1 = bJ ~(yn + 1 + a Y n + a 2 Y n - 1 ) ,

X n - bJ ~ ( Y n + a Y n _ 1 + a 2 Y n - 2 ). ( 27 )

The recurrence relation (27) exhibit~.doublingof (26).

This means that the recurrence relat~on (5) has the fractal

structure. The fractal structure is not visible for small a.

This fractal structure is similar to the Henon map. If ~

is decreased, however, the fractal structure is enlarged

automatically. If ~ approaches zero, the recurrence relation

tends to a diagonal strip with very small width, which does

not depend on the getail of the map F(y). The senario of this

change has universality [3].

5. Chaotic time interval

So far the time interval was assumed to be constant. This
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assumption is, in general, "not appropriate. The time interval

also changes chaotically as the magnitude of the force. The

force f(t) is generalized to

1
f(t) = --fn + 1JT

for t n < t<tn + 1 , (28 )

where f n + 1 is a function of {Yn} and a time series {tn } is

defined by

n-l
t n = T 2:: 1: m

m=O
(0< 1: m < 1). (29)

Here T is the magnitude of the time interval and {1: n} is a

chaotic series, which is generated by" another mapping function

L: n + 1 = G( L: n ) •

The effect of chaotic time interval

(30)

{ L: n} and chaotic

magnitude {Yn} on the stationary distribution of x was

invetigated in the follwing cases: (i) Yn is chaotic and L: n is

constant, (ii) Yn is regular and L: n is chaotic, (iii) Yn and
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