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Abstract

By introducing a time variable to the theory of orthogonal polyno­
mials, it is shown that the matrix models of two-dimensional gravity,
the six vertex model of two-dimensional lattice statistics and the ran­
dom matrix theory of le~el statistics are all described by the theory
of soliton, i. e. Tocla molecule equation.
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1 Introduction

Theory of orthogonal polynomials has many applications in diverse branches
of theoretical physics. Recently some remarkable applications1:-

3
) have been

found under the perspective of completely integrable system (theory of soli­
ton). Here I wish to describe the outline of ref.3 which claims that a theory
of time-dependent orthogonal polynomials (TDOP) interrelates 1) -the matrix
model of two-dimensional gravity, 2) the six vertex model of two-dimensional
lattice statistics, 3) the random matrix theory of level statistics and 4) the
soliton theory of Toda molecule equation (see Fig.l).

MatriH Model

UerteH Model

Random MatriH

lOOP Soliton Theory

Fig. 1. Time-dependent orthogonal polynomials (TDOP) interrelate all theory.

The most remarkable fact found" here is that in these theories commonly
appears the Toda molecule equation, which is defined by (in Hirota form)

(1)

where the prime denotes time derivative.

2 Time-Dependent Orthogonal Polynomials
and Toda Molecule Equation

The distribution function p(A; t), or the weight function W(A; t) = dp(A; t)/dA,
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defines uniquely the ortho-normal polynomial 'Wn(..\; t) according to Hilbert­
Schmidt's diagonalization method.

So Sl Sn

1 Sl S2 sn+1

'l/;n (..\; t) =
JTnTn-l

................... (2)
Sn-l Sn S2n-l

1 A An

where sn's are the moments defined by Sn(t) = J Andp(..\; t) and the tau
function Tn is defined by

So

Sl

Sn Sn+1 ••. SZn

(3)

which is a Hankel-Hadamard determinant.
Here we assume further that

(4)

and call this the derivative Hankel property. Then by using Laplace-Jacobi
theorem, we can prove that the tau function Tn(t) satisfies the Toda molecule'
equation given by eq.(l). The Tocla molecule equation is a soliton system
whose Lax pair is given by

(5)

(6)

The first equation is known as the scattering problem in soliton theory, and
also as the three-term relation in orthogonal polynomial theory.

From the compatibility condition of eq.(5), the equations of motion for
field variables' an, bn are given by

clan 1 ( ) dbn 2 2cit = 2'an bn - bn - 1 , cit = a n + 1 - an'

The relation between field variables and tau function are expressed by
I I

b
_ Tn _ T n _ 1

n- .
Tn 'Tn -1

(7)
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Toda molecule equation (1) is derived by combining eqs.(6) and (7).
We can summarize the above results as follows. If the distribution func­

tion p(A; t) has the derivative Hankel property (eq.(4)), then the tau function
(eq.(3)) obeys the Toda molecule equation (eq.(l)). Inversely, TO(t) =so(t)
determines the distribution function p(A; t) uniquely.

3 Applications of the TDOP Theory

(1) Matrix model of two-dimensional gravity
The first example is from matrix model of two-dimensional gravity. We

recognize that the derivative Hankel property is satisfied if we assume

dp(A; t)
dA = exp (-U(A) + At) .

Now by using eq.(8), we can derive the following identities:

(8)

(9)

Therefore, if we set further the potential U()") = !92)..2 + ~94)..4 (the pure
gravity case), we obtain

n a~ {92 + 94(a~ + a~+l + a~_l + b~ + bnbn- l + b~_l)}'

t - 92bn + 94{bn+la~+1 + bn(2a~+1 + b~ + 2a~) + bn-la~}. (10)

These are an extension of the first-kind discrete Painleve equation to include
two variables: one (time t) is continuous and the other (space n) is discrete.
Other discrete Painleve equations are also derived by changing the potential.
(2) Izergin's six vertex model

The second example is from lattice statistical model. According to Izergin
a special case of the six vertex model on N' x N lattice has the partition
function

N N2 rrN - t 2ZN = (2w) «(W4 +Wa)(W4 - Wa)) ( k=l k!)- det(B), (11)

where W4 +Wa = sinh(t +,), W4 - Wa = sinh(t - ,), 2w = sinh(2'~() and the
matrix element of N x N matrix B is defined by Bii = di+i - 2soCt) / dt i+i - 2 ,
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So (t) = 1/(sinh(t + I')sinh(t - 1')) . Now we easily recognize that the deter­
minant of B is of derivative Hankel type, and therefore is given by the tau
function TN-l(t). Consequently this tau function satisfies the Toda molecule
equation as has been discussed. Thus we can conclude that Izergin's six ver­
tex model is also described by soliton equation.
(3) Random matrix theory of level statistics

The last example is from the random matrix theory of level statistics. It
is easily noted that eq.(3) is rewritten as

1 J J·rrn
+

1 rrn
+

1
2Tn(t) = (n + I)! . .. i=1 dp(Ai; t) i<k (Aj - Ak) . (12)

Therefore the normalized distribution function of energy levels AI, ... , AN is
expressed by

In other words, the present theory corresponds to the unitary ensemble of
random matrix theory. This approach of time-dependent random matrix
theory may be regarded as a ~ynainical theory of the quantum chaos. In ref.3,
Brownian motion model of level statistics formulated by Dyson is discussed
according to the present approach.

4 Prospects of the TDOP Theory

The present theory of time-dependent orthogonal polynomials posseses a
discrete time analog. Such extension derives the difference-difference Toda
molecule equation

which also has a Hankel determinant solution. 2)

The present theory has also a generalization of q-deformation type (the
quantum group). In such theories we will encounter many classical q-polynomials
proposed by Heine, Askey, Wilson and others. The relationship among these ­
subjects is summarized in Fig.2.
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:pJf~4HIHs-

I quantum group >1 q-OP >1 q-soliton equation

T T T
group >1 OP >1 soliton equation

Fig. 2. Quantum group, q-orthogonal polynomials and q-soliton equations.
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