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Quantum Field Theoretical Method in Non-Equilibrium Systems
— Non-Equilibrium Thermo Field Dynamics —

Physics, U Tsukuba, Toshihico ARIMITSU

1 Introduction

In this lecture, I will introduce a canonical formalism of non-equilibrium quantum systems,
named Non-Equilibriumm Thermo Field Dynamics (NETFD). This is a unified formalism which
enables us to treat dissipative quantum systems (covering whole the aspects in non-equilibrium
statistical mechanics listed in Table 1) by the method similar to the usual quantum mechanics
and quantum field theory which accommodate the concept of the dual structure in the inter-
pretation of nature, i.e. in terms of the operator algebra and the representation space. The
representation space of NETFD (named thermal space) is composed of the direct product of
two Hilbert spaces, the one for non-tilde fields and the other for tilde fields.* It was revealed
that dissipation is taken into account by a rotation in whole the two Hilbert spaces. The terms
constituted by the multiplication of tilde and non-tilde fields in the infinitesimal time-evolution
generator take care of dissipative (i.e. irreversible) phenomena. This notion was discovered first
when NETFD was constructed [1, 2].t

Boltzmann tried to explain the irreversibility of nature based on the microscopic and
reversible Newton’s mechanics. It was revealed that he had introduced a stochastic manipula-
tion, what is called the molecular chaos, without knowing it in the course of the derivation of
the Boltzmann equation (see [4] for a brief review of the irreversibility in statistical mechanics).
Besides the technical transparency of our new method, we expect that its dual structure, as a
quantum theory of dissipative fields, may provide us with a breakthrough to realize Boltzmann’s
original dream. The duality was not recognized in Boltzmann’s days.

It is known that one can divide the fundamental aspects in non-equilibrium statistical
mechanics into four categories as shown in Table 1. In category I, we deal with a one-particle
distribution function (in the p-phase-space within classical statistical mechanics) with the as-
sumption of molecular chaos or something similar which introduces an irreversibility. In cat-
egory II, we handle a density operator which describes the distribution of the ensemble of a
system under consideration. Within the terminology of classical statistical mechanics, we treat

*In NETFD, any operator A is associated with its tilde field A (see Tool 1 in section 2).

This notion had not appeared in the formulation of the equilibrium thermo field dynamics (TFD) [3] which
is an operator formalism of the Gibbs ensembles. This is one of the essential difference between NETFD and
TFD.
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Table 1: Fundamental Aspects in Non-Equilibrium Statistical Mechanics

Founder Basic Equations Key Words
I || Boltzmann | Boltzmann eq. one-particle distr. func.
kinetic eq. molecular chaos
IT || Gibbs master eq. density operator
Fokker-Planck eq. ensembles
IIT || Einstein Langevin eq. random force

dynamical variables

IV || Kubo stochastic Liouville eq. | random force

phase-space variables
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the assembly of points in the I'-phase-space, each point of which describes a dynamical state of
an element system of the ensemble. Irreversibility is introduced by a coarse graining in I’-space.
In category III, we study a path of a dynamical variable which is generated by a stochastic
equation with a specified random process. The correlation of random forces introduces irre-
versible behavior of the system. In category IV, we treat a distribution of the bundle of paths
(flow) in the phase-space [5]-[8]. Each path is generated by an element of a set of the time
sequences of a random force (stochastic process). Within the terminology of classical statistical
mechanics, we chase one specific point, which represents the dynamical state of a system, in a
coarse-grained I'-space with fluctuating flows due to the stochastic process.

The framework of NETFD was constructed first [1, 2] by, so to speak, a principle of
correspondence based upon the damping theoretical argument within the density operator for-
malism [9]-[11] (see Appendices A and B). It was reconstructed upon the seven axioms {12].
Then, the most general expression of the renormalized time-evolution generator in the interac-
tion representation (the semi-free hat-Hamiltonian) was derived together with an equation for
the one-particle distribution function [13, 14]. Therefore, we see that NETFD was started to
be built upon the fundamental aspects I and I in Table 1. Within these aspects, the canonical
formalism of dissipative quantum fields in NETFD was formulated, and the close structural
resemblance between NETFD and usual quantum field theories was revealed [15, 16]. The
generating functional within NETFD was derived [17]. Furthermore, the kinetic equation was
derived within NETFD [21], and the relation between NETFD and the closed time-path meth-
ods [18]-[20] was shown. The extension of NETFD to the hydrodynamical region as well as the
kinetic region has been started [22, 23].}

Recently, the framework of NETFD has been extended [25]-[36] to take account of the
aspects [II and IV as well as the ones [ and II. Here again NETFD allowed us to construct a
unified canonical theory of quantum stochastic operators. The stochastic Liouville equations
both of the Ito and of the Stratonovich types were introduced in the Schrédinger represen-
tation. Whereas, the Langevin equations both of the Ito and of the Stratonovich types were
constructed as the Heisenberg equation of motion with the help of the time-evolution genera-
tor of corresponding stochastic Liouville equations. The Ito formula was derived for quantum
systems.

In section 2, some fundamentals of NETFD are listed. In section 3, the general form
of semi-free time-evolution generator is derived. The annihilation and creation operators are
introduced by means of a time-dependent Bogoliubov transformation. The two-point function
(propagator)is also derived. In section 4, the model of a damped harmonic oscillator is specified,
which we will treat mainly throughout the lecture for simplicity. The Fokker-Planck equation
and the Heisenberg equation of motion for coarse grained operators are explicitly handled. The
irreversibility of the system is investigated in terms of the Boltzmann entropy. In section 5, the
generating functional method is introduced, which gives us the relation between the method
of NETFD with the one of Schwinger’s closed-time path. In section 6, the general expression
of the stochastic semi-free time-evolution generator is derived for a non-stationary Gaussian

{Zubarev admired the method of NETFD, and he also started to use it for the investigation of these regions
[24].
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white quantum stochastic process. The correlation of the random force operators are also
derived generally. In section 7, the stochastic Liouville equations and the Langevin equations
both of Ito and Stratonovich types of the system are investigated in a unified manner. In section
8, whole the framework of NETFD is mapped to a c-number space by means of the coherent
state representation within NETFD. Section 9 is devoted to discussions. Those which were not
explained in this lecture are listed. The open problems and the prospect are also included.
Appendices (A-H) are added in order to make the lecture note self-contained.

2 Toolbox of NETFD

NETFD is a quantum theory of dissipative fields, which enables us to construct a canoni-
cal formalism for coarse grained quantum fields. Here, we list the technical basics for later
convenience.

Tool 1. Any operator A (the ordinary, coarse-grained and stochastic ones) is associated with
its partner (tilde) operator A. The tilde conjugation ~ is defined by:

(A142)™ = A1 4,, (2.1)
(c1dy + c242)”™ = Ay + 3 A, (2.2)
(A)~ = oA, (2.3)

(AN~ = A, (2.4)

where 0 = 1 (—1) for bosonic (fermionic) operator A, and ¢; and c¢; are c-numbers.

Tool 2. The tilde and non-tilde operators at an equal time are mutually commutative, and are
related with each other through the relation

(1]At = (1] 4. | (2.5)

Tool 3. The expectation value of an operator A is given by (1|4|0). Observable operators
consist only of non-tilde operators.

Tool 4. The thermal vacuums (1} and |0) are tilde invariant:

(1™ =], 1007 =10), (105)~ =10)), (2.6)

and are normalized as (1]0) = 1 ((1]0;) = 1). We will put the sub-script f for the
quantities in stochastic (fluctuating) systems.

Tool 5. The dynamical evolution of systems is described by the Schrddinger equation (h = 1)

9 -
2710(1)) = —iH|0(1)). (2.7)
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For stochastic systems, the Schrédinger equation is expressed in the forms
dj0;(t)) = —izadt 04(2)), (2.8)
or

dj0;(8)) = —iHydt 0 |04(2)), | (2.9)

depending on the kind of stochastic multiplications. The former will be used for the Ito
multiplication [37], whereas the latter the Stratonovich multiplication [38]. The symbol
o represents the Stratonovich multiplication. We usually call the Schrédinger equation
as the Fokker-Planck equation for coarse grained systems, and as stochastic Liouville
equation for stochastic systems. These dynamical equations are of the Schrédinger rep-
resentation.

Tool 6. The hat-Hamiltonians, an infinitesimal time-evolution generators, H, '}:[f,t and H £t
satisfy ;
(iH ) =1H, the same relation for the stochastic ones. (2.10)

This characteristics is named tildian. The tildian hat-Hamiltonians are not necessarily
hermitian operators.

Tool 7. The hat-Hamiltonians have zero eigenvalue for the thermal bra-vacuum:
(1/1H =0, the same relation for the stochastic ones. (2.11)

This is the manifestation of the conservation of probability, i.e. (1|0(¢)) = 1.

3 Semi-Free Hat-Hamiltonian

The most general form of the renormalized hat-Hamiltonian H, in the interaction representation
has the form [13, 14] (see Appeundix C for the derivation):$

H, = w(t) (a'a - &t&)
—in(t) {[1 + 2n(t)] (a'a + a'a) — 2[1 + n(t)] ad — 2n(t)a'at}

. d Sh_ BV V.
—zdtn(t)a ™ a¥ — i26(t)n(t)

= [w(t) —ix(t)] @ a* —i [% + 2x(t)} a*n(t)* a” + w(t) + ix(t), (3.1)
where 4n(t) is given by
%n(t) = —2k(t)n(t) +i5<(2). (3.2)

$Throughout this lecture note, we confine ourselves to the case of boson fields, for simplicity. The extension
to the case of fermion fields are rather straightforward.
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Here, we introduced the thermal doublet notation: a#=! = a, a#*=? = &' and @*=! = qf, a*=? =
—a&, and the matrices 7# : 711 = 121 =1, 712 = 722 = 1, and '

n(t) —n(t)
n(t)™ = (1ja(t) a(t)*]0) = . (3.3)

1+n(t) —[1+n(t)]
The one-particle distribution function n(t) is defined by
n(t) = (1a"(&)a()|0), (3.4)

and the thermal doublet notation in the interaction representation is introduced by a(¢)#=! =
a(t), a(t)*=% = a%(t) and a(t)*=! = aff(t), @(t)*=* = —a(t). The function T'<(t) is given when
the interaction hat-Hamiltonian is specified. The equation (3.2) is the Boltzmann equation of
the system.

The operators a, @', etc. satisfy the canonical commutation relation:
[, af) = Sk, [k, @) = S (3.5)

The tilde and non-tilde operators are mutually commutative. Throughout this lecture, we do
not label the operators a, &', etc. explicitly with a subscript k for specifying a momentum
and/or other degrees of freedom. However, remember that we are dealing with a dissipative
quantum field.

The operators in the interaction representation are defined by

a(t) = §71)ad(t),  a'(t) = $T'(®)ats (), (3.6)
where J |
28 =—iBS¢),  (H) =il (3.7)

with $(0) = 1. The semi-free hat-Hamiltonian H, satisfies
(1A, =0, (3.8)

(see Tool 7), and the semi-free operators satisfy

(et (t) = Uae),  a()l0) = T2 DaM(1)0) (3.9)

Q

(see Tool 2 for the former). Since the semi-free hat-Hamiltonian H, is not necessarily hermite,
we introduced the symbol {} in order to distinguish it from the hermite conjugation t. However,
we will use | instead of {f, for simplicity, unless it is confusing.
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The annihilation and creation operators, y(t)#=* = v(t), v(2)*=2 = F*(t) and F(t)*=! =
v¥(t), F(t)*=* = —F(t), are introduced by

vt = B(t)*a(t)”,  F(t)* =a(t)"B7 (1), (3.10)

with the time-dependent Bogoliubov transformation:¥

1+n(t) —n(t)

B(t)* = (3.11)
-1 1
The annihilation and creation operators have the properties
ABI0) =0, (1K) =0. (3.12)
The two-point function G(t,t')*” has the form
G,y = —i(UIT [a(t) a(t)] |0)
= [B70)g(t,t)B()]"™, (3.13)
where
GR(t,t) 0
g(t,t) = —i(UT [y(1)*5(¢')*]10) = ; (3.14)
0 GA(t,t')
with
t
GR(t,1') = —i0(t — ') exp / ds [—iw(s) — k(s)], (3.15)
. tl
t
GA(t,t') = i6(' — t)exp / ds [—iw(s) + &(s)]. (3.16)
tl

The representation space (the thermal space) of NETFD is the vector space spanned by
_the set of bra and ket state vectors which are generated, respectively, by cyclic operations of

the annihilation operators v(t) and ¥(t) on (1], and of the creation operators v¥(¢) and F*(¢)
on |0).

The normal product is defined by means of the annihilation and the creation operators,
ie. v¥(t), 7%(t) stand to the left of y(t), 5(t). The process, rewriting physical operators
in terms of the annihilation and creation operators, leads to a Wick-type formula, which in
turn leads to Feynman-type diagrams for multi-point functions in the renormalized interaction
representation. The internal line in the Feynman-type diagrams is the unperturbed two-point

function (3.13).

Y There is a minor change in the normalization of the time-dependent Bogoliubov transformation compared
with the original definition given in [1, 2], [12]-{14]. This change makes the expression G(¢,t')*¥ simpler, and is
essential in the formulation of the stochastic Liouville equation introduced below.
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4 Fokker-Planck Equation —Model—

We can specify a model by writing down its Boltzmann equation. In the following through the
lecture, we will use the model of a damped harmonic oscillator in order to show the heart of
the formalism. The model is specified by the Boltzmann equation

d _
Ezn(t) = —2&[n(t) = 7], (4.1)

with 1
= : ‘ 4.2
n ebw 1 ’ ( )

where [ is the inverse of the temperature T' of the environment, i.e. 8 = 1/T. The Boltzmann
constant has been put to equal to 1.

Substituting the Boltzmann equation (4.1) into the semi-free hat-Hamiltonian (3.1), we
have [1, 2, 12]

H =w(ata—a'a) —ix [(1+27) (a'a + &'a) — 2(1 +71) ad — 27a'a"] — 1267
= (w — ik) @4 — i2KE* T ¥ + w + ik, (4.3)

where

7l —-Nn

At = . (4.4)
|\ 14+48 —-(1+n)

The Hamiltonian (4.3) is the same expression as the one derived by means of the principle
of correspondence when NETFD was constructed first based upon the projection operator
formalism of the damping theory [1, 2] (see Appendix B).

The Fokker-Planck equation of the model is given by

(%10@)) = —iH[0(2)), (4:5)
with (4.3), which is solved as
0(2)) = exp [[n(t) = n(0)] v*7*] 10). (4.6)
The ket-thermal vacuum, [0) = [0(0)), is specified by
| o) = fatlo), (47)
where f = n/(1 4+ n) with n = n(0). This can be expressed in terms of d and d', which are

introduced in (4.11) below, as

d|0) = (n — ) dt|0). | (4.8)
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The attractive expression (4.6), which was obtained first in [39], led us to the notion of a
mechanism named the spontaneous creation of dissipation [13, 14], [40]-[42]. We can obtain the
result (4.6) only by algebraic manipulations. This technical convenience of the operator algebra
in NETFD, which is very much similar to that of the usual quantum mechanics, enables us to.
treat open systems in far-from-equilibrium state simpler and more transparent [43]-[48].

The hat-Hamiltonian (4.3) can be also written in the form

B =w(dd-d'd) —ix (d'd + d'd) (4.9)
= w (vh = 5*%) —is (vhe + 75 + 2[n(2) — A4, (4.10)

where d#=! = d, d*=? = dt and d#=! = dt, d*=? = —{ are defined by

d¥ = Q—luuau’ c‘l'p - (—IUQVM, : (4.11)
with
1 7 ‘ '
QY = . , (4.12)
1 147
The annihilation and creation operators, y#=! = v, v#=2 = A% and 3#=1 = 4} =2 = 3,

are defined through the relation
y(t) = 878, A =SS (@). (4.13)
It is easy to see from the diagonalized form (4.9) of 1‘{ that |
d(t) = §7Y(t) d S(t) = d e=Cwtmt () = §Y(¢) dt §(¢) = dt e Gt (4.14)

On the other hand, it is easy to see from the normal product form (4.10) of A that it satisfies
Tool 7 since the annihilation and creation operators satisfy

%l0@) =0,  (1FF =0. - (4.15)

The difference between the operators which diagonalize H and the ones which make H in
the form of normal product is one of the features of NETFD, and shows the point that the
formalism is quite different from usual quantum mechanics and quantum field theory. This is a
manifestation of the fact that the hat-Hamiltonian is a time-evolution generator for irreversible
processes.

The Heisenberg equation of motion for a coarse grained operator A(t) is given by

C%A(t) =i[H(t), A(2)], (4.16)
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with

H(t) = §1(t)HS(t). (4.17)

We would like to emphasize here that the existence of the Heisenberg equation of motion
(4.16) for coarse grained operators is one of the notable features of NETFD. This enabled us
to construct a canonical formalism of the dissipative quantum field theory, where the coarse
grained operator a(t) etc. in the Heisenberg representation satisfies the equal-time canonical
commutation relation

[a(t), a'(t)] =1, [a(t), al(t)] = 1. (4.18)

For the present model, we have
%a(t) = —iwa(t) — & [(1 + 27) a(t) — 2ﬁ&f(t)] , (4.19)
%a’(t) = dwal(t) +  [(1 4 27) al(2) — 2(1 + 7)&(1)] (4.20)

We see that the equation of motion for al(t) is not the hermite conjugate of the one for a(t).

The two-point function for the model is given by (3.13) with the replacement of w(t)
and x(t) by the time-independent quantities w and &, respectively.

Let us check here the irreversibility of the system. The entropy of the system is given
by | o
S(t) = —{n(t)lun(t) — [1 + n(t)]In[1 + n(2)]}, (4.21)

whereas the heat change of the system is given by

d'Q = wdn. (4.22)

Thermodynamics tells us that
dS =dS. + dS;, dS. = d'Q/Tkr, (4.23)
dsi 2 0. - (4.24)

The latter inequality (4.24) is the second law of thermodynamics. Putting (4.21) and (4.22) in
(4.23), for dS and dS., respectively, we have a relation for the entropy production rate [4]

S _d5 _dS. 2k [n(t) — 7]ln n(t)l1 + 7] >

dt dt dt all+n(t)] — (4.25)

It is easy to see that the expression on the right-hand side of the second equality satisfies the
last inequality which is consistent with (4.24). The equality realizes either for the thermal
equilibrium state, n(t) = @2, or for the quasi-stationary process, k — 0.
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5 Generating Functional Method

Let us consider a master equation [17]

0 S
5:10(t) = —iH.|0(t)), . (5.1)
with ‘ A )
Htot =H + HI,ta (52)

where H is given by (4.3), and A 1+ is defined by

Hpy= R(t)a¥ + @K (t)* = K, (t)*4* + 3K (t). (5.3)
The thermal doublet notation for the c-number external fields has been intrgduced by
K@)=! = K(t), K(t)*=? = K*(t) and K(#)*=!' = K(t)*, K(¢t)*=? = —K(t). We see the

relation

K, (0 = BOWE@RY, Ry = R@)B ()", (5.4)
with (3.11) for B(¢)».
The generating functional for the system is defined by [17]

Z[K, k)= (UT(H)0), (55)

where U(t) satisfies
L0 = i) (56)

with the initial condition I/(0) = 1. The hat-Hamiltonian H;(t) is given by
Hy(t) = S (t) Hr,5(1). (5.7)
Taking the functional derivative of the generating functional (5.5), we have
ST Z[K, K] =~ [[db [8F, (0 (2(6) + (T 8K (0] (5.8)

where (v(¢)*) and (5(t)*) are defined by

(v(t)) =i In Z|K, K] = (1T [U@(8)*] |0), (5.9)

)
I, (t)

(3(2)) =i In Z[K, K] = (1T [U(D3()*] 10). (5.10)

)
S, (t)~
The equation of motion for (y(¢)*) [17):

L) = — (06 + w7t*) (1(2)°) — i 2)" NGRS
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with the boundary conditions

(y(0)*=)

il
il

(v(0) =0,  (v(®*) = F*@) =0,
$

FEO=) = (HE) =0, (307 = -(3(0)) =0, (5.12)
can be solved in the form ;
() = [t Gy R (Y, (5.13)
0
‘where G(t, t')* is given by (3.14). The boundary conditions in (5.12) are derived by the thermal
state conditions (3.12). The matrix 74* is defined by 73! = —7#2 =1, 7§32 =721 = 0.

Substituting (5.13) into (5.8), we finally obtain [17]
. t b
Z|K,K] = exp [—i/dt/o clt'K.,(t)“Q(t,t’)“"I\'.’.,(t’)"]
0
A
= exp [—i / dt / dt’K(t)“G(t,t’)‘“’Ix’(t’)"} . (5.14)
o Jo
This expression for an open system was derived first by Schwinger by means of the closed-time

path method [18] (see also {19, 20]).

The derivation of the generating functional shown in this section reveals the relation
between the quantum operator formalism of dissipative fields and their path integral formalism
[18]. Note that the existence of a quantum operator formalism for dissipative fields had never
been realized before NETFD was constructed.

6 Stochastic Semi-Free Hamiltonian

The general form of the stochastic semi-free hat-Hamiltonian #;,, appeared in the stochastic
Liouville equation (2.8) of the Ito type, and the correlation of the random force operators can
be derived under the following basic requirements:

A1l. The stochastic semi-free operators are defined by
a(t) = S7()ad,(t),  a'(t) = S ()atSe(t), (6.1)
where )
dSg(t) = —1H,dt Sf(t), : (6.2)

with 5',«(0) = 1. Here, it is assumed that, at £ = 0, the relevant system starts to contact
with the irrelevant system representing the stochastic process described by the random
force operators dF(t), etc. defined in A3 below.l The stochastic operators a, at,d and
a' in the Schrédinger representation satisfy the canonical commutation relation:

[a, al] =1, @ a'] = 1. (6.3)

IWithin the formalism, the random force operators dF(t) and dF!(t) are assumed to commute with any
relevant system operator A in the Schrédinger representation: [4, dF(t)] = [4, dFi(t)] = 0.
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The semi-free operators (6.1) keep the equal-time canonical commutation relation:
0e), *B] =1, [a(), dfHI=1 (6:4)

The tildian nature of Tool 6 for H; ,dt is consistent with the definition (6.1) of the semi-
free operators. Since the tildian hat-Hamiltonian ’}:if,,dt is not necessarily hermite, we
introduced the symbol {f in order to distinguish it from the hermite conjugation . How-
ever, we will use 1 instead of {}, for simplicity, unless it is confusing. We use here the same
notation a(t) etc. for the stochastic semi-free operators as those for the coarse grained
semi-free operators. We expect that there will be no confusion between them.

A2. The stochastic semi-free operators satisfy Tool 2:

(La™(t) = (1]a(t). (6.5)

A3. The random force operators are of the Wiener process whose first and second cumulants
are given by real c-numbers:

(dF(t)) = (dF'(t)) = 0, » (6.6)
(dF(t)dF(2)) = (dF'(t)dF'(t)) =0, (6.7)
<dF(t)de(t)> = [a real c-number], <dF'(t)dF(t)> = [a real c-number], (6.8)

where (--+) = (|---|) represents the random average referring to the random force oper-
ators dF(t).

A4. The random force operators satisfy Tool 2:
(|dF(t) = (|dF(t). (6.9)
A5. The stochastic semi-free operators and the random force operators satisfy the causality
{a(t)dFH(t)) =0, etc, (6.10)
where the random force operator dF1(t) in the Heisenberg representation* is defined by
dFH(t) = S7Y(t)dF (1) 84(2). (6.11)
The results are (see Appendix D for the derivation)
Hyadt = w(t)(a'a — ata)dt — in(t) [(a' — &) (pa + va!) + t.c] dt
+i {2 o)+ + (0] (@ )@ - )

+i [(a* = a)dW (t) + t.c], | (6.12)

**It can be the interaction representation when one includes non-linear terms in the hat-Hamiltonian, and
performs a perturbational calculation. As we are dealing with only the bi-linear case in this lecture, we call the
representation as the Heisenberg one.
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and

(W (t)dW (s)) = (dW (s)dW (t))
= u(dF'(s)dF(t)) + v (dF (t)dF'(s)) (6.13)

- {.%-(t) [n(t) + v] + %n(i)} §(t — s)dtds, (6.14)

(see Appendices D and F for the deuvatlon) where the random force operator dW (t) is defined
by
dW (t) = udF(t) + vdF(t), (6.15)

with p 4+ v = 1. The stochastic process here is a non-stationary Gaussian white one.
The correlations of dF(¢) and dF1(t) are given by (see Appendix F)

(dF* t)dF s)> [ )n(t)-}-—d—n(t)} 5(t — s)dtds, - (6.16)

(dF(t)dF(s)) = {2n(t) [n(t) + 1] +.£n(t)} 5(t — s)dtds. (6.17)

The semi-free hat-Hamiltonian & #.4dt, appeared in the stochastic Liouville equation (2.9)
of the Stratonovich type, is given by (see Appendix F)

flf,tdt = w(t)((ﬁa — ata)dt —ix(t) [(a'f —a)(pa +va') + t.c.} dt
+i [(a' — &)W () + tc]. (6.18)
7 Quantum Stochastic Differential Equations

" Let us consider the case corresponding to (4.1), i.e. the stationary stochastic process (F.15) and
(F.16). Then, the random force operator dW (t) satisfies

(AW (b)) = (dW(t) 0, (7.1)
(AW (t)dW (s)) = (dW (t)dW (s)) = (7.2)
(dW ()dW (s)) = (dW (s)dW (t)) = 2n( + v)6(t — s)dt ds. (7.3)

The stochastic Liouville equations and the Langevin equations both of Ito and of Stratonovich
types are constructed being compatible with the Fokker-Planck equation (4.5) with the hat-
Hamiltonian (4.3).

The quantum stochastic Liouville equation of the Stratonovich type is given by [25]-[29]

d|0y(t)) = —iHydt o [05(t)), (7.4)
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with the stochastic time-evolution generator:

Hyudt = Hsdt + [(at — @) {id(pa + va') + [Hs, pa+valldt) —tc], - (7.5)
wherett )
HS = Hs - Hs, Hg = wa*a, (76)

and the flow operators da and da' are specified by#

da = i[Hs, a)dt — &[(g — v)a + 2val)dt + dW (2), :
dat = i[Hg, a')dt — &[2ua — (p — v)@t)dt + dW (). (7.8)

The quantum stochastic Liouville equation of the Ito type is given by

dl0g(8)) = —iFzadt [04(t), (7.9)

with
Hyodt = Hyydt +i(at - @) (@' — a)dW (¢)dW(2) (7.10)
= Hdt+i{(a' - a)dW () + t.c.}, (7.11)

where H 74dt and H are given, respectively, by (7.5) and (4.3). Here, we used the properties of
the random force operators '

dW (¢)dW (s) = dW (t)dW (s) = 0, (7.12)
AW (¢)dW (s) = dW (s)dW (t) = 2«[ + v]6(t — s)dtds, (7.13)

within the stochastic convergence, which can be derived from (7.2) and (7.3), and the fact that
- dW(t)dt etc. can be neglected as higher orders.

Taking the random average of the Ito stochastic Liouville equation (7.9) with (7.11), we -
obtain the corresponding Fokker-Planck equation (4.5) by the process:

(d]0s(2)))

d|0(¢))

~iHat{10;(1))) + ({(a' = @)dW (¥) + t.c.} [04(2)))
= —iHdt |0(t)), (7.14)

I

with [0(¢)) = <|0f(t)>> Here, we used the properties

(dW(8)34(t)) =0, etc,, (7.15)

11 The following formulation is valid for the cases where Hs has non-linear terms.
4} The flow equations (7.7) and (7.8) read d(ua+vat) = i[Hs, pa+vatldt—s(pa+val)dt+dw(t), da—at) =
i[Hs, a —al]ldt + k(a — at)dt.
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which are the characteristics of the Ito multiplication. The Fokker-Planck equation (4.5) can be
derived also by taking random average of the Stratonovich stochastic Liouville equation (7.4)
with (7.5) (see Appendix G).

For the dynamical quantity
A(t) = 871(2)AS4(1), | (7.16)

the quantum Langevin equation of the Stratonovich type is given as the Heisenberg equation
of motion [27, 29]:

dA(t) = i[Hp(t)dt 3 A(t)) | (7.17)
= i[Hs(t), A(t))de
+{[(o'(t) - &) (nalt) +va'(t)), A(t)]
( t)—at)) (p ) + val( ) ]}dt
(t)

—{[a (t) = a(t), A(t)]odW(t) +[a'(t) — a(t), A(t)]odW ()},  (7.18)

where
Hy(t) = S72(t) HpoS4(1), | (7.19)
[(X(t) e Y(t)] = X(t)o Y(t) = Y(t) 0 X(2), (7.20)

for arbitrary operators X (¢) and Y'(t), and use has been made of the fact that
S71(t)dW (2)84(t) = dW (2), (7.21)

since the random force operator dW (t) is commutative with S¢(t) due to the property (D.9)
and (D.15). Note that, using (7.18), we can readily verify that

d[A(t)B(t)] = dA() o B(t) + A(¢) 0 dB(t), (7.22)

for arbitrary relevant system operators A and B. This fact proves that the quantum stochastic
differential equation (7.18) is of the Stratonovich type.

The quantum Langevin equation of the Stratonovich type (7.18) is also derived by the
algebraic identity . . ) )
dA(t) = dS7'(t) o ASs(t) + S7'(t)A o dSy(t), (7.23)

with the help of
dSs(t) = —iHydt o 55(t),  dS7Y(t) = i87(t) o Hydt. (7.24)

When dY(t) is dW(t), and X(t) is constituted by the relevant operators satisfying the
quantum Langevin equation (7.18) of the Stratonovich type, the connection formula (E.5)
reduces to

X(t) o dW (t) = X (2)dW(t) — u(n + v) [a'(t) - a(t), X(t)] dt. (7.25)
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In deriving (7.25), we used the properties (7.12) and (7.13), and the fact that dW(t)dt etc. can
be neglected as higher orders.

By means of the connection formula (7.25) between the Ito and the Stratonovich prod-
ucts, we can derive the quantum Langevin equation of the Ito type from that of the Stratonovich
type (7.18) as

dA(t) = i[Hs(t)dt, A(t)] ,
+{(a'(t) = a(t)) [a'(2) — a(t), A(1)] /
+(a'(t) — a(t)) la'(2) — &(t), A(t)]}dW (£)dW (t) (7.26)
= i[Hs(t), A(t)ldt
+e{[(a'(®) - a(®) (ra(t) + va'(2)) , A2))
+[(a'(t) - a(t)) (wat) + va'(2)) , AQ))}dt

+26(7 + v)[a}(t) — a(), [a}(t) — a(t), A(t)))dt
—{le'(t) —a(t), AW () + [a"(t) - a(t), A()dW(t)}, (7.27)

where . ) N .
Hf(t)dt = Sfl(t)Hf_zdtSf(t), (728)

(see Appendix D for another derivation of (7.27)). With the help of (7.27), we can find the
product dA(t)dB(t) has the expression :

dA(t)dB(t) = 26(i + v) {[e!(t) — a(t), A®)][a"() — a(t), B(t)]
+[@'(t) — a(t), AW)[e'(t) —a(t), B()}dt, (7.29)

which leads to the calculus rule of the Ito type
d[A(t)B(t)] = dA(z) - B(t) + A(¢) - dB(t) + dA(t)dB(t), (7.30)

for arbitrary relevant stochastic operators A and B. This proves that the quantum stochastic
differential equation (7.27) is in fact of the Ito type. Furthermore, since (7.27) is the time-
evolution equation for any relevant stochastic operator A(t), it is Ito’s formula for quantum
systems as will be proven in section 8.

Putting a and a' for A, we see that (7.18) and (7.27) reduce to

da(t) = i[Hs, a(t)]dt — k[(x — v)a(t) + 2vat (t))dt + dW (t), (7.31)
dat(t) = i[Hs, a'(t)]dt — [2pa(t) — (u — v)a' (t)]dt + dW (2), (7.32)

whose formal structures are the same as (7.7) and (7.8), respectively.

- In the Langevin equation approach, the dynamical behavior of systems is specified when
one characterizes the correlations of random forces. The quantum Langevin equation is the
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equation in the Heisenberg representation, therefore the characterization of random force oper-
ators should be performed in this representation. This cannot be done in terms of dF(t) etc.,
since the information of the stochastic process is masked by the dynamics generated by H #(t)
in these operators. Whereas, the specification of the correlation between dW (t) etc. directly
characterizes the stochastic process because of the relations in (7.21).

Taking the random average and the vacuum expectation of (7.27), we obtain the equation
of motion for the expectation value of an arbitrary operator A(t) of the relevant system as

%({A(t))) =1 ({[Hs(t), A@))

+r (@' O[AR), a®)]) + ([a'(), A®)]at)))
+2~n«[a (2), [A(2), a(), (7.33)

where ((-+-)) = (1/(---)|0), which means to take both random average and vacuum expectation.
This is the exact equation of motion for systems with linear-dissipative coupling to reservoir,
which can be also derived by means of Fokker-Planck equation (4.5). Here, we used the property

(a(t)dW () =0, etc., (7.34)

which are the characteristics of the Ito multiplication [37]). Note that (7.33) was derived for
general Hg including non-linear interaction terms.

8 Phase-Space Method

Mapping (4.5) to the one in phase-space by means of the coherent state representation for coarse
grained operators, which is constructed just the same process as (H.1)-(H.13) with respect to
|0(¢)) and P®#)(z,t), we obtain the Fokker-Planck equation in phase-space [34]

%P(’"")(z,t) = —iRWI)(z) PW)(2,¢), (8.1)
with
P (2,1) = (P#)(z,1)), (8.2)
and the coarse-grained generator v
QW (2) = (=02 + 0u2") E¥¥)(2,0) + ik (02 + 0u2*) + i2x(7 + v)D0.. (8.3)

Note that the expression (8.1) for p = 1, v = 0 is the same as (A.9) obtained by mapping the
master equation (A.1) in the density operator method by means of the coherent representation
in the Liouville space (see e.g. [9]).

The quantum stochastic Liouville equation (7.4) of the Stratonovich type is mapped as
[34] | |
AP (z,t) = i) (2,)dt o P (2,1), (8.4)
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with the stochastic time-evolution generator

.Q}“’")(z, t)dt = (—0z + 0,2") EW¥)(z,0)dt
+ik (02 + 0.2") dt — 1[0 o AW () + O o dW™(t)], (8.5)

mapped from H;,dt, where (—0z + 0.2*) EW¥)(z,0) is defined for Hs by means of (H.10) and
(H.11) with the property

— zEW)(2,0)0 + 2* EW)(2,0)0, = (=02 + 0.2*) EW¥) (2, ). (8.6)

Here, we are confining ourselves to the case where Hs has the structure like 3, gn(at)"a™,
which leads us to

Be(2,0)= Y gpamnl2®(27)7 070 + (2%) 299707, (8.7)
pgmn

p+g=m+n

with real parameters g, g,mn. For a harmonic oscillator with frequency w, E(“’")(z, 0) = w.

, The quantum stochastic Liouville equation (7.4) of the Ito type is mapped to the one in
phase-space as

AP (2,1) = ~iQ*)(z,1)dt P (2,1), (88)
with _ '
QF (2, t)dt = 20)(z)dt — i [0 dW(t) + 0. AW (2)]. (89)

It is easily seen that (8.8) reduces to the Fokker-Planck equation (8.1) when the random average
is taken.

The quantum Langevin equation (7.18) of the Stratonovich type is transformed to [34]

| dAWH (t) = 4 [-—-E'(“'“)(z(t), a(t))z(t)a(t) + EWM) (2(t), a(t))z*(t)c’)*(t)] AWH)(t)dt

—k [2(£)A(t) + 2* (£)0.(2)] A¥# (¢)dt
+{[a() A (1)] 0 aW (1) + [B.() A¥(B)] 0 dW* (1)}, (8.10)

where 9(t) = 8/02(t) and d.(t) = 8/dz*(t), and EW)(z,0) is the adjoint differential operator
function defined by

[ 512 [-2E0(2,0)0 + 2 B(2,0)2.] ful2)
= [ fu(2) [0B#(2,0)z — 0,50 (2,0)2"] ful2), | (8.11)

and use has been made of the property

— OEW)(2,0)z + 0, EW¥)(2,0)2* = —EW)(2,0)20 4+ E#¥)(z,0)z*0.. (8.12)
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Using the connection formula between the Ito and Stratonovich products in phase-space
which has the same structure as (7.25) for quantum stochastic operators, we can derive the
Langevin equation of the Ito type as

dAW () = i [ EW9)(2(t),0(t))2(1)A(t) + E(“"’)(z(t),3(t))z"'(t)3,.,(t)] Al (3)dt
— [2(£)0(t) + 27 (1) 0u(t)] AL () dt + 26(R + v)O()Du(t) AL (t)dt
+{|o@)A¥ (¢ )] AW (t) + [0.(£) AW (t)] aW*(2)} . (8.13)

This can be obtained also by mapping the quantum Langevin equation (7.27) of the Ito type
into the one in phase-space.

By making use of (8.10) or (8.13) for 2(¢), we have
dz(t) = —1EW(2(t), 0(t))2(t)dt — kz(t)dt + dW (t). (8.14)
With the help of (8.14), we can rewrite (8.13) in the form
dAPH(t) = dz(t)9(t) A¥H(t) + dz*(t)D.(t) AWM (1) + dz(t)d2"(t)O(t)D.() A¥(t),  (8.15)
where we used the relation
dz(t)dz*(t) = dW(t)dW*(t) = 2k(7 + v)dt, (8.16)

which is proven within the stochastic convergence with (8.14) and the properties (H.15)-(H.17).
The equation (8.15) is nothing but the well known Ito’s formula for complex stochastic variable

z(t).

It is worthy to note that, with the definition of flow:
dz; = =1 EW¥)(2,0)zdt — kzdt + dW (1), (8.17)

being in the same structure as (8.14), the stochastic time-evolution generator (8.5) can be
expressed in the form [34]

2 (2, t)dt = —i (0. dz, + 0, dz})
—BW)(2,0) (=07 + u2") dt + (—0z + O.2") EW¥)(2,0)dt.  (8.18)

The latter two terms on the right hand side represent quantum effects. This is an extension of
Kubo’s generator for the stochastic Liouville equation (8] to quantum systems.

Taking average of (8.13) with respect to both the initial distribution P(" “)(z) and the
random forces, we obtain the equation of motion for the expectation value of an arbitrary
observable operator A(t) of the relevant system as

</ AW (2) [ (=02 + 8.2%) E@)(z,9)
+5 (82 + 0.2") + 2n(7 + 1)90.) P& (2, t)>

- /Aw) () [—i (=02 + B.2*) B2, 0) |
+ (92 + 0.2") + 26(R + 1)90.| P4z, 1), (8.19)
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where

(A()) = < / A(""‘)(z)P}"”’)(z,t)> - / AW () PE (7, 1), (8.20)

(see (H.13)). Here, we used the properties
(2()dW(t)) = 0, etc., (8.21)

which are the characteristics of the Ito multiplication [37]. The averaged equation of motion
can also be derived by making use of the Fokker-Planck equation (8.1), as can be seen in the
second expression of (8.19).

We showed that the framework, including both the quantum Fokker-Planck equation
and the quantum stochastic differential equations constructed within NETFD, is compatible
with the one of the classical Fokker-Planck equation and of the classical stochastic differen-
tial equations. It was done by mapping the entire framework of NETFD to the c-number
phase-space by means of the phase-space method in thermal space [49]. Note that the mapped
framework in phase-space keeps the information of quantum effects. The success of the formu-
lation of the stochastic differential equations for quantum systems within a canonical formalism
of dissipative quantum fields may be a lesson for those attempts trying to construct it based
on the Schrédinger equation or the equivalent [50]-[58].

9 Discussions

In Fig. 1, we put the structure of the methods dealt in this lecture note. The approaches of
the Langevin equation (/I ) and of the stochastic Liouville equation (IV ) are microscopic
ones in the sense that they take into account thermal effect as a random process, whereas the
approach of the Fokker-Planck equation ([ and II') is coarse grained one. A unified formalism
for quantum systems covering whole the aspects, I to IV in Table 1, was realized first by means

of the framework of NETFD.

The relation between the Langevin equation and the stochastic Liouville equation is the
same as the one between the Heisenberg equation and the Schrédinger equation in quantum
mechanics and in quantum field theory. Since they are the stochastic differential equations,
there are two types of stochastic multiplication, i.e. the Ito and the Stratonovich types. The
Langevin equation (7.17) of the Stratonovich type has the same structure as the Heisenberg
equation of motion for analytical quantities. Whereas, the Ito type (7.26) contains an extra
term proportional to dW (¢)dW (t) due to the difference of stochastic differentiations. Although
the stochastic Liouville equations both of the Stratonovich and Ito types, (7.4) and (7.9), have
the same form, the latter is more convenient than the former to get the corresponding Fokker-
Planck equation (4.5) by taking random average. It is due to the characteristics of the Ito
multiplication. The equation of motion for the dynamical variables taken both the random
average and the vacuum expectation value can be obtained by two paths, i.e. the one from the
Langevin equation directly by taking both the random average and the vacuum expectation,
the other from the Fokker-Planck equation by taking the vacuum expectation of the operators
corresponding to the dynamical variables. It should be noted that the discovery of the stochastic
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Dissipative Q. Field Th.
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Heisenberg Eq. of Motion Fokker-Planck Eq.
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Langevin Eq. Stochastic Liouville Eq.

(Ito & Stratonovich) (Ito & Stratonovich)
Heisenberg Representation Schrédinger Representation

Figure 1: Structure of the Formalism. RA stands for the random average. VE stands for the

vacuum expectation.
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Liouville equation is the key point for the construction of whole the unified quantum canonical
formalism. ‘

With the help of the hat-Hamiltonian for the Fokker-Planck equation, we can construct
the Heisenberg equation for coarse grained operators. As was mentioned before, the existence
of the Heisenberg equation of motion for coarse grained operators enabled us to construct the
canonical formalism of the dissipative quantum fields. It is quite interesting that for somewhat
artificial values of y, v, ie. p¢ =14+ f, v = —7, we can obtain the coarse grained equation
of motion (4.16) directly by taking tlie random average of the Langevin equations (7.18) and
(7.27). For this case, (7.25) tells us that the Stratonovich and the Ito multiplications are
identical, and (7.3) gives

(AW (2)dW (s)) = (dW (s)dW (t)) = 0. (9.1)
The latter indicates that
i (dF(t)dFY(s)) = (1+ ) (dF'(s)dF (1)), | (9.2)

as can be seen by (6.13). This is nothing but the KMS-condition {59, 60]. The physical meaning
of this artificial case is still to be investigated. ’

As was claimed by Kubo [61], there had been several deficiencies in the theories of
quantum Langevin equation. The first one is that the representation space of the Langevin
equation should be an extended Hilbert space which is constituted by both the one for the
relevant system and the one for the random force (an irrelevant system). However, usually
the equation of motion for the random force operator is not considered. The second is that
the correlations of random force operators for thermal ensemble do not satisfy KMS-condition
[59, 60] in the case of the white process for quantum systems. The third claim was how one can
obtain the correlation of random force operators for the Langevin equation which is compatible
with the master equation derived by the non-conventional treatment of the damping theory,
where the effect of non-linearity within a relevant system on its relaxation behavior is taken into
account. The last claim was resolved by NETFD (see refs. {28]-[32], (48, 44] and the references
therein for detail). As for the first and the second problems, the readers are expected to
consider by themselves how they are solved within the present unified formalism of NETFD
(see [27]-[29]).

Let us close this lecture note by mentioning about those which were not included in the
above sections. It was shown that the divisor method of the canonical quantum field theory can
be generalized to the present dissipative quantum field theory [15, 16]. The derivation of the
generalized kinetic equation within NETFD were studied [21]. Note that most of the studies
by means of NETFD were those in the kinetic stage. Thermal processes in the hydrodynamical
stage has started to be investigated by means of NETFD [23]. There, the concept of non-
equilibrium thermodynamics, especially that of the local equilibrium, is tried to be interpreted
in terms of the concept of quantum field theory. There were several applications of NETFD to
optical systems [43]-[47] and spin relaxation [48]. Dynamical rearrangements of vacuum in the
thermal space were investigated [39] for the boson transformation and the BCS model. The
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cases of fermion were not investigated. It is somewhat straightforward to extend whole the
framework to the case of fermion fields.
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Appendix A Density Operator Method

Here, we show how we had been dealing with the model within the density operator formalism
before NETFD was constructed. The master equation for a damped harmonic oscillator is
given by [9]

Bups(t) = ~i (H3 +1IT) ps(2), (A1)

with the symbol HZ X = [Hs, X|, where Hy is the Hamiltonian of the system we are interested

mn:

t

Hs = wd'a, w=€—U, | (A.2)

with € and g being the one-particle energy and the chemical potential, respectively, and where
II.is the damping operator:

X = &{[aX, '+ [a, Xa']}+2n7fs, [X, a']), (A.3)

with 72 being given by (4.2), and
. 2 [% t iwt -
h_mgﬁa§mmmmm%e. (A.4)

Here, we have introduced the average, (---)r = trgp---pr, where the density operator for a
reservoir is given by pp = Zz'e PHR, Zp = trg e PHr, The coupling constant g represents the
strength of the interaction between the damped harmonic oscillator and the reservoir whose
temperature is T = ~!. We see that the one-particle distribution function, defined by n(t) =
tr ataps(t), satisfies the Boltzmann equation (4.1).

The above master equation (A.1) can be obtained by projecting out the reservoir by
means of the damping theory [9]-[11], starting with the Liouville equation:

2 p(t) =~ (1), (A5)

with the model given by the Hamiltonian

H = Hs+ Hp + Hj, (A.6)
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where H; is the Hamiltonian describing the interaction between the system and the reservoir:

Hi=g) (aB}+hc.), (A.T)
k

with RL and Ry being the operators of the reservoir, and Hg is the Hamiltonian of the reservoir
the explicit form of which needs not be specified to get the master equation (A.1). The coarse-
grained density operator ps(t) is defined by ps(t) = trgr p(t).

Introducing the boson coherent state representation of the anti-normal ordering [62]-[64]
through

pstt) = [ L2 fs(0)12) el (A8)

with the boson coherent state |z), defined by a|z) = z|z), we can map the master equation
(A.1) into a partial differential equation for the c-number function fs(t) as [9]

Bfs(t) = [~iw (8uz"™ = c.c.) + & (Buz™ + c.c.) + 2k720,0] f5(2), (A.9)

where we have introduced the abbreviation, & = 8/8z, &, = /8z*. This is nothing but a
Fokker-Planck equation.

The Fokker-Planck equation (A.9) is transformed into
0.F(t) = 25 (€0 + S+ ﬁ@gf@g) F(t), (A.10)

with the help of the relation :
F(t) = /(9:27=92) (1), (A.11)

where ¢ = |z|%, and 0 = 9/0¢. We can solve (A.10) in the form
F(t) = ——e=t/n) (A.12)
n(t) ’

with the initial condition F(0) = fs(0) = 1e~¢/*. Here, n(t) in (A.12) satisfies the Boltzmann
equation (4.1). In deriving the solution (A.12), we have used the Laguerre polynomials

L(6) = 54 (- 0ce0e)'e™, (A.13)
and the relation =g
> FLdo) = 2 ’fl(“’_/ (ml —2), (A.14)

Substituting (A.12) into (A.11), and putting the obtained fs(t) into (A.8), we have

ps(t) = %/

&z

s

e"lzlz/_"(‘)|z)(z|. (A.15)
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This density operator contains the same information as the thermal ket-vacuum |0(¢)) given by
(4.6).

It may be worthwhile to note that the relation of the operator algebra for a harmonic
oscillator within quantum mechanics to the Hermite polynomials is very much similar to the
relation of the operator algebra for a damped harmonic oscillator within NETFD to the Laguerre
polynomials.

Appendix B The Principle of Correspondence
With the principle of correspondence [65, 1, 2]:

ps(t) «— [0(2)), (B.1)
Aips(t) Ay — A1d,0(2)), | (B.2)

the master equation (A.1) reduces to the Schrédinger equation (4.5) with the hat-Hamiltonian
(4.3). It was noticed first by Crawford [66] that the introduction of two kinds of operators for
each operator enables us to handle the Liouville equation as the Schrédinger equation.

Appendix C General Form of Hat-Hamiltonian

The hat-Hamiltonian of the semi-free field is bi-linear in (a, @, a', '), and is invariant under the

phase transformation ¢ — ae?:

H, = g1(t)ata + go(t)ata + gs(t)ad + ga(t)ata’ + go(t), (C.1)

where g(t)’s are time-dependent c-number complex functions.
Tool 6 makes (C.1) tildian:

H, = w(t)(ata — a'a) + 111, (C.2)
with A
II, = ci(t)(a'a + @la) + co(t)ad + ca(t)alal + cq(t), (C.3)

where w(t) = Re ¢1(t) = —Re ga(t), ci(t) = Sm g1 () = Sm g2 (), c2(t) = Sm g3(2), c3(t) =
Sm ¢4(t) and cy(t) = Sm go(2).

Tool 2 and 7 give us relations
2¢1(t) + ea(t) + es(t) =0, c3(t) + ca(t) =0, (C.4)

which reduce (C.3) to

A

II, = c1(t)(a'a + @'a) + co(t)ad — [2¢1(t) + co(t)] atat + [2¢1() + ca(2)] - (C.5)

— 516 —



[4538[] WM& TFE D] (19934EE)

The equation of motion for n(t) = (1|at(t)a(t)]0) becomes

il—n(t) = =2[c1(2) + c2(t)|n(t) — [2c1(t) + c2(2t)] (C.6)

dt
= —2&(t)n(t) + 1 2<(¢), (C.7)
where we used Tool 2, and introduced «(t) and X'<(t) defined, respectively, by

k(t) = c1(t) + ca(t), (C.8)
Z<(t) = 1[2c1(t) + c2(t))- | (C.9)

Solving (C.6) and (C.8) with respect to ¢;(t) and c2(t), and substituting them into (C.5),
we arrive at the expression (3.1) of the semi-free hat-Hamiltonian.

Appendix D Stochastic Hat-Hamiltonian

The hat-Hamiltonian for the stochastic semi-free field is bi-linear in a, a', dF(t), dF!(t) and
their tilde conjugates, and is invariant under the phase transformation a — ae?, and dF(t) —

dF(t) e¥:

Hyodt = Hodt +1 {hlaTdF(t) + hoal dFHt) + hato dF(t) + had dE(t)
+hsatdF(t) + heatdFY(t) + hza dF(t) + hsa dFi(t)} , (D.1)

where H, is given by (3.1), and A’s are time-independent c-number quantities. The time-
dependence of &’s has been put on the time-dependence of the random force operators dF(t)
etc. in the Schrédinger representation. We used the fact that the bi-linear terms with re-
spect to dF'(t), dF1(t) and their tilde conjugates are c-number quantities within the stochastic
convergence (see A3).

A2 makes 7:{f,¢dt tildian, and A4 gives us the relations

hi+ hs =0, hog +hy=0. (D.2)
Then (D.1) reduces to
Hyedt = Hdt + i {(a' - a)dW(t) + t.c.}, (D.3)
where H, is given by (C.2), i.e.
"= w(t)(a*a — ata) + 411, (D.4)

with

I = —w(t) [(a! ~ @)(€a +na") +tc.| + {%(t) [n(2) + 1) + %n(t)} (o' ~ @)@~ a). (D.5)
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The expression of II, was arranged, by introducing real c-numbers ¢ and 7 satisfying
E+n=1 | (0.6)
so as to be written down b'y the canonical operators a — a! and £at + na satisfying
[a —at, €at +na) = 1. (D.7)
Here, we introduced random force operator dW (t) defined by
dW (t) = hydF(t) + hodFH(2). (D.8)
whose cumulants are given by

(AW (2)) = (dW(t)) =0, (AW (t)dW(2)) = (dW(t)dW(t)) =0,  (D.9)
(W ()dW (t)) = (b1 + ha) {3 (dF* t>+h* (dF(t)dF'(1))}, (D.10)
(AW (£)aW (1)) = (k5 + h3) {hs (dF'(£)dF(t)) + ko (dF(t)dF'(2))}, (D.11)

where we used A4.

The requirement Tool 2 of the commutativity, <dI/V(t )W (¢ > <dI/V t)dW (¢ > gives
us the relations

(hy + ho)hs = (BT 4+ h3)hy, (k1 + o)k} = (B + B})ho. (D.12)
which reduce to »
h’;hg = hlh;_ = (h;hg)*, (D13)
and allow us to put
hy = pe®,  hy = ve”, (D.14)
where u = |h;| and v = |hy|. Then, (D.10) and (D.11) reduce to
(dW (£)dW (s)) = (dW(s)dW (t)) |
= (p+v) {p(dFY(s)dF(t)) + v (dF(t)dF'(s)) } . (D.15)

This shows that dW(t) and dW(s) are commutative even for t # s, as well as for t = s, within
the stochastic convergence. The vector (|dW(¢) is calculated as

(W (t) = (1 + v)e“(|dF(t), | (D.16)

by using A4.

The further requirement that the norm of (|dW(¢) should be equal to that of (|dF(t),
ie.

Il aW @1 = [[K[dF @)1, (D-17)
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leads us to the relation :
: p+v=1. _ (D.18)

This requirement indicates that the intensities of the random force operators dW (t) and dF(t)
are same. By putting the phase factor e on dF(t) and dFt(¢), (D.15) and (D.8) reduce,
respectively, to (6.13) and (6.15). Using (F.18) below, we see that (D.3) with (D.4) and (D.5)
gives (6.12).

The quantum Langevin equation (7.27) of the Ito type can be derived also by using the
calculus rule of the Ito type:

dA(t) = dS7 () - ASs(t) + S71(t)A - dSy(t) + dS7(t) - A~ dSy(2), (D.19)

with

dS71(t) = 8871 (t) [Hyudt — 2i(a’ — a)(a! — a)dW (£)dW ()] (D.20)
The latter was derived by the identity

= d [571(1)8,(t)] = dS71() - $5(t) + 87(t) - d8y(t) + dS7(¢) - dSy(2), (D.21)

with the help of the properties

Hyadt Fpdt = i{(at - a)dW(t) + t.c.}i { — @)dW(t) + t.c.}
= —2(at — a)(@" — a)dW(t)dW (t), - (D.22)
and ) ) )
:}"f'tdt Hj,tdt ce Hf,tdtl= 0, (D.23)

more than 3 times
within the stochastic convergence (see (D.9) and (D.15)).

Appendix E Ito and Stratonovich Multiplications

The definitions of the Ito [37] and the Stratonovich [38] multiplications are given, respectively,
by
XU(t) - dy () = XE() [y (¢ + dt) — Y (2], (E.1)
dXHI(t) - YI(t) = [XH (¢ + dt) - XH)(2)] YE(2), (E.2)

and

XWHE) (¢ 4 dt) + XH)(¢)
2

dX ()0 YU (t) = [X)(t + dt) — XH(1)]

XE)(t) o dy ) (¢) = [Vt + dt) — Y ()], (E.3)

YEN(t + dt) + YH)(¢)
2 )

(E4)
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for arbitrary stochastic operators X(7)(¢) and Y{#)(¢) in the Heisenberg representation. From
" (E.1), (E.2) and (E.3), (E.4), we have the formulae which connect the Ito and the Stratonovich
products in the differential form

XHE(t) o dYH(t) = X ()dYH)(2) + -;—dX(H)(t) -dY (1), (E.5)
dX () o YEN () = dXH)(2) . Y1) + %dX(H)(t) - dYE)(t), (E.6)
for the operators in the Heisenberg representation, i.e. X(H)(¢) = S'f—l(t)X(S)(t)gf(t) with
operator X(5)(t) in the Schrodinger representation, and dXH)(t) = 57%(t)dX(5)(t)5s(¢) with

the flow operator dX (5 (¢) etc..

The connection formulae for the stochastic operators in the Schrédinger representation
are given, in the same form as (E.5) and (E.6), by

XO)(t) 0 dYS)(t) = XO($)dY S (2) + %dX(S)(t) LAY )y, (®T)

dXO)(t) 0 YOI t) = dXS(2) . YO2) + %dX(S)(t) LAY (1), (E.8)

Appendix F Correlation of Random Force Operators

Applying the connection formula (E.8) to the multiplications, for example dW (¢)5(t), in the
right hand side of the equation (6.2), we have the equation of motion for the time-evolution
generator of the Stratonovich type as

d8s(t) = —iHy,dt o 54(t), | (F.1)
where H .¢dt is the stochastic semi-free hat-Hamiltonian of the Stratonovich type defined by
Hjdt = Hdt —i(at —a)(@" — a)dW(t)dW (t) + [(a1 —a)dW(t) + t.c.]
= w(t)(a'a — &'a)dt — in(t) [(a' — &)(éa + nal) + t.c.| dt
i [(a! - @)dW (t) + tc]. (F.2)

In deriving the expression (F.2), we demanded that the Stratonovich time-evolution generator
should not depend on the diffusion terms, which leads to

dW (t)dW (t) = {2ﬁ(t) [n(t) +n] + %n(t)} dt. ~ (F.3)

This expression is compatible with the assumption that the process is white. Let us put the
subscript F' on Z'<(t) in the Boltzmann equation (3.2) in order to remember that it is due to
the interaction with the random force dF'(t):

%n(t) = —2x(t)n(t) + iZE(t). (F.4)
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Making use of (F.3) and (F.4), we have

IEDS(t)dt = —2k(t)ndt + dW (£)dW (¢)
= —2x(t)ndt + (dF'(t)dF(t)) + v {(dF()dF'(t)) — (dF'(t)dF(t))}. (F.5)

where the property (6.13) has been used within the stochastic convergence, and pg has been
erased with the help of (D.18).

It is reasonable to assume that the quantity 7 may depend on v, i.e. n = n(v), and that
the physical quantities x(t), : 25 (t), <dF“(t)dF(t)>, and <dF(t)de(t)> may not depend on v.
Then, differentiating (F.5) with respect to v, we have

on '
0= -2n(t)5dt + (dF(t)dF'(t)) — (dFY(t)dF(t)). | (F.6)
This leads to 5
91 _ 1 :
| 2L = K1), (F.7)
which is solved as
n=k(t)v+I(t), (F.8)

where k(t) and I(t) are real numbers independent of v. Substituting (F.7) into (F.6), we have
(dF(t)dF'()) — <dF*(t)dF(t)> = 2k(t)k(t)dt. - (F.9)

By means of (F.8) and (F.9), (F.5) becomes
iZ5(t)dt = —26(t)I(t)dt + (dF'(t)dF(t)), (F.10)

which leads to
(dFY(t)dF(t)) = [iZ5(2) + 26(t)I(1)] dt
- {zﬁ(t) (n(t) + (1)) + —%n(t)} at, (F.11)
where we have used (F.4) at the second equality. The substitution of (F.11) into (F.9) gives us
(dF(£)dF'(t)) = {iTS(2) + 26(2) [k(2) + )]} dt

= {Zn(t) [n(t) + k() + 1(2)] + %n(t)} dt. (F.12)

For the system specified by the Boltzmann equation (4.1), (F.11) and (F.12) reduce,
respectively, to

(dFt(t)dF(t)) = 2& [ + 1(t)], (F.13)
(dF(t)dF!(t)) = 26 [A + k(t) + I(t)] dt. (F.14)
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Since the Boltzmann equation (4.1) is compatible with the stationary process specified by

(dFY(t)dF(t)) = 2xndt, (F.15)
(dF(£)dF'(t)) = 2x(R + 1)dt, (F.16)
we know that »
(t)=0, k() =1, (F.17)
which lead to
n=v (£=u. (F.18)

Substituting (F.17) into (F.11) and (F.12), we obtain (6.16) and (6.17). We also get
(6.14) by putting (F.18) into (F.3).

Appendix G Derivation of Fokker-Planck Eq. from St-
ratonovich Stochastic Liouville Eq..

The Fokker-Planck equation (4.5) can be also derived, systematically, from the stochastic Li-
ouville equation (7.4) of the Stratonovich type by means of the method [25, 26]:

(d10(t))) = o))
= i (Hyudt o |05(1)))

= —1Hdt|0(t)), - (G.1)
with
t+ At &
-—ZH = I%E}OZZ/ tl)dtl, (G2)
where o
K(t)dt = Y Ka(t)dt, (G.3)
n=1 :
with — - _
Ra(t)dt = (=i) /0 /0 /0 (Hyadto Hypdtyoro Hys  dta-1)oe.  (G.4)
The symbol (- ), indicates the ordered cumulants [67, 10] defined, for example, by
(X(t))oe = (X(2)), (G.5)
(X ()X (t1))oc. = (X ()X (1)) — (X)X (1)), (G.6)

(XX (1) X (t2))oe. = (X()X (1) X (t2)) = (X)X (21))(X (t2))
—(X ()X (t2))(X (t1)) — (X)X (82) X (£2))

HXONX )N X (E2)) + (XONX (E2))(X (1)), (G.7)
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for any operator X (¢).

Substituting (7.7) and (7.8) into (7.5), and using the properties (7.1)-(7.3) for the Wiener
process, we obtain the Fokker-Planck generator H in (4.5) as

R 1 t+ At " . N
H= lim Z—%‘/ {(Hf,tldﬁ) - 2‘/0 (Hf,tldtl o Hf,tzdt2>o.c.} . (GS)
t

At—0

Appendix H Coherent State Representation in NETFD

We introduce a phase-space method for NETFD by means of a generalized coherent state
representation [49).

1. The probability distribution function P}" *“)(z,t) corresponding to [04(t)) is defined by

05()) = [ Pz, 01404 (=)), (E.1)
with
A (2)) = [ etlePlige"=="e|D(a)), (H2)
where |D(a)) is specified by
(a = &)|D(2)) = 2|D(z)), (ua+va")|D(2)) = ~8.ID(2)), (H3)
and ' |
(UD(z)) = 76)(z),  60(z) = 6(Re(2))6(Sm(2)). (H4)

Here, we introduced abbreviations [, = [d*z/n, and 0 = 0/0z, 0. = 0/0z*. The pa-
rameter s = v — u specifies the ordering of operators, e.g. s = 1 for normal ordering,
s = 0 for anti-normal ordering and s = 1/2 for Weyl ordering. Equation (H.1) shows the
correspondence between thermal space and phase-space as

(wa +va")0s(t)) «— 2P )(z,1), (a—ah)|0s(t)) > 8.Pf(2,1). (H.5)
Note that the tilde invariance, |04(2))~ = [04(t)), reads
P}“‘")(z, ) = Pf(“‘”)(z,t), (H.6)

and that ¢ —a! and pd+val are canonical operatdrs satisfying the canonical commutation
‘relation
[a—a', pa+vd']=1. (H.7)

2. The phase-space quantity G*W*)(z;, 2}, 23, z3) for the operator G(a, at, @', &) in the thermal
space is defined through

G(a,dt, @, @) =/ G (21, 28, 2, 25) AWM (21) AWM (), (H.8)
7 J2o

— 523 —.



Wik —

with
A(u,u)(z) = / eslaIZ/Zeza‘—z’aD(a), D(a) = eaa'—a‘a. (Hg)
Then, for the state
Gla,a!,a,)[05(1)) = [ FO(z,2°,)| 40(2)), (H.10)

we obtain
192 __ 152
F(#’U)(Z,Z*,t) - eua o; ;48,3

X GU(2y 4 10,, 2} — pd, 23 — pduy 23 + ) P (2, 1)

(H.11)

21 =22=2

2} =25 =2°
3. The expectation value of the observable operator
Gla,a') = /Fw( ) AE (), (H.12)

is given by
(11G(a, a') |04 (2) / FWs(z, 2%) P (2, ). (H.13)

4. As for the random force operators dW (t) and dW (t), we cast the mapping correspondence
between thermal space and phase-space as

AW (t) «— dW(t), dW(t) «— dW*(2). (H.14)

The stochastic process for these random forces in phase-space are specified by (7.1)-(7.3)
with the replacement of the operators according to the correspondence (H.14). Namely,

(dW(t)) = (dW*(t)) = (H.15)
(dW (1)dW (s)) = (dW™*(t)dW ( )y =0, (H.16)
(dW(t)dW™(s)) = 26( + v)6(t — s)dt ds. (H.17)
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