<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>自己重力ポアソン方程式の数値計算 基研短期研究会「自己重力多体系における非線形・非平衡現象」報告 研究会報告</td>
</tr>
<tr>
<td>Author(s)</td>
<td>伊藤 健一郎 相澤 洋二</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 1993年11月19日</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-11-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/95202</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
自己重力ポアソン方程式の数値計算

早大理工 伊藤健一郎、相澤洋二

1 モデル
エネルギーhをもつ粒子が、ポテンシャル$\phi(r)$内を運動するとき、十分な時間経過後、位置rにその粒子の見出される確率$p(r)\,dr$は、

$$p(r)\,dr \propto \left[\int \int \delta(h - \frac{1}{2}r^2 - \phi(r))\,dv^3 \right]\,dr \propto (h - \phi(r))^{1/2}\,dr$$

de表される。さらに、粒子のエネルギー分布関数を$\rho(h)$とすると、球対称ポアソン方程式は以下のようにになる。

$$\frac{d^2\phi}{dr^2} + \frac{2d\phi}{r\,dr} \equiv n(r) = \int_{\delta(r)}(h - \phi(r))^{1/2}\rho(h)\,dh$$

本研究では$\rho(h)$の関数形を与ええたときの方程式の解を数値的に詳しく調べた。初期条件は$r = 0$で$\phi(0) = -1.0$, $\frac{d\phi(0)}{dr} = 0.0$とした。

2 結果

(1)$\rho(h) = (-h)^{n-\frac{3}{2}}$の場合
このとき、(1.1)式はLane-Emden方程式と等価になる。この方程式は、

$$\frac{d^2\phi}{dr^2} + \frac{2d\phi}{r\,dr} = (-\phi(r))^n$$

de表され、解の振る舞いが解析的に調べられている。それによると、$n < 5$のとき解は有限の半径rで零点をもつ、$n \geq 5$のとき$r \to \infty$で$\phi(r) \to 0$に漸近する。ただし$n = 5$のとき系の全質量は有限であり、$n > 5$では無限の質量をもつ。今回の計算でも同じ結果が得られたが、$n \geq 5$の場合の$r \gg 1$の領域で、解がベキで近似できるかどうかを調べてみた。するとnの値が5に近い値では非常にベキに収束しないも、5よりある程度大きな値では$r \gg 1$でベキ近似が成り立つという結果を得た。(図1参照) (n = 5の時は厳密解が存在し、r $\gg 1$で$\phi \sim r^{-1}$である。)

(2)$\rho(h) = (-h)^{n-\frac{1}{2}} \cdot e^{-h}$の場合
(1)のエネルギー分布にe^{-h}を掛け、同様にnをパラメータとして調べた。やはり$n < 5$では有限のrで零点を持ち、$n \geq 5$で無限遠まで延びるような結果を得たが、厳密に$n = 5$が境界となっているかはさらに調べてみる必要がある。(1)と異なり、$n = 5$のときでも非常にベキに収束しにくいという結果を得た。(図2参照) 従って、(1)との類推から、$n = 5$より少し小さな値でベキとなる解が存在するかもしれないと、今回の計算ではそのような結果は得られなかった。

(3)$\rho(h) = (-h)^{3-\frac{1}{2}} \cdot e^{-ah}$の場合
(2)のパラメータnを5に固定し、expの指数aをパラメータとして調べた。まず、$a > 0$としてパラメータの値を大きくしてゆくと、aの値が大きいほど良くベキに近似できるという結果が得られた。$a \geq 7$での数密度$n(r)$の指数は-2.5程度である。(図3参照)
さらにaの値を負にして計算を進めた。(aは-1から-10までの整数値)すると、全てのaに対して有限の半径で$\phi = 0$となる結果が得られた。$\rho(h)$の項の中に$(-h)^{3-\frac{1}{2}}$より低次の項がないにもかかわらず解が有限のrで0となる結果が得られたことは興味深い。ま
「自己重力多体系における非線形・非平衡現象」

た、今回は \(r = 0 \) での初期値 \(\phi(0) \) の値を固定して計算したが、この値もパラメータとして扱う必要がある。今後計算を進めて定量的な結果を出してゆきたい。

参考文献

Binney and Tremaine, Galactic Dynamics (1987), Princeton