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Fomin’s* Lecture Note on Low Temperature Phases of 3He
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§1 Introduction

3He at low temperatures is a gobd object for the application and tésting of
basic ideas of condensed matter physics. At low pressures and above ~ 1mK 3He is
a normal Fermi liquid which is described by the Landau theory. Below ~ 1mK it is
a superﬂuid with unconventional Cooper pairing and at pressures above ~ 30 bar it
is a quantum solid, forming magnetically ordered phases at temperatures ~ 1mK.
In these lectures there will be discussed mainly the liquid properties of 3He at
low-temperatures; normal phase and superfluid phases with the emphasis on their
magnetic properties. For introduction of basic ideas, notations and approaches, it
will be convenient to start with the simplest Fermi system; that is, an ideal Fermi

gas.
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§2. Ideal Fermi-gas
2.1 Distribution function

Let us consider a collection of noninteracting identical particles with spin s =
1/2. If there is no external field one can choose as a basis of the states with a

given momentum p and projection of spin ¢ = +1/2 (or 1,}):

Xo iz

"/’p,a = \/—‘76

where V is the volume occupied by the gas, % is Planck’s constant, and X, is the
spin part of-the wave function. In thermodynamics we are dealing with properties
of the gas which are averaged over an equilibrium ensemble of systems. More
generally the ensemble is characterized by the average océupatiox_l numbers, or a

distribution function, which formally can be written as

n(p,a) = (atpaapd> ’ (1)

where &I,a and dp, are correspondingly operators of creation and annihilation of
a pa,rticle in a state (p, o), and brackets denote averaging over a given ensemble.
A distribution function is a convenient macroscopic characteristic of a state of a
gas. Many other macroscopic characteristics of a gas can be expressed in terms of

n(p,0) in a straightforward way. These are the total energy

E= ZE(p,O‘)TL(p,O‘). ) (2)

P,

total momentum
P= an(p>0) 3 (3)
p,o

total z-projection of spin
h h |
Sz = 520"'(1)70) = EZ{HT(p) - nl(p)} . (4)
po P

For a more complete description of a spin-dependent prbﬁerties one would have to
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consider the 2 x 2 denéity matrix

nas(P) = (4},8ps) (5)

Then for all three projections of spin we have,

.
S=3 > eapnap(P) (6)
p.aB

where oo = (034, agﬁ, 0Zp) is a vector of Pauli matrices

0 1 0 —3 1 0
“=(10) =i o) 7= )
1 0 t 0 0 =1

The entropy S of an ideal gas can be also expressed in terms of n(p,o) via the

standard formula

S =~ Z{n In n+ (1 —n)n(l —n)} (7)
p,c

For practical purposes the most interesting properties of a system are those
near thermodynamic equilibrium at given conditioﬁs. According to the general pre-
scription of thermodynamics an equilibrium state minimizes the thermodynamic
potential, according to a given condition. In particular, to find the equilibrium dis-
tribution function ne,(p,o) at a given temperature 7' and a given total number of
particles N in a volume V, one would have to minimize a free energy F = E-TS
with respect to an arbitrary variation of n at the constraint of N =constant. Min-
imization with this constraint is technically inconvenient. The usual way to avoid
it is to consider ensemble of systems with different total number of particles but
with the given average number (N). In that case minimization has to be carried

out at given temperature and chemical potential p. The potential to be minimized

is then

O=F-puN=E—puN-TS . (8)
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Combining expressions for E (Eq.(2)), N,S (Eq.(7)) in terms of n we obtain for
Q:.
Q= Z{[e(p,a) —pn+Tnlnn+ (1 —n)n(l —n)]} . (9)
P,c ‘
The equilibrium distribution function ne, is found from the condition that at
arbitrary variation of én = n — n., the terms of first order in én in a variation of

6€) vanish. The first order terms in 62 can be easily found with the aid of formula
(9). They are

69:2{(5——'#)‘+T 1n1_’fn}5np,g (10)

P,c
One can see that for 62 = 0 we need .

1

n = neq = __————e(E"‘[J.)/T + 1 (11)
i.e. the Fermi distribution function. A chemical potential u is defined from a

requirement that average number of particles in a volume V is fixed
Y n(p,o)=N (12)

pP.,o
Transforming the sumrﬁation into integration over a phase space, we have
/n 2Vd7'—/n v &P _ (13)

B (2mh)3

Equation (13) can be solved explicitly with respect to u in the limit T — 0. In
that limit the Fermi function (11) is a step function (—e+ u), i.e. all states up to

¢ = p are occupied with probability equal to unity and all states with ¢ > pu are

empty. If we define a Fermi momentum as p% /2m = p, then formula (13) gives

; 4 Wp:}‘ _
2V?) (27h)3 N
or
3r2N\ /3
pr = h( % ) | - (14)
_ b _ B (3N
Ho = 2m  2m Vv
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2.2 Low-temperature properties

The usual way to investigate the properties of a gas, liquid, or any other system
in condensed matter physics is to study reaction of the system to a perturbation,
"i.e. on a small change of external conditions. Expression of {2 in terms of the
distribution function makes it possible to discuss these reactions in a unique way.
Let us consider a state with a small deviation of its distribution function npo from
equilibrium and expand the.corresponding change in 0 : 2 — Q,, in this deviation
N =n — ne. Such an expansion with the condition (10) starts with the terms of

the second order in #.
(n 1 (Rpo)?.
Q-0 (o) _lpy / — 2% dr
¢ = 2 Z neq (1 —neg) 2 ZG: Neg(l — Negq)

= N2

ST L a3 s 19
(-7 ) o (""_)
So, 2 — (2¢q is represented by a sum of energies of harmonic oscillators, fip, being
normal coordinates. Now it is easy to find the reaction of the gas to an external
perturbation if this perturbation is also expressed in terms of fip,. Procedure
is analogous to that for a one dimensional oscillator with coordinate variable X
and energy U = k-X;- In the presence of an external force F' the total energy U
acquires an additional term 6U = —F X, so that

U= 1‘%{3 - FX
Minimization of U with respect to X gives a shift of equilibrium AX = F/k. Asa
result,any X-dependent function f(X), cha.facterizing propérties of the oscillator,
acquires.an increment Af = (df /dX) - AX. Following that procedure for an ideal
Fermi gas vs}e find its differential “susceptibilities”.

1) Momentum density — reaction to the motion of a container.

Consider a gas in a tube, which moves with a velocity w. The new equilibrium
must be a minimum of the potential ! — w - P, where P is the total momentum

of the gas. We use the fact that in the original equilibrium state P = 0 and
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P= E Piipo. Then we have to minimize
P,

. _ npo _
Q- Qeq w-P= 3 Z ( aneq) ~wW- ) phips - (16)
Taking the variation of eq.(16) with respect to all Ai(p, o), we get

ﬁ o _
| 2419 —T——
Oc ) '

By setting 6(Q — Q¢ — W - P) = 0 with respect to all #i(p,o), we can get the

following expression ;

(18)

Choosing the z-axis as the direction of w : w = (0,0, w), we can calculate the

projection of the total momentum on the z-axis

P,=) pa= Z(—ag;">wp§

PO
- [(-FE )yt

The integrand of eq.(19) is independent of the spin, and setting 6 to be the angle

between p and the z- axis, we see

_ Oneg\ 42, 1
P, = 2wV/( )p cos” 6 s1n0(27rh)3dpd9d¢
_wV Bneq . dp '
./( ) 2h3 ' (20)

At low temperatures we can replace ("ngi) by 6(¢ — ), and using the relations

2

2
e = £ and p = $E, we can get

1
P, = =Vupiw(p) (21)
where pp is the Fermi momentum and v(p) is the density of states on the Fermi -
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surface :
__pPFm _ dr
V()= o (— 2% EE|e=u> : (22)

To derive the above expression for (1), we only need to consider a shell in mo-

mentum space, which has the thickness dp, then

1

2 x 471'de8‘€__“ 87rPF vr _ DFM

(27h)3 (2rh)3  p2p3

v(p) =

F

where vp = E£ is the Fermi velocity. Using eq.(14), we can reduce eq.(21) to a

simple form.

P, = -?;prpu(,u) = me— = Nmw . (23)
m

2) Sound velocity

Let us calculate the sound velocity at absolute zero, i.e. the quantity u? =
(4E ) When T = 0,5 = 0 and therefore we don’t need to distinguish adiabatic
and isothermal quantities. Using the relation ;

|4 S

dp = —dP — 2-dT =

v
5 = ~4P (24)

we can write

5= v(a) o®

Since p = Nvm we can get the following expression :

Op _ Op 8p _Oum

2
N 90N 8V (26)
Thus the sound velocity can be written as
OP N (0 N 1
2 _ H
YT TV (ap) @7)

ON
O
To calculate the quantity ( ), we again consider the reaction of our system
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due to a change in . By taking the variation of the difference of the thermody-
namic potential from equilibrium, we get

5[0 — Qug — AuN] =0 . (28)

where Ap = 1 — peq. Equation(28) can be written in terms of 2 = n — n, as

§ [.;- ; —((_ﬁ—gg_éz_)- ~ Ap pz’a(neq + ﬁp,,)] ~0 . (29)

Carrying out the variation, we get

SR — Ap|bfps =0 . (30)
CH

Then we obtain the deviation of the distribution function

ONeg
Oe

Nps =

Ap . (31)
We can calculate the change of the total number AN due to a change in the
chemical potential Ay.

4AN=V/ﬁ-2-(—lzds

f(

ONegq
Oe
In the limit of T = 0, we can replace (—%’?ﬁ) by 6(e — p), so we obtain AN =
VApv(p), and so

) Apv(e)de (32)

ON
o Vv(p) . (33)
Substituting éq.(33) into eq.(27), we get
2oN_1L N 1 s B ()1
m (QJ_X> Vmv(u)  372h3 m2ppm m
op

Since the Fermi velocity is equal to (2£), we obtain the simple result.

U= %vp . (34)
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3) Spin susceptibility

Let us assume that our system is in an external magnetic field H. In this

case we have to minimize (2 — 3¢, — M - H in order to find the new equilibrium

* distribution function. If we assume that the magnetic field is along the z-axis,

then the last term becomes
M-H=¢gS-H=g¢S.H

where g is the gyromagnetic ratio. S, can be written as
h
p P

Expressing 2 — (2, in terms of 7,7 must satisfy

| 5{;% <(_ﬁ&z) - gF;H zp:(ﬁpr —ﬁpl)] =0 .

Oe

Carryiﬁg out the variation, we get

5= SRR - o - e} -

fipt  ghH| _ Tip|

Oe Oe

From eq.(38), we obtain

Oe 2 - Oe

ﬁT=(_%)gfi_H , ﬁlz_(_a_mg ghH

The difference of these two is

ny—mn| = (——ag:q)th .
Then S, becomes

h _ .oodr
S, = -2-V /(nT - nl)Edg
2

= (-g) gHV/(—ag;q)u(e)ds .

]6ﬁpl =0

(35)

(36)

(37)

. (38)

(39)

(40)

(a1)
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Here we can replace (—ngl) by é(e — p) in the limit of T = 0. Then

5, = (z;.)“’gﬂvm - - (42)

Finally we get the following expression for the spin susceptibility:

= TE" (2) v - (43)

4) Specific heat
The specific heat ¢ is defined as
oS ,
VT( acr) . | (44)

Let us calculaté the change of the entropy due to a change in temperature.

From eq.(7), we may write

Teqg __ Ong
p,o '

Using the relations

Oy _Oneg( c-u\  Ong _on1 ”
oT =~ 0z T2 ’ 8e 02T °
where z = 5£ | i can be written as
_ aneq aneq & - y, .
A= AT =~ EAT (47)

Substituting eq.(47) into eq.(45), we get

As=2(8;">2(—ag;‘1)AT=Zﬁ(-%’f)ﬂ (48)

P,o _ P,

from which we can calculate ( )

= v/ ( a"eq)2d€da_ Vf z2(-%i§1)u(s)ds . (49) |

The main contribution of. 22(—%%1) to the integral is at ¢ = p, so we can replace

v(e) by v(u), and changing variables from z to & means the integration limits are
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—o0 and +o00. Then we get

Q_S_ _ % of Oneg
57 = Vuv(p) /_ooz (-_Bz )dz

Because the integral is an even function, the right-hand-side becomes

o on
- 2 __.-———eq
—2V1/(u)/0 z ( Ep )dz

x 0
=2Vv(p) [—neqz2 + 2/ neqzdz]
0 0
) 2 p Tl'2
= 4V (p) /0 =TV (50)
Finally we obtain the specific heat
72
s (51)

As we have discussed, all quantities of u,c and x are essentially described by
one quantity i.e. v(u). This is not surprising since Q = Q — Q0eq can be described
as a sum of independent harmonic oscillators, which have the same coefficients

(_—76731(,7_85' In principle, if we measure one quantity, for example, the specific heat

¢, we can predict the values of the other quantities.

§3. Landau Fermi-liquid theory

Next let us consider the application of the discussion about the ideal system
to the real systems, in particular, systems of electrons in metals or liquid-3He at
low temperatures. These systems have strong interactions, so we can’t expect the

ideal Fermi gas model to be valid.
3.1 Quasiparticles

In the Landau theory, we assume that at low temperatures, if the interaction
between particles is switched on gradually and adiabatically in the ideal Fermi
system, we can obtain the real Fermi liquid system, and that the classification
of the quantum states of particles are specified by p and ¢ similarly to the ideal
system. Then we can introduce the quasiparticles as excitations and describe the

system of the Fermi-liquid in terms of quasiparticles.
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If there is no interaction, the states, both the ground state and excited states,
are exactly stationary, but once we introduce the interactions, only the ground
state is stationary and the excited states are not. Because of the interactions a
certain transition from one excited state to another state becomes possible. So an
excited state described by quasiparticles has a lifetime 7. This can also be regarded
as the lifetime of the quasiparticles. The lifetime 7 is related to the uncertainty
of the energy of the quasiparticle : Ae ~ é Thus when Ae is much smaller than

the energy of the quasiparticle, the description in terms of quasiparticles becomes

meaningful.
h
Ae~ =< op(|p|-pr) ~e(p) - (52)

Here, the energy of the quasiparticle is measured from the Fermi energy. Let us es-
timate the lifetime 7. We consider an excited state such that only one quasiparticle
exists outside the Fermi surface, and the Fermi sphere is filled with quasiparticles.
The quasiparticle outside the Fermi surface, which has momentum pji, can collide
with all other quasiparticles, p2, inside the Fermi surface, and two quasiparticles,
ps and pg, are created, outside the Fermi surface. Through this transition, the

total energy and the total momentum are conserved.

(p1) + (P2) — (P3) + (P4)
P1+P2=P3s+Pa=P ; p1,p3,P4>pr, pP2<pPF

_ 61+62=€3+64 ;0 €14€3,E4 > My, E2< U
Then we estimate the total probability of all possible transitions using the Fermi

Golden Rule. "Assuming that each elementary transition has the same amplitude

a, we can write the total probability w as

w~la f5(P1 + P2 — Ps — P4)6(e1 + €2 — €3 — £4)dp2dpadpa

=| a |? / 8(e1 + €2 — €3 — €4)dp2dps .
Pa=p1+P2—Pa

For a given p2, setting 8 to be the angle between p3 and p = p1 + p2, we can
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write

w~|a|? fdpz / 6(e1 + €2 — €3 — €4)pidpad(— cos §)de

~|a |2 /dPZ fé(*?l + €2 — €3 — E4)P§dp3d(— cos§)

From the relation

p5 = (p — ps)* = p* — 2pp3 cos b + p}

we can replace d(— cos 8) by dpy ;

d(—cosf) = -p—4dp4 .
T ;s

Then the total probability w becomes

w ~| a |2 /dpz /5(61-{- €9 — €3 — 64)p§dp31f—;3-dp4

1
~|af? /dng / 8(e1 + €2 — €3 — £4)p3padp3dps

Recalling that € = vp(p — pr), we can replace dp by de,

1
w~lal? [ dpa= [ 8(e1 +e9—e3— 84)1—93—1)4(183(184 .
p v

Since p is very close to pr at low temperatures, we can replace p3 and ps by pp.

Thus we get

' ' 2
o (22) TaP [apal [ er s comes - e

vp
2 0 1
=(E) hap fapar [, e

£4=E1+E2—E3>0
( F)2Ia P [ dpatier +ea)
vp ' D

GI"G
ol !

3
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Again setting 6 to be the angle between p; and p2,dp2 can be replaced by

dp2 = p%dpgd(-— cosf)d¢
= —pldpys—L—dpd
S T

then w becomes

w~(. ) |a|2/dp21)—2(51+52)/ dp
p1 . P —pF<p<p1+PF

3
~ ( ) | a |2 / d€2(61 + 62)
(2 ~£1<€2<0

3
~(3f—‘) (e ~lal(p—pr)? .
\VF _

5

I"Gcz
M

Therefore we can conclude

w~|al?(p1 —pr)? o (53)

w is equal to the inverse of 7, so that we have to satisfy

. |
~~la 1> (0~ pr)* < vr(p - pr) . - (54)

If p is sufficientry close to the Fermi momentum pr , this condition can be always
satisfied. |

3.2 Distribution function and energy of a quasiparticle

Let us formulate Landau Fermi-liquid theory. We assume that in the ground
state the Fermi sphere is filled with quasiparticles, similarly to the ideal system,
and that the number of quasiparticles is equal to that of particles. Then the

density of quasiparticles is

N _ 8mpl '
V= {ehp (53)

The total energy of the system can’t be expressed in a simple form because of

the interaction of quasiparticles, but it should be described as a functional of the
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distribution function of quasiparticles n(p,o);
E =E{n} .

Then we consider the change of the total energy E due to the small change of the
distribution function of the quasiparticles, and define the energy of a quasiparticle

as the functional derivative of E with respect to the distribution function;
SE=SV / e(p,0)on(p, o)dr . (56)

Although interactions change the total energy, the total momentum and the total

number of quasiparticles are not changed through interactions, so that we can

write

P= ZV/pn(p, o)dr
N=ZV/n(p,0‘)dT .

(57)

Next we consider the equilibrium distribution of quasiparticles. As in the ideal
case, we have to minimize the thermodynamic potential @ = EF — uN — T'S with
respect to the distribution function. Because the energy levels of quasiparticles in
the Fermi-liquid and those of particles in the Fermi-gas are classified in the same

manner, we can use the same formula for the entropy S;

S==Y {nlnn+(1-n)ln(1-n)} . (58)

P,c

Then taking the variation with respect to n, we get

5Q=Zv/(a—y)andTJrTZV/ln(lfn)énm . (59)

Setting 6{2 to be zero, we obtain the same expression of the distribution function
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of quasiparticles ;

1

Mot = T | (60)

However, here ¢ is a functional of the distribution function because of the interac-

tion of quasiparticles ;
e=¢e{n} .
So, eq.(60) is quite a complicated implicit equation for n.

At T = 0,n takes the simple Fermi step function ;

1 eE<p ,
n =
-0 E> N .
We can not write € in an explicit form, so we consider the change in £ due to a

small change in n ;

5e(p,0) = / f(p,03 0,0 )on(p',0')dr’ . (61)

3.3 Low temperature properties and effective mass

Now we have introduced the concepts of Landau theory ; the excitations, the
lifetime and the energy of quasiparticles. Then let us consider the thermodynamic
properties in the same way as for the ideal Fermi-gas. First we introduce the

deviation of the distribution function in the vicinity of equilibrium
ﬁ =n-— neq .

We have to expand the thermodynamic potential {2 up to second order in 7 since
the first order term disappears in equilibrium. In the case of a Fermi-liquid, we
have to add the second variation of E to the expression for the ideal case. Q) can

then be written as

Q=0- Qeq Zf(p,a p,0 )fipefipo + = > z__ri")_ _ (62)

,p neq ]. - neq)

a0

The second term is already in diagonal form, but the first term is not. It has the

form of the sum of products of different p and o. To take the same procedure
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of deriving thermodynafhic quantities, we have to diagonalize both terms. To do
so, at first we split f and 7 into a spin symmetric and a spin antisymmetric part.

Because f should depend on the relative orientation of spin, f can be written as

fri=fu=f9+f9 , fu=fu=59-59 (63)

Similarly we split 7 into two terms ;

it =Rs+Rg , =T —Rq (64)
Substituting eq.(64) into the first term of {2, we can write
1+ e -
5 Z f(p7 o,po )npcnp’a’
p.p!
1 : _
= 5 D {F11l(As 4 7a) (s + ) + (s = ) (e = )]
p:p’
+ f”[(ﬁs + ﬁa)(ﬁs’ ﬁa ) + ("_ls - ﬁa)(ﬁs’ + T—La )]}
== Z 2 - 2[f 7 (p)fis(p') + fia(p)7a(p")]
P,p
In the second term we replace Tneq(ll—neq) by 0 Bnel,, DL
(npo) _ 1 1 = = N\2 (s = \2
2 Z neq (1- neq) 2 ONeq (s +7a)” + (s = 70)]
) —
Oe
_ 15 ,75(p) +75(p)
=3 D2 O (65)
Qe
Therefore Q is
) | .
= -—V f 2dr E’ ) +"“()p) + -;-V f 2dr2d7 [ (p, p)is (P)7is(P)
+ £(p, ) a(P)Aa(P)] - (66)

Since the change of the distribution function is concentrated in the vicinity of the



WH M
Fermi surface, we define n and ¢ by
_ on . : _ on
n=(-Z2)uw) . ne=(- “’)« ) )

where 1 and ¢ depend only on the direction of p. For the same reason, f(p,p’).

depends only on the angle between p and p’. Then  can be written as

Q 1 _ Oneg 2 | a2 l/ 1OMeg Oneg
o= 2/2d7’( o )(n(p) +C@)) + 3 | 2r2dr 5=

x £ B, 8@ + D (B,5)CB)CE)] . (68)

Remember that we can replace (—Qggl) by 6(e — p), and that v(p) = [2 x %—’1] f=p =

2x 4rp?
rh) de‘f =p; We get

<l

= 3| [ T2+ o+ [ j‘j‘f}r[ 6 ()
+ FOG 00| | (69

where F($%)(p, i) is the dimensionless quantity defined by

F(p,9) = v(w) fO(b,9) - | - (70)

Setting © to be the angle between p and j', we can expand F(s’“) in a series of

Legendre polynomials

F($%9)(cos ©) = Z ng’a)Pg(cos Q) . (71)
£=0 '

Similarly, expressing the direction of p by 6 and ¢,n and { can be expanded in a

series of normalized spherical harmonics, such as

U(P = (6, 4) = Z Z Tlfm}/fm(g ¢

£=0 m=—¢ (72)
((®) =¢(6,9) = Z Z CemYem (8, 0) |
=0 m=—{
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Yem (0, 4) is normalized by

dé
[ Ym0 )Y (6,6) = St

Using the addition theorem for spherical harmonics

£ :
Pg(COS @) Z ¢)}/£ —m(g’ ¢ )

we can obtain the following expression for

g= ‘;"’(#)i 4_{;[(1 2£F;1) lmml +< 2€F+ 1) | Gom |2]

(73)

This shows that € is described by a sum of independent oscillators, with all the
a a) :

oscillators having different coefficients 1 + 34— 2( 77 For the equilibrium state to

be stable, a deviation of the distribution function should increase the energy.

(8 a)

Therefore the coefficients 1 + s+ 2671 must be positive.

One more important difference from the Fermi-gas is related to the density of

states v(p). Of course v(u) itself has the same form as that of the ideal Fermi-gas;

_ladr 2 x 47rpF dp 1 PF
I/(y’) = [2 dE:L__p = (27Fh)3 dE 7l'2h3pF'UF .

In the case of the ideal Fermi-gas, % is equal to the mass of the particle, the “bare
mass”, but in the case of the Fermi-liquid it is not true. So if we introduce the

“effective mass” m* of the quasiparticle defined by

m* = PF

vfp

then we can write down v(u) in the same form .

prm*
v(p) =

n2h3 (74)

m* should be related to m in terms of the set of parameters Fz(s’a).
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Now we apply the same procedure as in the case of the ideal Fermi-gas to
derive the momentum, the sound velocity, the spin susceptibility and the specific
heat of the Fermi-liquid.

1) Momentum density

We assume that the Fermi liquid system moves with a small velocity w. Choos-

ing the z-axis along the direction of w, we can write

P=)V / drpA(p,0)
= V/Qdszﬁs(p)
= V/2d7pcos€( 3neq) n(6, ¢) (75)

where 6 is the angle between p and the z-axis. Replacing (Qg—;l) by —6(e — p), we
can take v(u) out of the integral as usual ;

P.=prv(w)V [ coson(6,0)5;

= eV [ Pl(cos9>{z St ¥in(6 D

£=0 m=—{¢

= PFV(N)V—\/?mO : (76)

Thus we can express P, with only 719. We then minimize } — w - P with respect

to 7m0, that is

O\ 2o (14 5L ) o ~ wprv(u)Zmmo| = 0 (77)
3771 H 3 )Mo — WPFVH \/37710 =
from which we get '
1 1
== : 78
+ —t
3
Substituting eq.(78) into eq.(76), P, can be written as
1 : .
P, = ngpFV(V’) FT : (79)
1+ ?

Because the interaction does not change the total momentum, P, should be equal

to mNw, which is also true in the case of the ideal Fermi-gas. So comparing the
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expression of P, with that of the ideal case, we can gét

) = o) (80)
14 =L
+ 3
Therefore,
Viig T
=1+=%
Vgas 3
This also means
m* Fy
—=1+- . - (81)

The intéraction changes the effective mass and also the density of states, but the

ratios are described with only one parameter Fy.
2) Sound velocity

We consider a change in the chemical potential as the perturbation, and find
the change in the number of particles as the response of the system. In this case

we have to express AuN using the parameters 7y, or (i,
ApN = Ap(Neg+AN) = A,uZV/(neq+ﬁ)d7' = AuV/QdT(neq+ﬁ3) . (82)
. [

The change in the number of particles becomes

an=v [ 2dr( e )a(6.0) = sV [ Ton0.0) =¥ (83)

from which we have to minimize Q — AuN with respect to only ngg ;

9 1
oo 304+ By Sl =0 . (84)
Onoo L2
Then we get
Ap ‘
0 = T3 g (85)
Substituting eq.(85) into eq.(83), AN can be written as
AN = 2B ALy ©(86)

1+ Fg
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Therefore
N 1 N 1 N
2 _ _
CETTANN TV v() I~ Vmulp )(1+F0) (87)
dp 1+ Fy

The velocity u can be also Written with only one parameter Fj, but this is
different from what we need to express P,. Although the thermodynamic Quantities ,
of the Fermi-gas are described with only one quantity v(u), in the case of the
Fermi-liquid we cannot describe the system with only one quantity because of the

different coefficients of oscillators.
3) Spin susceptibility

We assume that our system is in an external magnetic field H. Choosing the

z-axis along H, M, can be written as

R

= gfL-V/2dTﬁa
h
- (G e [ 6.0
gh
= (7)‘/”(#){00 : (88)
Then we have to minimize Q@ — M - H with respect to only (00‘ ;
5 : ,
s | 300 + F)G — Srvluint] =0 (®9)
we get | ‘
_ (9" 1
<°0-<2)H1+Fg : ; (90)
Therefore
M, =M= 92)21/() L_n (91)
==\ TPWTERT
The spin susceptibility is
1M [gh\2 1
XTVET (7) VT Fg (92)

x can be also expressed with only one parameter Fé‘
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4) Specific heat

To derive the specific heat, we have to know the change in the entropy due to
a change in the temperature, but the entropy of the Fermi liquid is the same as
that of the Fermi gas. So the derivation of the specific heat of the Fermi liquid is
almost the same. Only one difference is that we have to replace m by m*. That

is,

2
C = Tu(p)
3 m=m*

3.4 Zero sound

So far we have discussed the static properties of the Fermi-liquid. In the case
of the sound velocity, we also considered the static response of the system. This

is true if the frequency of the sound w satisfies
1
wL -,
-
because during one period of oscillation the system has venoilgh time to equilibrate

through collisions.

However, since 7 is proportional to 1/T2, any w cannot satisfy the restriction
wr K 1 at very low temperatures. So we have to change our argument about the
sound propagation at very low temperatures. We have to consider the dynamic

equation for the distribution function.

To derive it we consider the conservation law of particles. Let us start from

the ideal Fermi-gas. The total number of particles is
N = Z/n(p,o, r,t)d3rdr | (93)
g

here n is a function of r and t. Considering a small volume element in phase space

d3pd3r, the conservation law of particles is expressed by

an

a5 T divj=0 (94)

-where j is the current of particles. In this case divergence has six components,

that is, the derivative with respect to r and p, and j also has six components of



WEH H
nr and np. So we can write

on 0, . o, .
5t + -a-;(nr) + Bg(np) =0 . (95)

Using the Hamilton equations

O¢ ) Oe

r=5-5 ) p:-—?a-;

we can derive the following transport equation for particles ;

On  On Q¢ _Onle_, (96)

The right-hand side of this equation should be zero if interaction of particles
is exactly zero, but this is not true when interactions are present. Because of
the interactions, quasiparticles change their momenta through collisions. This
means that quasiparticles jump from a small volume element to another element
in momentum space through collisions. So the right-hand side of the transport
equation is not zero any longer. We need a collision integral term I(n) in the

right-hand side for the case of the Fermi-liquid. If we write n as

n(p7 g, I‘,t) - nO(pa 0) + ﬁ(p,O',I', t) ) (97)
‘where ng is the equilibrium distribution function in the ground state, then the

order of I(n) is ~ —Z. On the other hand the order of %% is ~ wn, where w is the

frequency of the sound. So if w is much larger than %, that is
wr>1 (98)
then we can drop the collision integral. Since 7 is proportional to 1/T2, we can

neglect the collision integral at very low temperatures, and we can set the right-

hand side of the ti'ansport equation to be zero.
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Now let us derive the sound velocity of the Fermi liquid under the condition

wT > 1 ; the velocity of zero sound. The transport equation for quasiparticles is

5t Y or ap oror 0 (99)
The energy of a quasiparticle € can be written as
e—p=vr(p—po)+ ) / f(p,o;p',0")a(p’, o', r, t)dr’ (100)
o’ )

Substituting eq.(100) into eq.(99), and collecting terms of the first order in 7i, we
get ’

on

5t-+v-——:———~[2/fp, o p, a —dT]—O .

If we divide f and 7 into the spin symmetric and antisymmetric parts, we can get

(101)
the independent equations

aﬁs . 1_7:3 6”0/ (8) ans
5 +v- 5r ¥ p, 2d7‘ =0

X aﬁa Bna anO/f(a)( p,p

Bt Y
We treat only the spin symmetric equation below, but the same results can be

derived from the spin antisymmetric equation. If we write 75 as

ﬁ_<__?29 4
s ge )7

(102)

the transport equation becomes

317 577 _oe 8”0 877 !
at /f 38 Br +2dT =0 . (103)

dng

2 can be replaced by —é(¢ — ) and with account of definition of FG), we can
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- write

3’)7 3 (3) 6ndQ’
—+V:—+vV- /F (csG)a i

5 o =0 ~ (104)

where O is the angle between p and p’. In the sound wave 7 changes like

n = no(p)e’ KT L (105)

Then we can express the transport equation as

. dasy
(w— K- v)no(p) — /F( )(cos ©)mo(p )5 =0 (106)
that is
o o ,
no(p) = ——/Fs) (cos ©)no(p )4ﬂ_ (107)
F(®) can be expanded in a series of Legendric polynomials |
F)(cos®) = Z FE(S)P((COS o) . ~ (108)
L
Similarly, we can expand ng like
m0(p) = m(6,¢) = Z HOC O (109)

Here we discuss two simpie models taking the initial one or two components of
F(), In the éimplest model, we assume that the interaction f (3)(p, p’) is constant
independent of both p and p’. In this case the only component of F(%) is Fés).

The transport equation becomes

cos b

= u — cos @

/Fés)ng(cos 0')%sin9’d0' , (110)

where we assume that the direction of K is along z-axis and u is defined by

(111)
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To solve eq.(110), we write

0 cos @
=15 = A———
=T u—cosf ’ (112)

and substitute eq.(112) into eq.(110). Then we get

1 U u—1 :
Fés) —1+—2-1n(u+1) . . (113)

If Fés) > 0, there is one real solution, such that « > 1. From the definition of wu,

we can write ,
w=uvrpK . (114)

This means that uvr is the sound velocity. This velocity is larger than vp because
© > 1. This sound is called zero sound since it exists at zero temperature. If we

take one more compbnent of F(®), that is
FO =F® 4 F¥coso . | (115)

then we can obtain a different mode of the oscillation. Because cos® can be

expressed in terms of 8§ and ¢ as

03 = (5 7)
= sin @ sin @' (cos ¢ cos ¢’ + sin ¢ sin ¢') + cosf cosd’ (116)

we need only m = 1 terms of ny. So we can write 7y as

(8, ¢) = 1p(6) cos ¢ . - (117)
Substituting (115)~(117) into eq.(107), we get

asy’

cos b Fl(s) / sin 0 sin 8’ cos ¢ cos @' (') cos o' — . (118)

1 cos ¢ =

U — cosO 47

Eq.(118) can be reduced to

sin §'d6’
4

{ sinBcosb
M= —"—7

P / sin 8'ng (6") (119)

u — cosf

We can consider the solution in the same way as the last simplest case. We
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therefore obtain

_ _ (s
1+_1£1nu 1 6 — F}

= 120
2 wu+1 3F1(3)(u2 _ 1) ( )

As discussed before, if Fl(s) > 6, we have a real solution.

So far we have discussed two models. In the case of F(*) = Fés), ng is propor-
tional to ;‘—% To illustrate this oscillation, we compare it with the small shift
of the whole Fermi sphere along the z-axis. The displacement of the Fermi surface
along the z-axis gives 7, which is propdrtional to cos . In the case of zero sound
ny ~ % the situation is some what more complicated, but ng =~ %cos@ when
u>> 1. On the other hand, in the case of F(*) = Fés) + Fl(s) cos ©, for the second
of the models considered, g is proportional to 288 ¢4 In the limit u > 1,

u—cos 0
it describes a shift of a Fermi sphere in the direction transverse to the propagation

of the wave.



