Dispersing Billiards の半古典論*)

早大理工 原山卓久 分子研 首藤啓

000

(1993年12月20日受理)

目次

T		<i>44</i> 3					
2	Dispersing Billiards						
	2.1 3つの円弧から成る Dispersing Billiards	226					
	2.2 Dispersing Billiards のカオス	228					
	2.3 周期軌道の記号列による表現	231					
	2.4 記号列に対応する周期軌道	233					
3	エネルギー準位統計	237					
4	Dispersing Billiards の半古典量子化	238					
	4.1 多重散乱展開法による Gutzwiller formula の導出	238					
	4.2 Gutzwiller formula の Dispersing Billiards への適用	246					
	4.3 Riemann-Siegel lookalike formula	250					
	4.4 Novel Quantization	253					
5	境界要素法と半古典量子化の関係	254					
	5.1 境界要素法	254					
	5.2 境界要素法の半古典極限	257					
6	周期軌道の統計的性質とその普遍性	259					
	64 87	0.05					
1		265					
8	謝辞	266					
9	付録	267					
	9.1 付録 A. 撞球系のモノドロミー行列	267					
	9.2 付録 B. 定常位相近似	271					
	9.3 付録 C.1. Riemann のゼータ関数との類推	272					
	9.4 付録 C.2. Riemann-Siegel lookalike formula	273					
	9.5 付録 D. 撞球台からはみ出るような定常な多角形	275					
	9.6 付録 E. トポロジカルエントロピー	278					
10	参考文献	279					

*) 本稿は、編集部の方から特にお願いして執筆していただいた記事である。

1 序

天体の運動に代表されるように古典力学によって記述される現象は非常に多い. その ような系の未来は正準方程式を解くことによって完全に予測可能である.実際1自由度 系や2体のケプラー運動など解ける例はたくさん知られている. それでは我々の身近で起 こっていることがこのような決定論的法則に従っているにも関わらずほとんどすべて予測 できないのはなぜだろうか. 一つの解釈としては次のように考えられる. 我々の日常では 系の自由度が余りにも多いのですべての変数を制御することは不可能である、このためあ たかもデタラメに日常が進行しているように見えている. このような解釈は統計力学を支 えて来た基本的な考え方でもあるが, 実は予測不可能であることにはもう一つの解釈があ る. それは系の自由度の数が重要なのではなく系の非線形性により初期値の僅かな違いが 時間と共に指数関数的に増大されるため未来がデタラメになるというものである. このこ とはポアンカレなど数学者にはおよそ百年前から知られており研究されてきたが、他の分 野の科学者にはその重要性は認識されていなかった.1960 年代になって電子計算機の発達 により正準方程式により決定される非線形な少数自由度系の運動を調べることが可能と なったことで, 物理学者などにたとえ少数自由度の系であってもデタラメとしか考えられ ない運動が起こることが再発見され、カオスとして研究されるようになったのである. 特 にエネルギーの散逸があるような場合や一次元写像系については現象論により明らかに なったことが多く、物理サイドからの見方を取り入れることが成功している. それに比べ てエネルギーが保存するような場合について解明されたことは大変少ない.

保存系においては,正準方程式にに従う運動は大きく3つに分類できる.まず一つは解 析的に解けてしまう可積分系と呼ばれる場合である (Arnold 1978).先に挙げた2体のケ プラー運動などはこの範疇に属している.可積分系では未来は完全に予測できるのである. また,これとは全く正反対にほとんどすべての軌道が確率的になってしまう強いカオスの 系 (Anosov 系)がある (Arnold & Avez 1968).そのような系では相空間に常に伸びる方 向と縮む方向とを持つ双曲型の構造があるため,非常に近くまで接近した軌道同志でも引 き伸ばしと折り畳みによって,その差は指数関数的に広がることになる.つまり系の未来 が初期値に鋭敏に依存するということである.そのような場合初期値を無限の精度で決め られない限り未来は確率的になってしまう.ところでこれら2つはいずれも非常に理想化 された両極端の場合である.ほとんどすべての系はこれらの中間になっており,完全に予 測可能な軌道とまったく確率的な軌道とが無限階層的な入れ子構造を成しているので,相 空間に大変複雑な構造を持っている.そのような弱いカオス系,或いは近可積分系と 呼ばれる範疇に属している.現実の系は大抵このような弱いカオス系であると考えてよい. この複雑な弱いカオス系については未だ完全には解明されていないことが少なくなく,今 後明らかにされて行くことが期待される (Percival 1987, Mackay & Meiss 1987)

ところで、もっと小さな世界を記述するには量子力学を用いなくてはならない、量子 力学系であっても、エネルギーがずっと大きくなれば古典力学による記述と同じ振る舞い をするという対応原理を考えると、古典系と量子系とは無関係ではないと考えられる、そ れでは古典系のカオスも量子系に反映するだろうか、このような観点から古典カオス系を 量子化した系について詳しく研究され、可積分系を量子化した系との違いは次第に明らか

になった. 例えばエネルギースペクトルの最近接間隔分布を数値的に調べると, ほとんど すべての可積分系ではポアソン分布によく一致するのに対して,ほとんどすべての強いカ オス系ではウィーグナー分布によく一致する (Berry & Tabor 1977, Bohigas & Giannoni 1984、Bohigas、Giannoni & Schmit 1984). これは可積分系の場合理論的にほぼ完全に解 明されているが,カオス系についての理論は全く完成していない. その理由は可積分系の 場合量子化した系においてエネルギーが非常に大きいとき、古典系の特徴的な量を用いて 量子系を語ることができるのに対して,カオス系ではそのようなことが今のところできな いことにある.よく知られているように、1自由度系ではエネルギーが非常に大きい領域 において Wentzel-Kramer-Brillouin(WKB) 法によって半古典的に量子化できる (Fröman & Fröman 1966, Berry & Mount 1972). 多自由度になっても系が積分可能ならばこの方 法を拡張した Einstein-Brillouin-Keller(EBK) 量子化法を用いて半古典的に量子化できる のである (Maslov 1972, Maslov & Fedoriuk 1981, Percival 1977, Berry 1983, Delos 1986). ところが非可積分系をこのように半古典的に量子化する方法は未だに完成していないの である.しかしそのような半古典理論の完成無しには,例えばカオス系のエネルギースペ クトルの最近接間隔分布の理論の完成は期待できない.なぜならば、量子系に対する古典 系としての性質の反映を見なければならないので、古典系と量子系とをつなぐものが必要 であり、そのようなものは今のところ半古典論しか考えられないからである、従ってカオ ス系の半古典量子化の完成は量子カオス系を理解するために必要不可欠なのである.

可積分系については量子力学の成立当初から半古典量子化が分かっていたのに対して (Einstein 1917),非可積分系の量子化は長い間知られていなかったが,ようやく 1970 年代 になって,そのような形式として周期軌道量子化が得られた (Gutzwiller 1971, Balian & Bloch 1972,1974). これはは EBK 量子化のように自由度の数だけ存在する各トーラスを用 いて1 つの固有状態を量子化するのではなく,すべての周期軌道を用いてすべてのエネル ギー準位を決定する方法である.しかし,一般に強いカオス系では軌道の種類が非常に豊 富であるため,周期軌道をすべて知ることは大変困難である.周期軌道についての知見が ない限り周期軌道量子化法も使いようがない.また,Gutzwiller formula の導出過程におけ る近似計算の条件は,カオス系では破れている可能性があるので,半古典的量子化法が厳 密な量子力学の与える結果を良く近似できるかは明らかではない.

弱いカオス系は未だ古典カオスとしての研究対象であるので、周期軌道量子化の適用、 及び評価は困難である.そこで本論文では、古典系として強いカオスを示すことが数学的に 厳密に知られている Dispersing Billiard 系 (Sinai 1970, 久保 1973 Bunimovich 1989)の半 古典的量子化を試みる.まず第2章で境界の曲率が常に正である Dispersing Billiards と呼 ばれる撞球台における粒子の示すカオティックな振る舞い、軌道の記号力学化及び周期軌道 について議論する.第3章ではこの系におけるエネルギー準位統計について考察する.第4 章では多重散乱展開の方法 (Balian & Bloch 1970)を2次元平面の場合に適用し、Gutzwiller formula を導出する.さらにこれを用いて実際に半古典量子化を行い、厳密な量子力学との 比較により良い近似を与えることを数値的に示す (Harayama & Shudo 1992a).1990年代 になって得られた Riemann-Siegel lookalike formula は、最近の定常状態の半古典論におい て特に重要である (Berry & Keating 1990, Keating 1992, Berry 1991).素周期軌道につい てのオイラー積で書かれた Gutzwiller のゼータ関数と素数についてのオイラー積で書かれ た Riemann のゼータ関数には類似点が多い. そこで有限の半古典的領域で有限個の素数 を用いて Riemann のゼータ関数の零点を与える Riemann-Siegel 公式との類推から, 有限 のエネルギーまでのエネルギー固有値をある有限個の素周期軌道で与える上の公式が予想 されるのである. この方法が良い近似を与えることも数値的に示す. さらに, 与えられた周 期軌道を用いて多くのエネルギー準位を得る方法として考案された,Gutzwiller のゼータ 関数の実部だけに注目する Novel Quantization (Aurich, Matthies, Sieber & Steiner 1992) の適用についても報告する (Harayama, Shudo & Shimizu 1993).

ところで厳密な量子力学の与えるエネルギー固有値とはここでは境界要素法によって 数値的に得られるもののことである.両者とも同じエネルギー固有値を得る方法ではある が,この方法は周期軌道量子化とはまったく別の方法であるから、2つの異なる方法で得 られるエネルギースペクトルが非常によく一致するのは大変不思議である.そこで第5章 では境界要素法が半古典極限でどのようなものであるかを詳しく調べると実は周期軌道量 子化とほとんど同じになることが示せ,境界要素法を用いた数値計算で行っていることは 周期軌道量子化法とほとんど同じであることが分かることについて議論する (Harayama & Shudo 1992b).

できるだけ少ない周期軌道で多くのエネルギー準位を得る方法に Curvature Expansion がある、これはゼータ関数のオイラー積を展開することで短い周期軌道だけで書かれるよ うな形式を見出すもので、特に散乱問題では成功している (Cvitanovic & Eckhardt 1989). これらの研究をさらに発展するには周期軌道についての知見が少なからず役立つだろう. また,Gutzwiller formula ではすべての周期軌道を用いなくてはならないので, 有限個の周 期軌道を用いて得られた結果がどこまでも有効とは限らない. これを調べるにはこれまで 行われているよりもずっと多くの周期軌道を用いることが必要だが、それには周期軌道間 の関係を見出し、長い周期軌道を短い周期軌道で構成する必要がある.そのためにも周期軌 道の性質を詳しく調べることが重要である.しかし、モデルを限定し過ぎると詳細に分か るものの,その系の特殊性が強く現れてそのモデル以外に適用できない (Keating 1991a,b, Aurich, Bogomolny & Steiner 1991). 強いカオス系の半古典量子化に共通する困難の克服 には、ある特殊な系だけが持つのではない強いカオス系に普遍的な面に焦点を絞った周期 軌道についての知見を蓄積することが重要であると考えられるが、そのような研究は今ま で全くなされていない. そこで第6章では Dispersing Billiards がパラメーターの値によ らず常に強いカオスであることに注目し、その普遍的な性質をパラメーターを変化させる ことで見出す.その結果各周期軌道の間にはまるで乱数のように全く相関が見られず,統 計的法則に従うことが分かる.

Dispersing Billiards 2

3つの円弧から成る Dispersing Billiards 2.1

一定のエネルギーを持った粒子が平面内のある領域 D内では(古典)自由粒子として運 動し、境界∂Dでは入射角と反射角が等しいという反射の法則に従う力学系を考える.境界 の形に依存して様々な振る舞いを見せるこの粒子の運動を研究することを撞球 (Billiard) 問題といい、いくつかの厳密な結果が知られている. 古典力学系の性質が量子力学系のど のようなところに現れるかを知ることが目的なので、古典系が詳しく調べられている撞球 系は量子系として研究するのに最も適したものの1つである. ある撞球台 Dが与えられた とき、対応する量子力学系の研究は、境界∂Dに剛体壁があり領域 D内では自由運動する粒 子の時間発展,或いは定常状態を調べることである.定常状態の問題とは,時間に依存しな いシュレディンガー方程式(ヘルムホルツ方程式)

$$\nabla^2 \psi(q) + \frac{2mE}{\hbar^2} \psi(q) = 0, \quad q = (x, y) \in D$$
 (2.1.1)

の固有値,固有関数をディリクレ条件

$$\psi(q) = 0, \quad q \in \partial D \tag{2.1.2}$$

の下で調べることである.対称性の高い特殊な撞球台でない限り、このような問題は解析 的には解けないので数値的に調べる以外方法はない.

まず撞球台を選ぶことから始める.ここでの目的は古典系として見たとき非常に強いカ オスを示す系の半古典量子化に関して知見を集めることであるから,相空間の至るところ 双曲型の構造を持ち、その上 Gutzwiller の跡公式を適用し易い、即ち、周期軌道を見つけ易 いことが必要である、そこで図2.1.1のような3つの円弧で囲まれた撞球台を考えることに する. これは強いカオス系 (Anosov 系) であることが厳密に示された Dispersing Billiards と呼ばれる範疇に属する撞球台で (Sinai 1970), 可算無限個の記号を用いれば軌道を記号 列で表すことができることも分かっている (Sinai & Bunimovich 1980, Sinai, Bunimovichi & Chernov 1990). Dispersing Billiards とは、境界が外向き法線ベクトルに対して凹であ るような有限個の滑らかな曲線で作られた撞球台である. 我々はこのような境界成分とし て、3つの円弧を用いる.

図 2.1.1. 3 つの円弧で囲まれた撞球台.

この撞球台の作り方は、以下の通りである.まず、図 2.1.2 の三角形 ABC を与える.次 に2つの頂点を円弧で結ぶ.例えば辺BCの下側で辺BCの垂直二等分線上に中心を持つ 円により円弧BCを作る、同様にして点Aと点B、点Aと点Cとを円弧によって結ぶ、この ようにして作った撞球台は境界の曲率が常に正なので、同じような軌道を描いていた粒子 達でも壁に衝突する度に散乱され、すぐに全く異なる軌道を描くようになる、そのため粒 子の未来ははじめにどこからどの方向に飛び出すかに鋭敏に依存する. ところで今の構成 方法だとこの系にはいくつかのパラメーターがあるが、その値に関わらず常に強いカオス 系である.但し、2つの円弧が三角形の頂点で接する場合と各円弧の半径が無限に長くな る場合は例外であり、ここではそのようなことが起こらないようなパラメーターの値を選 ぶ. 前者にはどこまでも頂点に近付いて行く軌道があるため速度ベクトルの自己相関関数 が代数的な減衰を示すことが知られており (Machta 1983), 後者は非可積分系ではあるが 指数関数的な不安定性は持たない多角形の撞球問題となる (Sinai 1976, Boldrighini 1978, Gutskin 1987). 撞球台の大きさもパラメーターではあるが, エネルギーをスケールし直す ことで大きさが変化する前の相似な撞球台と全く同じ系に帰着されるので、本質的にはパ ラメーターではない. 従って, 粒子の未来を左右するのは三角形 ABC の各頂点での角度と 各円弧の半径(境界の曲率)ということになる.ここでは三角形 ABC、弧BC, 弧AC は固 定して弧ABの曲率だけを変化させることにする、このようにパラメーターを動かしても、 強いカオス系であるという性質は常に満足されているので、 パラメーターを変化させるこ とで強いカオス系に普遍的な性質を見出せることが期待できる.強いカオス系での周期軌 道の性質や半古典量子化がどの程度上手く機能するかはいくつか研究されているが、系の 特殊性がどこかに反映しているかも知れないので、上で述べたような視点から系統的に調 べてこれまで発見されていることがどこまで普遍的かを明らかにすることも重要である.

2.2 Dispersing Billiards のカオス

図 2.2.1 に壁上の 1 点から出発した軌道の様子を示す.壁の形が例えば矩形であるなら ば、水平の壁にぶつかるときに鉛直方向の運動量の向きだけが逆になり,鉛直の壁にぶつ かるときには水平方向の運動量の向きだけが逆になるので,どんな軌道であろうと 4 通り より多くの向きを作ることはできない.その場合,運動は水平方向と鉛直方向に分解でき る.即ち,1自由度の問題に帰着されてしまい,粒子の未来は完全に予測可能である.この ように各自由度の運動に分解できることが可積分系の特徴である.これに対して図 2.2.1 から明らかなように,典型的な非可積分系である Dispersing Billiards では,壁にぶつかる 毎に運動量の向きが様々に変化すことが分かる.このおかげで,軌道の種類は非常に豊富 になる.そしてこの場合には,粒子の振る舞いを1自由度の運動の組み合わせでは表現で きない.

図 2.2.1. 撞球台上における粒子の軌道.

1 つの軌道が撞球台を埋め尽くすようにデタラメに動き回っている図 2.2.1 からもこ の系のエルゴード性や予測不可能性は十分理解できるが、自然に導かれるポアンカレ写像 を用いると、相空間における混合性もはっきりと捉えられる. 撞球問題では、壁上のある1 点を始点として、壁に沿って測った衝突点の距離とその点での運動量の接線成分は正準座 標と正準運動量になっている(付録 A). これらを規格化したもの、即ちその距離の全周 に対する比ηと、衝突点での壁に対する外向き法線ベクトルと入射方向の成す角φの正弦 sin(φ)の組を用いたものを Birkhoff 座標という. この座標系は平面となり、この平面に対 して垂直方向に、ある衝突から次の衝突までの時間軸を取ると、この3 つ組が Billiard 系 の3次元定エネルギー超曲面となる. この空間で軌道は平面上のある点から鉛直に上って、 あるところで平面上の別の点に移るということを繰り返すことになる.Birkhoff 座標は3 次元定エネルギー超曲面の運動を2次元平面に落とすというポアンカレ写像になってい る. この Birkhoff 座標では面積が運動による写像で保存するので、この空間での一様性か らエルゴード性や混合性を見ることができる.Birkhoff 座標における図 2.2.2(a) のような 初期点の集まりは,Dispersing Billiards の力学により,図 2.2.2(b) のように引き伸ばされた り,折り畳まれたりしながら攪拌され,やがては図 2.2.2(g) のように相空間全体に一様に 広がって行く.

この引き伸ばしと折り畳みの機構が相空間のほとんどいたるところに存在していて, 軌道が確率的になることが厳密に証明されたものは,抽象的でない力学系では Dispersing Billiards が初めてであった (Sinai 1970). その後もこの系は詳しく研究され,可算無限個のマ ルコフ分割が存在すること (Bunimovich & Sinai 1980,1986, Bunimovich, Sinai & Chernov 1990) や,そのためローレンツ気体の粒子はブラウン運動の法則に従うことなど厳密に知 られていることが非常に多く (Bunimovich & Sinai 1980, Bunimovich 1989),古典系とし ての性質の反映を量子系に見るのに非常に適している.

- 230 -

2.3 周期軌道の記号列による表現

第2章で導入した3つの円弧より成る撞球台は,すべての周期軌道に対してそれぞれ 1つの記号列を対応させることができる.任意に与えた記号列に対応する周期軌道が必ず 存在するわけではないが存在すれば唯一であるので,周期軌道の種類に記号列により上限 を与えることができる.このことによって取りこぼすことなく周期軌道を得ることができ るのである.

図 2.3.1. 軌道の記号列による表現.

図 2.3.1 のように軌道が各円弧 Γ_0 , Γ_1 , Γ_2 に衝突することをそれぞれ記号 0,1,2 を用いて 表すことにする. 従って, 軌道は記号 0,1,2 により作られる無限に長い記号列として表され る. このような表現で軌道と記号列が 1 対 1 に対応することを説明する (Morita 1991). 各 周期軌道 γ は記号列

$$\xi(\gamma) \in \Sigma \tag{2.3.1}$$

により表現される. ここで,

$$\Sigma = \{\xi = (\xi_j)_{j=-\infty}^{j=\infty} \in \prod_{j=-\infty}^{\infty} \{0, 1, 2\} | \xi_j \neq \xi_{j+1} \text{ for any } j\}$$
(2.3.2)

である.ξ_jとξ_{j+1}が必ず異なるのは,境界の曲率が至るところ正なので同じ円弧に続けて衝 突できないからである,

図 2.3.1 のように弧AC に点 P で衝突し、次に弧AB に点 P_1 で衝突する軌道を考える. 弧AC に沿って測った点 Pと点 C との距離をr,点 Pでの撞球台に対する内向き法線ベクトルと発射方向のなす角を φ とする. 同様に境界に沿って測った点 P_1 と点 C との距離を r_1 , 点 P_1 での内向き法線ベクトルと発射方向のなす角を φ_1 とする. 幾何学的考察(付録 A) から

$$\frac{dr_1}{dr} = -\frac{\cos\varphi}{\cos\varphi_1} \left[1 + \frac{\tau}{\cos\varphi} \left(\frac{d\varphi}{dr} + k(r) \right) \right]$$
(2.3.3)

-231 -

が成り立つことが分かる. ここで τ は点 Pと点 P_1 との距離で,k(r)は点 Pにおける境界の曲率である. $(r_0, \varphi_0), (r_1, \varphi_1), \cdots, (r_n, \varphi_n)$ と次々に衝突する軌道では (2.3.3) より

$$\frac{dr_n}{dr_0} = \frac{dr_n}{dr_{n-1}} \frac{dr_{n-1}}{dr_{n-2}} \cdots \frac{dr_1}{dr_0} = (-1)^n \frac{\cos\varphi_0}{\cos\varphi_n} \prod_{j=0}^{n-1} b_j$$
(2.3.4)

となる.ここで

$$b_j = 1 + \frac{\tau_j}{\cos\varphi_j} \left(\frac{d\varphi_j}{dr_j} + k(r_j) \right)$$
(2.3.5)

である.ところで

$$\frac{d\varphi_1}{dr_1} = k(r_1) + \cos\varphi_1 \left[\tau + \cos\varphi \left(\frac{d\varphi}{dr} + k(r)\right)^{-1}\right]^{-1}$$
(2.3.6)

であり, $-\pi/2 \leq \varphi \leq \pi/2$ より $\cos \varphi_j \geq 0, k(r_j) \geq 0$ だから, $d\varphi_0/dr_0 \geq 0$ としておくと

$$\frac{d\varphi_j}{dr_j} \ge 0 \quad (j = 1, 2, \cdots, n) \tag{2.3.7}$$

となるので

$$b_j \ge 1 + \eta, \quad \eta > 0, \quad (j = 0, 1, \cdots, n - 1)$$
 (2.3.8)

を満足するようなηが存在する.(2.3.4),(2.3.8) より

$$\left|\frac{dr_n}{dr_0}\right| \ge |\cos\varphi_0|(1+\eta)^n \tag{2.3.9}$$

を得る. 今同じ円弧上にあってその円弧に沿って測ると距離r(x,y) だけ離れている点x と 点yとから2つの粒子が同時に発射されて,n回までに衝突する円弧の順序, 即ち, 記号列が 等しいためには, 境界を作っている各円弧のうち最も短いものの長さをlとすると (2.3.9) より

$$r(x,y) \le |\cos\varphi_0|^{-1} l(1+\eta)^{-n}$$
(2.3.10)

でなければならない.1つの記号列に対して2つの異なる軌道が存在すると仮定しよう.こ の場合どこかの円弧上では異なる点で衝突するはずだからそれらの点をそれぞれ x_0, y_0 とす れば,その円弧に沿って測ったそれら2点の距離 $r(x_0, y_0)$ は正である.ところが軌道は無限 に長いから (2.3.10) で $n \rightarrow \infty$ とすると,境界に接するような軌道でなければ $r(x_0, y_0) = 0$ となり仮定に矛盾する.即ち,境界に接するような軌道でなければ,記号列と周期軌道は 1対1に対応することが分かる.ところで境界に接するような周期軌道は例えば弧ACの 半径を少し変化させるなど僅かに境界の形を変えると接しなくなるので,即ち構造安定で はないので接していない状況を考えれば十分だから,記号列に対して周期軌道は存在すれ ば唯一であることが分かる.但し (2.3.2) のすべての記号列に対して必ず軌道が存在する とは限らない.各円弧を作っている3つの円が互いにぶつからないように離れたような状 況 (もちろんもはや束縛された系ではない)を考えると,どの円から他の2つの円を見ても 2 つとも満月に見えるくらい互いの距離が十分離れていれば,(2.3.2) で与えられる記号列 に対応する周期軌道は必ず存在することが厳密に証明でき,その長さの分布についての詳 しい解析や半古典散乱理論が可能となる (Morita 1991, Ikawa 1990a, b, Gasperd & Rice 1988a, b, c, Cvitanovic & Eckhardt 1989). しかし, 3 つの円が互いに近づくに従って存在 できなくなる周期軌道が増えるのである. 我々の撞球台は 3 つの円が互いに交わってしま うほど近づいているので,対応する周期軌道が存在しない記号列がかなり多いと考えられ る. このことはマルコフ分割は構成可能だが可算無限個必要になってしまうことからも推 測できる (Sinai & Bunimovich 1980, Sinai, Bunimovich & Chernov 1990).

このようにして軌道が記号列で表現できると、周期軌道の種類が記号列で制限できるので、周期軌道を数値的に求める際には無駄が省かれ大変効率が良い.

2.4 記号列に対応する周期軌道

まず,与えられた記号列に対応する円弧上の点を結んで出来る多角形のうち,周の長さ が最小になるものが周期軌道であることを証明する.図 2.4.1 で点 F'から発射され円弧上 の点 Pで反射し点 Fに至る軌道を考える.点 Pでは入射角と反射角が等しいので,点 Fと 点 F'とを焦点とする楕円で点 Pで境界に接するようなものが存在する.Pとは異なる円弧 上の点 P'と点 Fとを結ぶ線分 P'Fと楕円との交点をQとすると

$$\overline{P'F} + \overline{P'F'} = \overline{P'Q} + \overline{QF} + \overline{P'F'} > \overline{QF} + \overline{QF'} = \overline{PF} + \overline{PF'}$$
(2.4.1)

であるから,点 Pは境界上の点と点 F,点 F'とを結ぶ線分の長さが最小となるような点で あることが分かる. 我々の撞球台の壁はすべて円弧から成っているので,軌道であれば境 界との衝突点について常に上の主張が成り立つ. 従って各頂点が記号列に対応する円弧上 にある多角形のうち,その周の長さが最小のものが周期軌道であることが分かる. このよ うな多角形では,頂点を境界に沿って僅かに変化させても周の長さは変わらないので,定 常な多角形と呼ぶことにする (Balian & Bloch 1972). また証明から明らかなように,境界 は特に円弧で出来ていなくても曲率が至るところ正であれば上記のことが成り立つが,壁 に負曲率の部分を持つような撞球台では周期軌道は定常な多角形ではあるが必ずしも周 の長さが最小とはならない.

図 2.4.1. 周期軌道は壁上に頂点を持つ周の長さが最小の多角形である.

原山卓久・首藤 啓

次に記号列 c_0, c_1, \dots, c_{n-1} が与えられたとき対応する周期軌道を数値的に求める方法 について説明する. c_j に対応する円弧上の点と c_{j+1} に対応する円弧上の点とを結ぶ線分の 長さを $L_{c_jc_{j+1}}$,境界に沿って測った頂点 C と c_j に対応する円弧上の点との距離を x_{c_j} とす る. x_{c_j} は頂点 C を原点として反時計回りを正方向とする境界に沿って設けた座標を表すと 考えてもよい. 周期軌道は定常な多角形であるから,

$$\frac{\partial}{\partial x_{c_j}} \left(L_{c_{j-1}c_j} + L_{c_jc_{j+1}} \right) = 0, \quad j = 1, 2, \cdots, n, \quad c_n = c_0, c_{n+1} = c_1 \tag{2.4.2}$$

である、更に周の長さが最小である条件として

$$\frac{\partial^2}{\partial x_{c_j}^2} \left(L_{c_{j-1}c_j} + L_{c_jc_{j+1}} \right) > 0, \quad j = 1, 2, \cdots, n, \quad c_n = c_0, c_{n+1} = c_1 \tag{2.4.3}$$

を満足しなければならない.素朴に考えると (2.4.2) は非線形連立方程式だから,高次元の ニュートン法 (ブレント法) によって解を求められるはずである (Chen, Meiss & Percival 1987). しかしそのような方法を用いると,周の長さが x_{cj}達の滑らかな関数でないために (2.4.3) が成立しないような偽の解が得られてしまう場合がある. もちろんそのようなとき は新たに (2.4.2) を満たす解が得られるまで初期点を置き直せばよいが,正しい解の非常に 近いところに置かなければならないので大変能率が悪い. そこで次のような方法を用いる.

図 2.4.2. 弧 XY上の定常な点は P⁽¹⁾である.

まず $P_{c_i}^0(j=0,1,\cdots,n-1)$ を c_j に対応する円弧 Γ_{c_j} の中点に置く. そして $P_{c_0}^0 \geq P_{c_2}^0$ を 固定して $P_{c_1}^1$ を (2.4.2) が成り立つ点として1次元のニュートン法を用いて解くことによ り求める. ここで現れる1次元のニュートン法の解は,図2.4.2 に示してあるように円 Γ_{c_1} の中心と $P_{c_0}^0, P_{c_0}^0$ とを結ぶ線分が Γ_{c_1} と交わる点 X,Yの間に必ず存在するので容易に得ら れる. 続いて $P_{c_1}^1 \geq P_{c_0}^0$ を固定して (2.4.2) が成り立つ点として $P_{c_0}^1$ を求める. 同様の手続き を $P_{c_0}^1$ が決まるまで繰り返し, $P_{c_i}^1(j=0,1,\cdots,n-1)$ を得る. 次に { $P_{c_i}^0$ } から { $P_{c_i}^1$ } を求 めたのと全く同じ方法で $\{P_{c_j}^1\}$ から $\{P_{c_j}^2\}$ を求める. $P_{c_j}^i$ 達は常に撞球台の壁の上にあるので偽の解は決して現れない. これを繰り返して得られる

$$P_{c_j}^{\infty} = \lim_{k \to \infty} P_{c_j}^k \tag{2.4.4}$$

がある点に収束するなら,n角形 $P_{c_0}P_{c_1}\cdots P_{c_{n-1}}$ は定常な多角形となり,記号列 $c_0, c_1, \cdots, c_{n-1}$ に対応する周期軌道が得られることになる. 我々の数値計算では $|x_{c_j}^i - x_{c_j}^{i+1}|$ が 10^{-9} 以下になった時点で収束したと判断することにした. 記号列に対応する軌道が存在しないときは P_{c_j} が円弧と円弧の交点に収束して行くので, $L_{c_jc_{j+1}}$ が 10^{-6} 以下になるなら軌道は存在しないと判断する。また (2.4.4) における kが 1000 を越える場合は対応する軌道の有無は判断不可能とし $n = 3, 4, \cdots, 20$ まで調べた. その結果すべての記号列の約 99%は収束し判断することができた.

ここで説明した方法を用いて実際に数値的に周期軌道を求めるのに、図 2.1.2 でのパ ラメーターの値を以下のように設定した. 三角形 ABC の底辺の長さ $R = 0.01, \angle ACB =$ $\varphi_{01} = \frac{1}{3}\pi$, $\angle ABC = \varphi_{20} = \frac{13}{42}\pi$, $\alpha_0 = \frac{5}{11}\pi$, $\alpha_1 = \frac{2}{5}\pi$ としてこれらの値は一切変化させないこ とにする. 従って我々の撞球台でのカオスの強さは弧ABの曲率に関係しているパラメー $g-\alpha_2$ だけに依存することになる. $\alpha_2 \epsilon_{\frac{2}{27}}$ から $\frac{\pi}{21}$ まで変化させたときに得られる素な周 期軌道についての結果を表 2.1 に示す. また時間反転したときに異なる軌道になっても幾 何学的には同じ定常な多角形であるものは一つと数えた場合の結果を表 2.2 に示す.表に おける n は軌道が出発点に最初に戻って来るまでに壁にぶつかる回数を表している. α2が 小さいほど弧ABの曲率は大きくなる. 従って隣接する軌道はここにぶつかったときα2が 小さいほど速く互いに離れて行くのでより強いカオス系となる、一般にカオスの強さは異 なるトポロジーの軌道の多さ, 換言すると, 軌道の豊富さに関係している. つまり強いカオ ス系ほどいろいろな種類の軌道を持っているのである. 我々の系では軌道の豊富さとは対 応する周期軌道が存在する記号列の数であるから,表 2.1,2.2 ではα2が小さいほど周期軌 道の数が多くなっているのである. 図2.4.3 に周期軌道の例を示す. これらはすべて壁との 衝突回数が14 である. 図2.4.3(a),(b) は時間反転した軌道と元の軌道が区別できる例であ り,図 2.4.3(c) は区別できない、即ち、時間反転しても同じ軌道になってしまう例である.

原山卓久・首藤 啓

 $\pi/2.1$ π/2.2 $\pi/2.3$ $\pi/2.4$ $\pi/2.5$ $\pi/2.6$ $\pi/2.7$ \boldsymbol{n} · 36 171Ô 41776 47760 52895

表2.1. 周期軌道の個数.

表 2.2. 幾何学的な長さが異なる周期軌道の個数.

_		the second s					
n	$\pi/2.1$	$\pi/2.2$	$\pi/2.3$	$\pi/2.4$	$\pi/2.5$	$\pi/2.6$	$\pi/2.7$
3	1	1	1	1	1	1	1
4	3	3	3	3	3	3	3
5	3	3	3	3	3	3	3
6	1	4	5	. 7	8	8	8
7	3	5	5	5	7	8	8
8	7	9	11	11	12	14	16
9	10	11	13	18	18	19	19
10	19	26	33	41	42	43	46
11	25	33	41	46	50	55	61
12	49	62	. 79	89	99	115	124
13	68	94	124	140	159	175	189
14	133	181	233	279	323	351	387
15	184	264	353	431	507	559	604
16	330	488	664	811	960	1074	1180
17	511	784	1079	· 1349	1588	1803	1999
18	914	1432	1975	2529	2982	3400	3794
19	1444	2319	3296	4299	5147	5891	6520
20	2521	4136	598-1	7829	9519	10980	12193
	6226	9855	13902	17891	21428	24502	27155

図 2.4.3. 記号列に対応する周期軌道の例. (a) 1,2,0,1,2,0,1,2,0,1,2,0,1,0 (b) 1,2,0,1,2,0,1,2,0,2,0,2,1,0 (c) 1,2,0,1,2,0,1,0,2,1,0,2,1,0

3 エネルギー準位統計

古典系カオスの量子系への反映として知られているものにエネルギー準位統計がある (Bohigas, Giannoni & Schmit 1984, 長谷川 1991). 普遍則を見るためには, ある古典系に 特有の性質は取り除く必要がある. このためエネルギースペクトルに関しては, 平均レベ ル間隔を1にする. というのは, この操作を行わないと平均レベル間隔は N自由度系では

$$\overline{d}(E) \approx \frac{1}{h^N} \int d\mathbf{q} \int d\mathbf{p} \delta[E - H(\mathbf{q}, \mathbf{p})] \quad (h \to 0)$$

となり (Baltes & Hilf 1976), エネルギー E以下の相空間の体積で決まるので個々の系で 異なってしまう. 我々が注目するのは,系の詳細には依存しないカオス系であることによ る普遍則であるから,1 つの系に固有な性質は取り除く.例として Dispersing Billiard 系 のエネルギー準位を数値的に求め,平均レベル間隔を1 にする操作を行った後に,レベル の最近接間隔分布を計算すると図3のようになる (清水 & 原山 1993). この図は,カオ スの強さを制御するパラメーター α_2 の値が $\pi/2.1, \pi/2.2, \dots, \pi/2.7$ の場合の最近接間隔分 布の重ね書きである. α_2 の値が異なれば当然各エネルギー固有値も異なるが,それにも関わ らず最近接間隔分布は半古典的エネルギー領域において1 つの分布-Wigner 分布で良く 近似できる. つまり,ほとんどすべてのカオス系では系の詳細に関わらず,半古典的エネル ギー領域における最近接間隔分布はWigner 分布に一致するのである (Bohigas, Giannoni & Schmit 1984, 長谷川 1991). これに対して,ほとんどすべての可積分系の半古典的エ ネルギー領域における最近接間隔分布はポアソン分布に一致する. (Bohigas, Giannoni & Schmit 1984,長谷川 1991).

このような普遍則の理論について,可積分系の場合は Berry と Tabor の試みがある (Berry & Tabor 1977). その解析において重要な役割を果たしたのは,WKB 法を多自由 度系に拡張した EBK 量子化法である. これを用いて古典力学の情報が量子力学の情報に 変換されることが重要である. 一方,量子化されたカオス系の普遍則について理論的に解 明されたことは大変少なく,僅かに高次の相関についてのみであると言ってもよい (Berry 1985). その理由は,カオス系では古典力学の世界の言葉を,量子力学の世界の言葉に翻訳 するものが,完全には作り上げられていないからである. 古典カオスの量子力学の世界へ の影響を解明することが我々の目標であるが,2つの世界をつなぐものを完成させること が戦略として必要不可欠である. そのようなものの候補としては今のところ半古典論しか ない. そこで次の章で典型的なカオス系である Dispersing Billiards の半古典量子化につい て議論する.

> 図 3. Dispersing Billiards における エネルギースペクトルの最近接間隔分布.

4 Dispersing Billiards の半古典量子化

4.1 多重散乱展開法による Gutzwiller formula の導出

古典系が可積分系であるときは EBK 量子化 (トーラス量子化) によって半古典的に量 子化することができるが (Maslov 1972, Percival 1977, Berry 1983), 非可積分系では同じよ うな半古典量子化はできないことは量子力学が成立した当時から知られていた (Einstein 1917). つまり前期量子論で重要な役割を果たしたボーア=ゾンマーフェルトの量子化条 件が非可積分系には存在しないということである. この問題はようやく 1971 年になって Gutzwiller によって大きな進展を迎えた. 非可積分系でも古典系のすべての周期軌道を 用いれば,量子化した系の非常に高い固有エネルギーを予測できる公式を得たのである (Gutzwiller 1971). 彼はその後非等方ケプラー運動が強いカオスであることを数値的に示 し (Gutzwiller 1977),周期軌道を用いて公式が基底エネルギーから非常によい精度で成立 することを初めて示した (Gutzwiller 1982). しかし一般にカオス系の周期軌道を求めるこ とは大変困難なのでその後実際にこの公式を用いて量子化した例はそれほど多くはない. 我々の系ではカオスの強さをパラメーターによって変えられるので,ある特殊なパラメー ターのときではなく一般に Gutzwiller formula がどのくらい良い近似であるかを試すこと ができる.

まず周期軌道量子化法について説明する. ある撞球台 A が与えられたとき,対応する量 子力学系の研究は,境界∂A に剛体壁があり領域 A 内では自由運動する粒子の時間発展,或 いは定常状態を調べることである. それは時間に依存しないシュレディンガー方程式(へ ルムホルツ方程式)

$$\nabla^2 \psi(\mathbf{r}) + \frac{2mE}{\hbar^2} \psi(\mathbf{r}) = 0 , \ \mathbf{r} \text{ in } A$$
(4.1.1)

とディリクレ条件

$$\psi(\mathbf{r}) = 0 , \mathbf{r} \text{ on } \partial A \tag{4.1.2}$$

によって記述される. ここで $\mathbf{r} = (x, y)$ はデカルト座標,m は粒子の質量,h はプランク定数,Eは粒子のエネルギー固有値, ψ は Eに対応する固有状態の波動関数である.

境界の形が円や矩形でないため、粒子が古典力学としてカオティックな振る舞いをする とき、エネルギーが非常に大きい半古典的領域において、エネルギー固有値を古典力学の 情報で計算する方法が Gutzwiller formula による周期軌道量子化法である. ここでは多重 散乱展開の方法を適用してこの公式を導く (cf. Balian & Bloch 1970, 1972).

シュレディンガー方程式 (4.1.1) に対する時間に依存しないグリーン関数を

$$\nabla_{\boldsymbol{r}}^2 G(\boldsymbol{r}, \boldsymbol{r}', E) + \frac{2mE}{\hbar^2} G(\boldsymbol{r}, \boldsymbol{r}', E) = \delta(\boldsymbol{r} - \boldsymbol{r}')$$
(4.1.3)

と

$$G(\boldsymbol{r},\boldsymbol{r}',E)=0, \ \boldsymbol{r} \quad \text{on } \partial A \tag{4.1.4}$$

で定義すると, $G(\mathbf{r}, \mathbf{r}', E)$ は

$$G(\boldsymbol{r}, \boldsymbol{r}', E) = \sum_{\boldsymbol{n}} \frac{\psi_{\boldsymbol{n}}(\boldsymbol{r})\psi_{\boldsymbol{n}}^{*}(\boldsymbol{r}')}{(E - E_{\boldsymbol{n}})\frac{2m}{\hbar^{2}}}$$
(4.1.5)

と表すことができる.従って状態密度 $\rho(E)$ は

$$\rho(E) \equiv \sum_{n} \delta(E - E_{n}) = \lim_{\epsilon \to 0} -\frac{1}{\pi} \operatorname{Im} \sum_{n} \frac{1}{E - E_{n} + i\epsilon}$$
$$= \lim_{\epsilon \to 0} -\frac{1}{\pi} \operatorname{Im} \int_{A} da [G(\mathbf{r}, \mathbf{r}', E + i\epsilon)]_{\mathbf{r} = \mathbf{r}'} \frac{2m}{\hbar^{2}}$$
(4.1.6)

となる. (4.1.3) で境界条件の制約のない全空間に対する特解は

$$G_0(\boldsymbol{r}, \boldsymbol{r}', E) = -\frac{1}{4} i H_0^{(1)} \left(\frac{\sqrt{2mE}}{\hbar} |\boldsymbol{r} - \boldsymbol{r}'| \right)$$
(4.1.7)

で与えられる. ここで $H_0^{(1)}$ は第一種零次のハンケル関数である (Abramobitz & Stegun 1964). $G \in G_0$ と残りの部分 G_1 に分け,

$$G \equiv G_0 + G_1 \tag{4.1.8}$$

とすると,

$$\nabla_{\mathbf{p}}^{2}G_{1}(\mathbf{r},\mathbf{r}',E) + \frac{2mE}{\hbar^{2}}G_{1}(\mathbf{r},\mathbf{r}',E) = 0 \qquad (4.1.9)$$

と

$$G_1(\boldsymbol{r},\boldsymbol{r}',E) = -G_0(\boldsymbol{r},\boldsymbol{r}',E) , \ \boldsymbol{r} \quad \text{on } \partial A \qquad (4.1.10)$$

となる. ここで $G_1(\mathbf{r},\mathbf{r}',E)$ を

$$G_1(\boldsymbol{r}, \boldsymbol{r}', E) = \oint ds_1 \frac{\partial G_0(\boldsymbol{r}, s_1)}{\partial n_1} \mu(s_1, \boldsymbol{r}')$$
(4.1.11)

という形で表すことを考える. ここで, s_1 は境界上に取ったある始点から A の境界に沿って 反時計まわりを正方向として測った長さで,積分は境界に沿う線積分である. 簡単のため グリーン関数の引数であるエネルギーを省略した. また $\frac{\partial}{\partial n_1} = n_1 \cdot \nabla_{s_1}$ である. ここで, n_1 は s_1 における A に対して外向きの法線ベクトルである. (4.1.11) の $\mu(s_1, \mathbf{r}')$ を求める. \mathbf{r} を A 内の点から境界上の点 s_2 に近づける極限を $G_1^{(+)}(s_2, \mathbf{r}')$,(4.1.11) で**r**が境界上の点 s_2 と したものを $G_1^{(0)}(s_2, \mathbf{r}')$ とする. 任意の関数 $q(\mathbf{r})$ に対して $\nabla^2 q(\mathbf{r}) + \frac{2mE}{\hbar^2}q(\mathbf{r}) = f(\mathbf{r})$ とす るとグリーンの定理より

$$\oint ds' \{q(\mathbf{r}') \frac{\partial G_0(\mathbf{r}, \mathbf{r}')}{\partial n_{\mathbf{r}'}} - G_0(\mathbf{r}, \mathbf{r}') \frac{\partial q(\mathbf{r}')}{\partial n_{\mathbf{r}'}} \} + \int_A da' G_0(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') = \begin{cases} q(\mathbf{r}), & \mathbf{r} \text{ in } A \\ \frac{1}{2}q(\mathbf{r}), & \mathbf{r} \text{ on } \partial A \\ 0 & \mathbf{r} \text{ outside } A \end{cases}$$

$$(4.1.12)$$

となる.よって,

$$G_1^{(+)}(s_2, \mathbf{r}') - G_1^{(0)}(s_2, \mathbf{r}') = \frac{1}{2}\mu(s_2, \mathbf{r}')$$
(4.1.13)

を得る.また,Gの連続性から

$$0 = G(s_2, \mathbf{r}') = G_1^{(+)}(s_2, \mathbf{r}') + G_0(s_2, \mathbf{r}')$$
(4.1.14)

- 239 -

原山卓久・首藤 啓

であるから,

$$\mu(s_2, \mathbf{r}') = -2G_0(s_2, \mathbf{r}') - 2 \oint ds_1 \frac{\partial G_0(s_2, s_1)}{\partial n_1} \mu(s_1, \mathbf{r}')$$
(4.1.15)

となる.従って,

$$\mu(s_1, \mathbf{r}') = -2G_0(s_1, \mathbf{r}') - 2 \oint ds_2 \frac{\partial G_0(s_1, s_2)}{\partial n_2} \mu(s_2, \mathbf{r}')$$

$$= -2G_0(s_1, \mathbf{r}') + 2^2 \oint ds_2 \frac{\partial G_0(s_1, s_2)}{\partial n_2} G_0(s_2, \mathbf{r}')$$

$$-2^3 \oint \oint ds_2 ds_3 \frac{\partial G_0(s_1, s_2)}{\partial n_2} \frac{\partial G_0(s_2, s_3)}{\partial n_3} G_0(s_3, \mathbf{r}') + \cdots$$

$$+(-2)^N \oint \cdots \oint ds_2 \cdots ds_N \frac{\partial G_0(s_1, s_2)}{\partial n_2} \cdots \frac{\partial G_0(s_{N-1}, s_N)}{\partial n_N} G_0(s_N, \mathbf{r}') + \cdots$$

$$(4.1.16)$$

- となる.(4.1.16) を (4.1.11) に代入して (4.1.8) より

$$G(\mathbf{r},\mathbf{r}',E) = G_0(\mathbf{r},\mathbf{r}') - 2 \oint ds_1 \frac{\partial G_0(\mathbf{r},s_1)}{\partial n_1} G_0(s_1,\mathbf{r}') + (-2)^2 \oint \oint ds_1 ds_2 \frac{\partial G_0(\mathbf{r},s_1)}{\partial n_1} \frac{\partial G_0(s_1,s_2)}{\partial n_2} G_0(s_2,\mathbf{r}') + (-2)^3 \oint \oint \oint ds_1 ds_2 ds_3 \frac{\partial G_0(\mathbf{r},s_1)}{\partial n_1} \frac{\partial G_0(s_1,s_2)}{\partial n_2} \frac{\partial G_0(s_2,s_3)}{\partial n_3} G_0(s_3,\mathbf{r}') + \cdots + (-2)^N \oint \cdots \oint ds_1 ds_2 \cdots ds_N \frac{\partial G_0(\mathbf{r},s_1)}{\partial n_1} \frac{\partial G_0(s_1,s_2)}{\partial n_2} \cdots \frac{\partial G_0(s_{N-1},s_N)}{\partial n_N} G_0(s_N,\mathbf{r}') + \cdots$$

$$(4.1.17)$$

$$\rho(E) = \frac{mA}{2\pi\hbar^2} - \frac{1}{\pi} \sum_{n=1}^{\infty} (-2)^N \times$$

$$\operatorname{Im} \int da \oint \cdots \oint ds_1 ds_2 \cdots ds_N \left[\frac{\partial G_0(\boldsymbol{r}, s_1)}{\partial n_1} \frac{\partial G_0(s_1, s_2)}{\partial n_2} \cdots \frac{\partial G_0(s_{N-1}, s_N)}{\partial n_N} G_0(s_N, \boldsymbol{r'}) \right]_{\boldsymbol{r} = \boldsymbol{r'}} \frac{2m}{\hbar^2}$$
(4.1.18)

を得る. ここで特に混乱しないと考え,Aの面積をAとした. $\tau(s,s')$ を境界 ∂A 上の点rとr'とのユークリッド距離

$$\tau(s,s') \equiv |\boldsymbol{r} - \boldsymbol{r}'| \tag{4.1.19}$$

とし, $\varphi(s',s)$ を $\mathbf{r} - \mathbf{r}'$ と A に対して外向きの法線ベクトル**n**とのなす角 (反時計まわりを 正方向) とすると図 4.1.1 より

$$\frac{\partial G_0}{\partial n} = \boldsymbol{n} \cdot \nabla_{\boldsymbol{r}} G_0 = \cos \varphi(s', s) \frac{\partial G_0}{\partial \tau}$$
(4.1.20)

である.次に (4.1.18) の右辺の第2項の半古典極限 (ħ→0) を考える.以下では撞球台の形について次のようなものに限ることにする.この系を古典系として考えるならば非常に

強いカオス系でありすべての周期軌道は不安定な双曲型で,安定でも不安定でもないもの や楕円型のものは全く存在しない. *z*を変数とするハンケル関数では *z*が十分大きいとき 漸近形は

$$H_{\nu}^{(1)}(z) \approx \sqrt{\frac{2}{\pi z}} e^{i\left(z - (2\nu + 1)\frac{\pi}{4}\right)}$$
(4.1.21)

となる. これを用いると, この系のエネルギーが非常に大きいときには

$$\frac{\partial G_0(\boldsymbol{r},s_1)}{\partial n_1} \frac{\partial G_0(s_1,s_2)}{\partial n_2} \cdots \frac{\partial G_0(s_{N-1},s_N)}{\partial n_N} G_0(s_N,\boldsymbol{r'}) \bigg|_{\boldsymbol{r}=\boldsymbol{r'}} \approx$$

$$-\frac{1}{4}ie^{-\frac{1}{4}(N+1)\pi i}\left(\frac{1}{4}\frac{\sqrt{2mE}}{\hbar}\right)^{N}\left(\prod_{j=1}^{N+1}\cos\varphi(s_{j-1},s_{j})\sqrt{\frac{2\hbar}{\pi\sqrt{2mE}\tau(s_{j-1},s_{j})}}\right)\exp\left(i\frac{\sqrt{2mE}}{\hbar}l(s_{0},\cdots,s_{N})\right)$$
(4.1.22)

となる. ここで, $s_0 = s_{N+1}$ はともに点rを表す. $l(s_0, \dots, s_N) = \sum_{j=1}^{N+1} \tau(s_{j-1}, s_j)$ は s_0 から $s_1, s_2, \dots, s_N, s_0$ をこの順に線分でつないだ多角形の周の長さである. また, $\cos \varphi(s_N, s_{N+1}) =$ 1 とする. (4.1.18)の右辺において周期軌道上の一点rの近くで、周期軌道に沿う方向と垂 直な方向に座標系を取り、それぞれ s_a, s_0 で表す. このとき、 $\int da = \int ds_a \int ds_0$ である. よっ て積分を定常位相近似によって評価すると

図 4.1.1. 法線方向の微分.

$$\int ds_{0} \oint \cdots \oint ds_{1} ds_{2} \cdots ds_{N} \left[\frac{\partial G_{0}(\boldsymbol{r}, s_{1})}{\partial n_{1}} \frac{\partial G_{0}(s_{1}, s_{2})}{\partial n_{2}} \cdots \frac{\partial G_{0}(s_{N-1}, s_{N})}{\partial n_{N}} G_{0}(s_{N}, \boldsymbol{r}') \right]_{\boldsymbol{r}=\boldsymbol{r}'} \frac{2m}{\hbar^{2}}$$

$$\approx - \left(\frac{1}{2}\right)^{N} \frac{1}{\hbar} \sqrt{\frac{m}{2E}} \times$$

$$\sum_{s.p.} \left(\prod_{j=1}^{N+1} \frac{\cos \varphi\left(s_{j-1}^{*}, s_{j}^{*}\right)}{\sqrt{\tau\left(s_{j-1s}^{*}, s_{j}^{*}\right)}} \right) \frac{1}{\sqrt{|\det W(N+1)|}} \exp\left(i \frac{\sqrt{2mE}}{\hbar} l\left(s_{0}^{*}, \cdots, s_{N}^{*}\right) - \frac{\sigma}{2}\pi i\right)$$

$$(4.1.23)$$

となる. ここで $\sum_{s.p.}$ は後で説明するすべての定常な多角形について和を取ることを表す. また $W(N+1),\sigma$ はそれぞれ

$$W_{ij}(N+1) = \frac{\partial^2 l}{\partial s_i \partial s_j} \left(s_0^*, s_1^*, \cdots, s_N^* \right), \qquad (4.1.24)$$

$$\sigma = W(N+1)$$
の負の固有値の個数 (4.1.25)

である. さらに lが $s_0^*, s_1^*, \cdots, s_N^*$ で定常であるという条件

$$\frac{\partial l}{\partial s_j} \left(s_0^*, s_1^*, \cdots, s_N^* \right) = 0 , \ j = 0, 1, 2, \cdots, N$$
(4.1.26)

が満足されている. これは

$$\frac{\partial \tau\left(s_{j-1}^{*}, s_{j}^{*}\right)}{\partial s_{j}} + \frac{\partial \tau\left(s_{j}^{*}, s_{j+1}^{*}\right)}{\partial s_{j}} = 0$$
(4.1.27)

と書くことができる. 簡単な幾何学的考察から

$$\frac{\partial \tau\left(s_{j-1}^{*}, s_{j}^{*}\right)}{\partial s_{j}} = \sin \varphi(s_{j-1}^{*}, s_{j}^{*})$$

$$(4.1.28)$$

$$\frac{\partial \tau\left(s_{j}^{*}, s_{j+1}^{*}\right)}{\partial s_{j}} = -\sin\varphi\left(s_{j+1}^{*}, s_{j}^{*}\right)$$

$$(4.1.29)$$

という関係が成り立つことが分かる. したがって (4.1.27) は

$$\sin\varphi\left(s_{j-1}^{*}, s_{j}^{*}\right) = -\sin\varphi\left(s_{j+1}^{*}, s_{j}^{*}\right)$$
(4.1.30)

となる. φ を $-\frac{\pi}{2} \ge \varphi \ge \frac{\pi}{2}$ に制限すると

$$\varphi\left(s_{j-1}^{*}, s_{j}^{*}\right) = -\varphi\left(s_{j+1}^{*}, s_{j}^{*}\right)$$
(4.1.31)

を得る. これ以外の (4.1.30) の解である定常な多角形, 即ち, その一部が撞球台からはみ出 しているものは (4.1.23) に寄与しないことを付録 D に示す. (4.1.31) より s_jを jの順に結 んだ線分の作る多角形は、各頂点 s_j^* で入射角と反射角が等しいという反射の法則を満たす 定常な多角形である (Balian & Bloch 1972). 但し、 s_0 では $\varphi(s_N^*, s_0^*) = -\varphi(s_0^*, s_1^*) = 0$ であ るから、この多角形はある辺に s_0 を含む. つまりこれは古典系、即ち撞球系の周期軌道で あることが分かる.

W(N+1)と古典力学的運動としての周期軌道の安定性を表すモノドロミー行列との 関係について考察する (cf. Mackay & Meiss 1983, Ikeda 1992). モノドロミー行列とは、ポ アンカレ写像を周期軌道の回りで線形化した写像を表現する行列である(付録 A).ま ず (4.1.10) に対して変分を考えると

$$\frac{\partial^2 \tau(s_{i-1}, s_i)}{\partial s_{i-1} \partial s_i} \delta s_{i-1} + \left(\frac{\partial^2 \tau(s_{i-1}, s_i)}{\partial s_i^2} + \frac{\partial^2 \tau(s_i, s_{i+1})}{\partial s_i^2} \right) \delta s_i + \frac{\partial^2 \tau(s_i, s_{i+1})}{\partial s_{i+1} \partial s_i} \delta s_{i+1} = 0 \quad (4.1.32)$$

となる. ここで簡単のため*を省略した. s_0, s_1, \dots, s_N は (4.1.26) で決まる運動法則に従う周 期軌道であるから, δs_0 を固有値 λ の固有ベクトル方向に取れば, $\delta s_{i+N+1} = \lambda \delta s_i$ となるので $\delta s_{N+1} = \lambda \delta s_0, \delta s_{-1} = \frac{1}{\lambda} \delta s_N$ であることに注意すると (4.1.32) より

$$M(\lambda)\delta \boldsymbol{s} = 0 \tag{4.1.33}$$

が成り立つ. ここで

$$M(\lambda) \equiv \begin{pmatrix} \frac{\partial^2 l}{\partial s_0^2} & \frac{\partial^2 l}{\partial s_0 \partial s_1} & 0 & \cdots & \cdots & 0 & \frac{1}{\lambda} \frac{\partial^2 l}{\partial s_0 \partial s_N} \\ \frac{\partial^2 l}{\partial s_1 \partial s_2} & \frac{\partial^2 l}{\partial s_1^2} & \frac{\partial^2 l}{\partial s_2^2} & 0 & \cdots & 0 \\ 0 & \frac{\partial^2 l}{\partial s_2 \partial s_1} & \frac{\partial^2 l}{\partial s_2^2} & \frac{\partial^2 l}{\partial s_2 \partial s_3} & 0 & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \vdots & \vdots \\ \vdots & & \cdots & \cdots & 0 & \frac{\partial^2 l}{\partial s_{N-2} \partial s_{N-1}} & \frac{\partial^2 l}{\partial s_2^2} & \frac{\partial^2 l}{\partial s_{N-1} \partial s_N} \\ \lambda \frac{\partial^2 l}{\partial s_N \partial s_0} & 0 & \cdots & \cdots & 0 & \frac{\partial^2 l}{\partial s_N \partial s_{N-1}} & \frac{\partial^2 l}{\partial s_N^2} \end{pmatrix}$$
(4.1.34)
$$\delta s \equiv \begin{pmatrix} \delta s_0 \\ \delta s_1 \\ \vdots \\ \delta s_{N-1} \\ \delta s_N \end{pmatrix}$$
(4.1.35)

である. したがって (4.1.33) が自明でない解を持つために

$$\det M(\lambda) = 0 \tag{4.1.36}$$

となる. ところで det $M(\lambda)$ を展開して整理すると

$$\det M(\lambda) = \det M(1) + (\lambda - 1)(-1)^N \prod_{i=0}^N \frac{\partial^2 l}{\partial s_i \partial s_{i+1}} + \left(\frac{1}{\lambda} - 1\right) (-1)^N \prod_{i=0}^N \frac{\partial^2 l}{\partial s_{i+1} \partial s_i}$$

$$= \det M(1) - (\lambda + \frac{1}{\lambda} - 2) \prod_{i=0}^{N} \left(-\frac{\partial^2 l}{\partial s_{i+1} \partial s_i} \right)$$
(4.1.37)

となるので,(4.1.36) より

$$\det M(1) = \left(\lambda + \frac{1}{\lambda} - 2\right) \prod_{i=0}^{N} \left(-\frac{\partial^2 l}{\partial s_{i+1} \partial s_i}\right)$$
(4.1.38)

を得る.したがって,この定常な多角形を周期軌道と考えたときのモノドロミー行列を M により

$$\det M(1) = (\operatorname{Tr} M - 2) \prod_{i=1}^{N+1} \left(-\frac{\partial^2 l}{\partial s_{i+1} \partial s_i} \right)$$
(4.1.39)

となる. ここで (A.18) を用いた. ところで (4.1.28),(4.1.29) より

$$\frac{\partial^2 l}{\partial s_j \partial s_{j+1}} = \frac{\cos \varphi \left(s_j^*, s_{j+1}^* \right) \cos \varphi \left(s_{j+1}^*, s_{j+2}^* \right)}{\tau \left(s_j^*, s_{j+1}^* \right)}$$
(4.1.40)

を得る. ここでκ(s_j) は点 s_jにおいて内向き法線ベクトルで測った境界の曲率である. (4.1.23)の振幅の自乗を B(n) とする. 即ち,

$$B(n) \equiv \left(\prod_{j=1}^{n} \frac{\tau\left(s_{j}^{*}, s_{j+1}^{*}\right)}{\cos^{2}\varphi\left(s_{j}^{*}, s_{j+1}^{*}\right)}\right) \det W(N+1)$$
(4.1.41)

である.

(4.1.39), (4.1.41)及びW(N+1) = M(1)より,

$$B(N+1) = \frac{\det W(N+1)}{\prod_{i=1}^{N+1} \frac{\partial^2 l}{\partial s_i \partial s_{i+1}}} = (-1)^{N+1} (\operatorname{Tr} M - 2)$$
(4.1.42)

を得る. これより,B(N+1)は定常な多角形にのみに依存し, s_0 には依らないことも分かる. 次に σ と定常な多角形との関係について議論する. σ はW(N+1)の負の固有値の個数

である.Wは対称行列であるから、二次超曲面の理論が適用することができるので、σは列

$$1, V(1), V(2), \cdots, V(N), \det W(N+1)$$
(4.1.43)

の符号変化の個数に等しい. ここで,det W(N+1) とモノドロミー行列の関係の導出と同様の計算により

$$V(k) = \left(\prod_{j=N-k+1}^{N} \frac{\cos^2 \varphi\left(s_j^*, s_{j+1}^*\right)}{\tau\left(s_j^*, s_{j+1}^*\right)}\right) (-1)^k \frac{1}{\tau_{N-k}} \frac{\partial s_N}{\partial \varphi_{N-k}}$$
(4.1.44)

となる. $\frac{\partial s_j}{\partial \varphi_{j-1}}$ は j-1 番目の衝突と j番目の衝突の間に焦点がないと負の値となるので, 符号変化の個数, 即ち, σ は定常な多角形の焦点の個数に等しいことが分かる.

 $\det W(N+1), l(s_0^*, s_1^*, \dots, s_N^*)$ 及び σ は s_0 に依存しないので、 $\int ds_a$ は、定常な多角形が 完全につぶれているときはこの定常な多角形を周期軌道と考えたときの素周期軌道の長 さの半分となり、そうでないとき全長に等しい、どちらの場合にも s_1 の選び方は2通りあ るが、前者の場合には定常な多角形を周期軌道と考えるときには、2通りの選び方を区別 することができないので、その分2倍してやはり素周期軌道の全長に等しいとする.これ は因子 $\sqrt{\frac{24}{26}}$ によって素周期軌道の周期となる.従って

$$\rho(E) \approx \frac{mA}{2\pi\hbar^2} + \operatorname{Re}\frac{1}{\pi\hbar} \sum_{\gamma} \sum_{k=1}^{\infty} \frac{T_{\gamma}}{\sqrt{|\operatorname{Tr}M_{\gamma}^k - 2|}} \exp\left(i\frac{\sqrt{2mE}}{\hbar}kl_{\gamma} - \frac{k\sigma_{\gamma}}{2}\pi i + kN_{\gamma}\pi i\right) (4.1.45)$$

を得る. ここで $l_{\gamma} = \sum_{j=1}^{N_{\gamma}} \tau(s_j, s_{j+1}) \iota$, 衝突点を s_1 から $s_2, s_3, \dots, s_N, s_1$ の順に線分でつな いだ素周期軌道 γ の長さである ($s_{N_{\gamma}+1} = s_1$ とした). また, 素周期軌道 γ のモノドロミー行列, 壁との衝突回数, 焦点の個数, 及び周期を, それぞれ $M_{\gamma}, N_{\gamma}, \sigma_{\gamma}$, 及び T_{γ} で表した.(4.1.45) により, 量子系のエネルギー固有値は, 半古典的領域において, 少なくとも形式的には完全 に古典力学の情報だけで求めることができる.

撞球問題の場合,Gutzwiller formula と呼ばれるカオス系の半古典量子化は (4.1.45) となる. この式から分かるように,半古典的な状態密度は,滑らかな平均状態密度 MA の部分と,周期軌道による振動項の部分から成る. 即ち,Weyl formula により与えられる平均状態密度に対して,周期軌道による振動を用いてゆらぎを作るということである.

3 次元の Billiards でも同様の結果が得られる (Balian & Bloch 1971,1972). また, Billiards ではなく, 一般のハミルトン系に対する Gutzwiller formula は

$$\sum_{n} \delta(E - E_n) \approx \bar{d}(E) + \frac{1}{\pi\hbar} \Re \sum_{\gamma} \sum_{k=1}^{\infty} \frac{T_{\gamma}}{\sqrt{\left|2 - \operatorname{Tr} M_{\gamma}^k\right|}} \exp\left[ik\left(\frac{S_{\gamma}}{\hbar} - \frac{\nu_{\gamma}}{2}\pi\right)\right]$$
(4.1.46)

という形に書ける (Gutzwiller 1967-71,1990, Berry & Mount 1972, Balian & Bloch 1974). ここで $\overline{d}(E)$ は平均状態密度で相空間にプランク定数の細胞が入る数で決まる Thomas-Fermi 近似などから分かるように古典系の量だけで記述される. γ は各周期軌道を表し,kはそれを繰り返す回数である. $S_{\gamma} = \oint_{\gamma} pdq$ は軌道 γ に沿う古典力学の作用, $T_{\gamma} \equiv \frac{\partial S_{\gamma}}{\partial E}$ は γo 周期である. M_{γ} は線形化されたポアンカレ写像, 即ち, モノドロミー行列である. また ν_{γ} は Maslov 指数である.

4.2 Gutzwiller formula の Dispersing Billiards への適用

すべての周期軌道を用いれば (4.1.45) により本当にすべてのエネルギー固有値を得ら れるだろうか. 実はそう上手くは行かないのである. なぜならば (4.1.45) はこのままでは 収束しないような級数になっているからである. 実際強いカオス系となる撞球系を考える と絶対収束するような級数で書かれた公式を得るには次のようになる (Eckhardt & Aurell 1989, Sieber & Steiner 1990c, Harayama & Shudo 1992a). まず, エネルギー Eに複素部分 を含ませ $E + i\epsilon(E, \epsilon$ は実数) とする.

$$\sqrt{E+i\epsilon}\approx \sqrt{E}+i\frac{\epsilon}{2\sqrt{E}}$$

よりこの結果 (4.1.15) の各項には

$$\exp{-\frac{k}{\hbar}\sqrt{\frac{m}{2E}}\epsilon l} = \exp(-\frac{\epsilon}{\hbar}kT_{\gamma})$$

という減衰因子が付くことになる. そのため長い軌道ほど寄与が小さくなり ϵ を十分大きく 取れば絶対収束するようになる. しかしエネルギーを $E+i\epsilon$ にしたことで右辺は Lorentzian を収束因子とするデルタ関数となり ϵ 程度の幅を持つので, これが大きいと各エネルギー準 位を解像できなくなる. そこで絶対収束する最小の ϵ を求めることにする. (4.1.45)を上述 の手続きによって書き換えると

$$\sum_{n} \frac{1}{\pi} \frac{\epsilon}{(E - E_n)^2 + \epsilon^2}$$

$$= \Re \sum_{\gamma} \sum_{k=1}^{\infty} \frac{ml_{\gamma}}{p} \frac{1}{\sqrt{\left|2 - \operatorname{Tr} M_{\gamma}^k\right|}} \exp\left[ik\left(\frac{pl_{\gamma}}{\hbar} - \frac{\nu_{\gamma}}{2}\pi\right) - \frac{k\epsilon}{\hbar} \frac{m}{p}l_{\gamma}\right]$$
(4.2.1)

となる.(4.2.1) の右辺について

$$\sum_{\gamma} \sum_{k=1}^{\infty} \left| \Re \frac{m l_{\gamma}}{p} \frac{1}{\sqrt{\left|2 - \operatorname{Tr} M_{\gamma}^{k}\right|}} \exp\left[ik\left(\frac{p l_{\gamma}}{\hbar} - \frac{\nu_{\gamma}}{2}\pi\right) - \frac{k\epsilon}{\hbar} \frac{m}{p} l_{\gamma}\right] \right|$$
$$< \sum_{\gamma} \sum_{k=1}^{\infty} \frac{const \times l_{\gamma}}{p} \exp\left[-k\left(\frac{\epsilon m l_{\gamma}}{\hbar p} + \frac{u_{\gamma}}{2}\right)\right]$$
(4.2.2)

である. ここで後述する第6章の結果を用いて (4.2.2) を評価する. 周期軌道の長さの累積 密度 N(l) は lが+分大きいとき指数関数的に増大しトポロジカルエントロピーを h とす $ると <math>N(l) = const \times exp(hl)$ である. また壁と n 回衝突する周期軌道では長さはln のまわ りに, 安定性指数は λn のまわりにガウス分布するので, 単位長さ当たりの平均軌道拡大率 $u_x \overline{v_l}$ に置き換えると

$$\int_{l_0}^{\infty} dl \exp(hl) \exp\left[-l\left(\frac{\epsilon m}{\hbar p} + \frac{\bar{u}}{2}\right)\right]$$
(4.2.3)

- 246 -

となる. これが収束するためには

$$\epsilon > \frac{\hbar p}{m} \left[h - \frac{\bar{u}}{2} \right] = \hbar \sqrt{\frac{2E}{m}} \left[h - \frac{\bar{u}}{2} \right]$$
(4.2.4)

でなければならない. 従って (4.2.4) を満足する ϵ を用いる限り (4.2.1) の右辺の級数は確 かに収束するようになる. しかし (4.2.4) はエネルギー Eを含んでいるのでエネルギーが 大きくなるとそれに応じて ϵ も大きく取らなければならないことに注意しなければならな い. 平均状態密度は (4.2.1) のようにエネルギーに依存せず一定であるから, エネルギーが 小さいうちは各エネルギー準位を判別できるが, 大きくなるとデルタ関数の幅が準位間隔 より大きくなってしまうので個々のエネルギー固有値を解像できなくなってしまう. この 問題は (4.2.4) を利用して (4.1.45) で Gaussian を収束因子とするデルタ関数を用いる形式 により解決されている (Sieber & Steiner 1990c).

ところで Gutzwiller formula(4.2.1) はどの程度良い近似値を与えるだろうか. このこ とが明らかでないのはこの公式の導出が単なる漸近展開ではないことによる。また、どの くらいの個数の周期軌道を用いると、どのくらいのエネルギー準位がどの程度の誤差の範 囲で得られるのかということも試してみないと分からないのである. そこで3つの円弧よ り成る Dispersing Billiard 系を第2章で得られた周期軌道を用いて (4.2.1) により半古典 量子化したものと、シュレディンガー方程式 (4.1.1) をディリクレ条件 (4.1.2) の下で数値 的に解いたものとを比較したのが図 4.2.1 である. 点線は (4.2.1) の左辺に境界要素法によ り得られたエネルギー固有値を代入したもので、実線は (4.2.1) の右辺に第2章で得られ た素周期軌道をすべて代入したものである. パラメーターα2の値によらず両者が驚くべき ことに基底エネルギーから非常に良く一致することが分かる.ここで重要なのは1つ1つ の周期軌道の寄与は極めて小さいがそれぞれが少しずつ協力し合って正しい状態密度を作 るということである. 図 4.2.1 から分かるように数万個の素周期軌道が作れるエネルギー 準位は僅かに基底状態から数えて十数番目までである. さらに上の準位を得るためには莫 大な数の素周期軌道が必要なのだから、如何に各周期軌道の寄与が小さくしかも重要であ るかが分かる. Gutzwiller 公式を通して見ると各周期軌道は互いに深く関係し合っている ことが分かる.

図 4.2.1. 半古典量子化による状態密度と量子力学による状態密度の比較. (a) $\alpha_2 = \frac{\pi}{2.1}$ (b) $\alpha_2 = \frac{\pi}{2.2}$ (c) $\alpha_2 = \frac{\pi}{2.3}$ (d) $\alpha_2 = \frac{\pi}{2.4}$ (e) $\alpha_2 = \frac{\pi}{2.5}$ (f) $\alpha_2 = \frac{\pi}{2.6}$ (g) $\alpha_2 = \frac{\pi}{2.7}$

図 4.2.1.

4.3 Riemann-Siegel lookalike formula

Gutzwiller formula は以下のような変形によりゼータ関数の形にも書ける (Voros 1988).

$$g(E) = \text{Tr}\left[G(\mathbf{r}, \mathbf{r}', E)\frac{2m}{\hbar^2}\right] = -\frac{1}{\pi}\frac{1}{E - E_n}$$
(4.3.1)

であるから

$$\prod_{j} (E - E_{j}) = \prod_{j} \exp\{\log(E - E_{j})\}$$
$$= a(E) \exp\left\{\int_{0}^{E} -\pi g(E') dE'\right\}$$
$$= b(E) \exp\left\{-i\pi \bar{N}(E) + \int_{0}^{E} dE'[g(E') - \bar{g}(E)']\right\}$$
(4.3.2)

となる. ここで $\overline{N}(E)$ は準位間隔より十分大きい領域で平均した累積状態密度である. ここで Gutzwiller formula よりエネルギーの十分大きいところでは

$$g(E) - \bar{g}(E) \approx -\frac{i}{\hbar} \sum_{\gamma} \sum_{m=1}^{\infty} \frac{T_{\gamma} \exp\left(\frac{i}{\hbar} m S_{\gamma}\right)}{\sqrt{\left|2 - \operatorname{Tr} M_{\gamma}^{m}\right|}}$$
(4.3.3)

が成り立つので、ゼータ関数 $\zeta(E)$ は

$$\prod_{j} (E - E_{j}) \sim \zeta(E) \equiv \exp\left\{-i\pi\bar{N}(E)\right\} \prod_{\gamma} \exp\left\{-\sum_{m=1}^{\infty} \frac{\exp\left(\frac{i}{\hbar}mS_{\gamma}\right)}{m\sqrt{\left|2 - \operatorname{Tr}M_{\gamma}^{m}\right|}}\right\}$$
(4.3.4)

となる. ここで S_p には素周期軌道 p の作用に加えて Maslov 指数も含めることにする. 周期軌道が反射を含まない双曲型であるとき, M_γ の固有値は $\exp(\pm \lambda_\gamma l_\gamma)$ (ここで $\lambda_\gamma > 0$ とする) と書ける. したがって

$$\left|2 - \operatorname{tr} M_{\gamma}^{r}\right| = \exp\left(r\lambda_{\gamma}l_{\gamma}\right)\left[1 - \exp\left(-r\lambda_{\gamma}l_{\gamma}\right)\right]^{2}$$

$$(4.3.5)$$

であるから

$$\frac{1}{\sqrt{\left|2 - \operatorname{tr} M_{\gamma}^{r}\right|}} = \exp\left(-\frac{1}{2}r\lambda_{\gamma}l_{\gamma}\right)\sum_{k=0}^{\infty}\exp\left(-rk\lambda_{\gamma}l_{\gamma}\right)$$
(4.3.6)

となる.

周期軌道が反射を含む双曲型であるとき, M_{γ} の固有値は $-\exp(\pm\lambda_{\gamma}l_{\gamma})$ (ここで $\lambda_{\gamma} > 0$ とする)と書けるので,同様にして

$$\frac{1}{\sqrt{\left|2 - \operatorname{tr} M_{\gamma}^{r}\right|}} = \exp\left(-\frac{1}{2}r\lambda_{\gamma}l_{\gamma}\right)\sum_{k=0}^{\infty}(-1)^{rk}\exp\left(-rk\lambda_{\gamma}l_{\gamma}\right)$$
(4.3.7)

となる. (4.3.5)-(4.3.7) より

$$\zeta(E) = \exp\left\{-i\pi\bar{N}(E)\right\} \prod_{\gamma} \prod_{k=0}^{\infty} \left[1 - \exp\left\{\frac{i}{\hbar}S_{\gamma} - \left(k + \frac{1}{2}\right)\lambda_{\gamma}T_{\gamma} + k\delta_{\gamma}\pi i\right\}\right]$$
(4.3.8)

を得る.ここで

$$\delta_{\gamma} = \begin{cases} 0, & M_{\gamma} 0 固有値が正 \\ 1, & M_{\gamma} 0 固有値が負 \end{cases}$$
(4.3.9)

である.

Gutzwiller formula はすべての周期軌道を用いてすべてのエネルギー固有値を決定す るという形式であるため,真の半古典的エネルギー準位はすべての周期軌道を和に加えた とき初めて得られるということになる.しかし,カオス系では周期軌道の個数は周期に対し て指数関数的に増大するので,すべての周期軌道を集めるのはかなり特殊な系でない限り 不可能である (Keating 1990).Gutzwiller のゼータ関数に対して, Riemann のゼータ関数を resum することで得られる Riemann-Siegel 公式 (Edwards 1974) との類推から得られた予 想がこの困難を克服する可能性を持っている.これは Riemann-Siegel lookalike formula と 名付けられた関係

$$\prod_{n} (E - E_n) \approx A(E) \sum_{n=0}^{T_n < h\overline{d}(E)/2} C_n(E) \cos\left\{\frac{S_n(E)}{\hbar} - \pi \overline{N}(E)\right\}$$
(4.3.10)

が成立するというものである (Berry & Keating 1990, 付録 C). ここで和は Pseudo Orbit という素周期軌道の組み合わせについて取る. T_n と $S_n(E)$ はそれぞれ Pseudo Orbit nの周 期と作用である(作用は Maslov 指数と Billiards の場合は衝突回数を含む). また, $C_n(E)$ は Pseudo Orbit を作る各素周期軌道の不安定性から計算される Pseudo Orbit の不安定性 である.(1)は Gutzwiller のゼータ関数が実数値を取るという仮定からも得られる (Keating 1991).(1)の右辺は Gutzwiller 公式とは異なり有限個の周期軌道和であるから,発散級数で あることと軌道が無限に多く必要であることの2つの困難は現れない、従ってこれを用いれ ば真の半古典的エネルギーが実際に得られると期待できる.そこでこの公式を3つの円弧か ら成る Dispersing Billiards に適用してその性能を確かめる. 図 4.3 に基底状態から 10 数番 目までのエネルギー固有値を含む領域での結果を示す (Harayama, Shudo & Shimizu 1993). 基底エネルギーでさえ良く近似できることが分かる.しかし,この例では,Pseudo Orbits を 作るのに要した 17891 個の素周期軌道に対して, 組み合わせによって出来る Pseudo Orbits は 601367 個にも達する. 周期軌道和は有限とはなったが,Riemann-Siegel 公式のように効 率の良いものではない、つまり、Pseudo Orbits は素周期軌道の組み合わせなので、それら についての和に加えるべき個数は周期に対して周期軌道の場合よりさらに激しく増大す る. これ故、この公式を用いて最近接間隔分布を収束させるのに十分なほど多くのエネル ギー準位を得られることは期待できない.Pseudo Orbits をすべて作り出さなくても良いよ うな方法が必要である.

4.4 Novel Quantization

Gutzwiller formula や Riemann-Siegel lookalike formula で半古典的エネルギー準位を 多く得るには,非常に多くの周期軌道を必要とする.このため,なるべく少ない周期軌道で なるべく多くのエネルギー準位を与える方法を考えることが重要である.そのような方 法で特に散乱問題で成功したのが Curvature Expansion で (Cvitanovic & Eckhardt 1989) である.これはゼータ関数のオイラー積を展開し,長い周期軌道の寄与と短い周期軌道の 積の寄与とが相殺することを用いて,短い周期軌道だけでゼータ関数を近似する方法であ る.これは有限個の記号から成るあらゆる記号列に対して軌道がただ1つ存在するするよ うな記号力学を必要とする.また,束縛状態の場合,素周期軌道の繰り返しを無視できな い.Dispersing Billiards ではこの2つの困難により Curvature Expansion を適用できない.

これと同様に Gutzwiller formula を基礎として、限られた周期軌道を使って多くのエネ ルギー準位を得る方法に Novel Quantization がある. これは累積状態密度 N(E) がエネル ギー固有値において1だけ増加する階段関数であることを利用して, $\cos(N_{sc}(E))$ の零点と して半古典的にエネルギー固有値を得る方法である (Aurich, Matthies, Sieber & Steiner 1992). ここで N_{sc}(E) は Gutzwiller formula で計算される半古典的累積状態密度である. こ れは Gutzwiller のゼータ関数 (4.3.8) が半古典近似においても実数であると考えるのと同 じことである. この方法を Dispersing Billiards に適用した結果を図 4.4.1 に示す. これは 前の2つの方法を適用した場合よりも高いエネルギーの領域で良い近似を与えることが分 かる. この理由は cosine の引数に平均累積状態密度があるので、零点の分布は平均状態密 度を確保していることにある. 平均密度で与えられた零点を周期軌道によって真の準位へ と僅かにずらすことで半古典的にエネルギー準位を与えるのである.非常に簡単な工夫で 高いエネルギーまで良い精度で得られるように見えるが、 基底エネルギーから高いエネル ギーの方まで順に収束するのではなく、すべての準位が同時に収束するはずなので、これ らは真の半古典的エネルギー準位ではない.良い近似のように見えるのは、平均状態密度 を確保していることによる. この方法を用いるときはすべての周期軌道を加えなくてはな らないのである. 実際にこの方法で得られるエネルギー準位の周期軌道の周期に対する収 東性を調べたのが図 4.4.2 である. 平均準位間隔は確保しているので, その間でいつまでも 大きく振動している.様々な総和法を用いてもこの振動の振幅を平均準位間隔より十分小 さくすることには今のところ成功していない. 従ってこの方法, 或いは Gutzwiller のゼー タ関数を用いて半古典量子化するのであれば、すべての周期軌道を加えるべきである. 有 限個の周期軌道で得られるものは遷移的なものであり,真の半古典的準位とはほど遠い可 能性さえ否定できない.

図 4.4.2. Novel Quantization により得られるエネルギー準位の収束性. 基底状態から (a)9 番目 (b)14 番目

5 境界要素法と半古典量子化の関係

5.1 境界要素法

4.3 で示したように Gutzwiller formula は次のようなゼータ関数の形

$$\zeta(E) \equiv \exp\left\{-i\pi\bar{N}(E)\right\} \prod_{p} \prod_{k=0}^{\infty} \left[1 - \exp\left\{\frac{i}{\hbar}S_{p} - \left(k + \frac{1}{2}\right)\lambda_{p}T_{p} + k\delta_{p}\pi i\right\}\right]$$
(4.3.8)

にも書ける (Gutzwiller 1982, Berry 1986, Voros 1988). ここで λ_p は素周期軌道 pの安定性指数であり,

$$\delta_{p} = \begin{cases} 0, & M_{p} \text{の固有値が正} \\ 1, & M_{p} \text{の固有値が負} \end{cases}$$
(4.3.9)

である.また S_pは素周期軌道 p の作用の他にマスロフ指数も含む.このゼータ関数はエネ ルギーが十分大きいところでは実数であると考えられ,系のエネルギー固有値 E_jが零点と なっている.

ところで量子撞球問題,即ち二次元平面のある有限な領域 Dにおいて時間に依存しな いシュレディンガー方程式の固有値,固有関数をディリクレ条件の下で数値的に調べるに は,境界要素法を利用することができる.この方法でもやはりある複素関数ム(E)の零点 としてエネルギー固有値を得る.ここではこの関数ム(E)がエネルギーが十分大きい領域 では平均累積状態密度の項を除いてゼータ関数と一致することを示す.この証明を通して 周期軌道量子化法と境界要素法とで実際に数値計算で行っていることがほとんど同じであ り,それ故 4.2 での 2 つの方法が与える結果が互いに驚くほどよく一致していたことがよ り良く理解できるようになる.

また半古典的な境界要素法は一般の束縛系に拡張することができ (Adachi), 相空間が 有限であることから, Riemann-Siegel lookalike formula が予想されている (Bogomolny 1992).

ディリクレ条件の下でヘルムホルツ方程式を数値的に解く方法である境界要素法について説明する (cf. Riddel 1979, Berry & Wilkinson 1984). 2次元平面内で剛体壁∂A に囲まれた領域 A における粒子の定常状態は時間に依存しないシュレディンガー方程式

$$\nabla^2 \psi(\mathbf{r}) + \frac{2mE}{\hbar^2} \psi(\mathbf{r}) = 0 , \ \mathbf{r} \text{ in } A$$
(5.1.1)

とディリクレ条件

$$\psi(\mathbf{r}) = 0 , \mathbf{r} \text{ on } \partial A \tag{5.1.2}$$

によって記述される. ここでr = (x,y) はデカルト座標,m は粒子の質量,ћ はプランク定 数,Eは粒子のエネルギー固有値,ψは Eに対応する固有状態の波動関数である.

全空間でシュレディンガー方程式 (5.1.1) に対する時間に依存しないグリーン関数は

$$\nabla_{\mathbf{r}}^2 G_0(\mathbf{r}, \mathbf{r}') + \frac{2mE}{\hbar^2} G_0(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$
(5.1.3)

- 254 -

で定義され,特解は

$$G_0(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{4} i H_0^{(1)} \left(\frac{\sqrt{2mE}}{\hbar} |\boldsymbol{r} - \boldsymbol{r}'| \right)$$
(5.1.4)

で与えられる. ここで $H_0^{(1)}$ は第一種零次のハンケル関数である (Abramobitz & Stegun 1964). {(5.1.3) × ψ - (5.1.1) × G_0 } を領域 A でr'について面積分するとグリーンの定理より

$$\oint ds' \{ \psi(\mathbf{r}')\mathbf{n}' \cdot \nabla_{\mathbf{r}'} G_0(\mathbf{r}, \mathbf{r}') - G_0(\mathbf{r}, \mathbf{r}')\mathbf{n}' \cdot \nabla_{\mathbf{r}'} \psi(\mathbf{r}') \} = \begin{cases} \psi(\mathbf{r}), & \mathbf{r} \text{ in } A \\ \frac{1}{2} \psi(\mathbf{r}), & \mathbf{r} \text{ on } \partial A \\ 0 & \mathbf{r} \text{ outside } A \end{cases}$$
(5.1.5)

を得る. ここで s'は境界上に取ったある始点から A の境界に沿って反時計まわりを正方向 として測った長さで,n'はr'における A に対して外向きの法線ベクトルである. A の境界 ∂A 上の点 s における ψ の勾配の境界に対して垂直な成分を

$$u(s) \equiv \boldsymbol{n} \cdot \nabla_{\boldsymbol{r}} \psi(\boldsymbol{r}(s)) \tag{5.1.6}$$

で定義する. (5.1.5) でrが A の境界 ∂A 上にあるとき, ψ の勾配の境界に対して垂直な成分を求めると ∂A では $\psi = 0$ であるから

$$u(s) = -2 \oint ds' u(s') \boldsymbol{n} \cdot \nabla_{\boldsymbol{r}} G_0(\boldsymbol{r}, \boldsymbol{r}')$$
(5.1.7)

を得る. $\tau(s, s')$ を境界 ∂A 上の点rとr'とのユークリッド距離

$$\tau(s,s') \equiv |\boldsymbol{r} - \boldsymbol{r}'| \tag{5.1.8}$$

とし, $\varphi(s, s')$ を $\mathbf{r} - \mathbf{r}'$ と A に対して外向きの法線ベクトル**n**とのなす角 (反時計まわりを 正方向)とすると図 4.1.1 より (4.1.1 の φ の定義と異なることに注意)

$$\boldsymbol{n} \cdot \nabla_{\boldsymbol{r}} G_0 = \cos \varphi(s, s') \frac{\partial G_0}{\partial \tau}$$
(5.1.9)

である. ところで (5.1.4) より

$$\frac{\partial G_0}{\partial \tau} = -\frac{1}{4} i \frac{\sqrt{2mE}}{\hbar} \frac{\partial H_0^{(1)}}{\partial \tau} = \frac{1}{4} i \frac{\sqrt{2mE}}{\hbar} H_1^{(1)}$$
(5.1.10)

であるから (5.1.7) は

$$u(s) = -\frac{1}{2}i\frac{\sqrt{2mE}}{\hbar} \oint ds' u(s') \cos\varphi(s,s') H_1^{(1)}\left(\frac{\sqrt{2mE}}{\hbar}\tau(s,s')\right)$$
(5.1.11)

となる.

ここで境界 ∂A を K個の部分に分割することを考える. 全周の長さを L として始点から i 番目の部分までの周に沿って測った長さを s_i とすると,

$$s_i \equiv i \frac{L}{K} , \ \tau_{ij} \equiv \tau(s_i, s_j) , \ \varphi_{ij} \equiv \varphi(s_i, s_j) , \ \text{for } i, j = 1, 2, \cdots, K$$
(5.1.12)

-255-

となる、境界上での線積分を各部分における値の和に置き換えると (5.11) は

$$u(s_{i}) = -\frac{1}{2}i\frac{\sqrt{2mE}}{\hbar}\frac{L}{K}\sum_{j=1}^{K}u(s_{j})\cos\varphi_{ij}H_{1}^{(1)}\left(\frac{\sqrt{2mE}}{\hbar}\tau_{ij}\right), \ i = 1, 2, \cdots, K$$
(5.1.13)

のように K次元の連立方程式となる. ここで K × Kの行列 Dを

$$D_{ij} = \delta_{ij} + \frac{1}{2} i \frac{\sqrt{2mE}}{\hbar} \frac{L}{K} \cos \varphi_{ij} H_1^{(1)} \left(\frac{\sqrt{2mE}}{\hbar} \tau_{ij}\right)$$
(5.1.14)

で定義すると (5.1.13) が自明でない解を持つためには

$$\det D = 0 \tag{5.1.15}$$

でなければならないので、エネルギー固有値は

$$\Delta(E) = \lim_{K \to \infty} \det D \tag{5.1.16}$$

の零点で与えられる. $\Delta(E)$ は複素数値関数なので分割が本当に無限大であればエネル ギーの変化にしたがって複素数値を取りながら変化しエネルギー固有値において原点を通 る.しかし実際の数値計算では分割数 K は有限であるから複素平面で丁度原点を通ること がなくなるため, $\Delta(E)$ の絶対値を最小にする Eの値をエネルギー固有値として求めると いう方法が取られる.このときドブロイ波長に比べて分割された境界の各部分の長さが十 分小さければこのようにして求めたエネルギー固有値は数値的に設けた基準の範囲内で は収束する.したがってより多くのエネルギー固有値を求めるためにはより細かく境界を 分割することが必要になるのである.任意の境界の形に対して収束する分割の仕方は知ら れていない.

ところで第4章で半古典論の結果と比較した厳密な量子力学の結果とは、例えば図4.2.1 では、ここで説明した境界要素法によって求めたエネルギー固有値をローレンツィアンで 滑らかにしたデルタ関数に代入したものである.この方法はGutzwillerの周期軌道量子化 とは全く異なる方法であるから、互いに良く一致するエネルギー準位を与えることができ るのは一見不思議である.次節以降では $\Delta(E)$ の半古典極限を考えることにより両者の関 係を明らかにする.

5.2 境界要素法の半古典極限

一般に行列式は

det
$$D = \exp(\operatorname{tr} \ln D) = \exp\{-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{tr} (D-I)^n\}$$
 (5.2.1)

とトレースを用いて表すことができる.またこれは具体的に

$$\operatorname{tr}\left(D-I\right)^{n} = \left(\frac{1}{2}i\frac{\sqrt{2mE}}{\hbar}\right)^{n} \left(\frac{L}{K}\right)^{n} \sum_{l_{1}} \sum_{l_{2}} \cdots \sum_{l_{n}} \prod_{j=1}^{n} \cos\varphi_{l_{j}l_{j+1}} H_{1}^{(1)}\left(\frac{\sqrt{2mE}}{\hbar}\tau_{l_{j}l_{j+1}}\right)$$
(5.2.2)

と書ける. ここで $l_{n+1} = l_1$ である. $\lim_{K \to \infty} \left(\frac{L}{K} \right) \sum_{l_j} \epsilon \oint ds_j$ に置き換えると

$$\lim_{K\to\infty} \operatorname{tr} \left(D - I \right)^n =$$

$$\left(\frac{1}{2}i\frac{\sqrt{2mE}}{\hbar}\right)^n \oint ds_1 \oint ds_2 \cdots \oint ds_n \prod_{j=1}^n \cos\varphi(s_j, s_{j+1}) H_1^{(1)}\left(\frac{\sqrt{2mE}}{\hbar}\tau(s_j, s_{j+1})\right) \quad (5.2.3)$$

を得る.

次に (5.2.3) の右辺の半古典極限 (ħ→0) を考える.以下では撞球台の形について次の ようなものに限ることにする.この系を古典系として考えるならば非常に強いカオス系で ありすべての周期軌道は不安定な双曲型で,安定でも不安定でもないものや楕円型のもの は全く存在しない. zを変数とするハンケル関数では zが十分大きいとき漸近形は

$$H_{\nu}^{(1)}(z) \approx \sqrt{\frac{2}{\pi z}} e^{i\left(z - (2\nu + 1)\frac{\pi}{4}\right)}$$
(5.2.4)

である.(5.2.3) で (5.2.4) を用い、さらに積分を定常位相近似によって評価すると

 $\lim_{K\to\infty}\operatorname{tr}\left(D-I\right)^n$

$$\approx \sum_{\text{p.o.}} \left(\prod_{j=1}^{n} \frac{\cos \varphi \left(s_{j}^{*}, s_{j+1}^{*} \right)}{\sqrt{\tau \left(s_{j}^{*}, s_{j+1}^{*} \right)}} \right) \frac{1}{\sqrt{|\det W(n)|}} \exp \left(i \frac{\sqrt{2mE}}{\hbar} l \left(s_{1}^{*}, s_{2}^{*}, \cdots, s_{n}^{*} \right) - \frac{\sigma}{2} \pi i \right)$$
(5.2.5)

となる. ここで $\sum_{p.o.}$ はすべての周期軌道について和を取ることを表す. また $W(n), l, \sigma$ は それぞれ

$$W_{ij}(n) = \frac{\partial^2 l}{\partial s_i \partial s_j} \left(s_1^*, s_2^*, \cdots, s_n^* \right), \qquad (5.2.6)$$

$$l = \sum_{j=1}^{n} \tau(s_j, s_{j+1}), \qquad (5.2.7)$$

$$\sigma = W(n)$$
の負の固有値の個数 (5.2.8)

である. さらに lが $s_1^*, s_2^*, \dots, s_n^*$ で定常であるという条件

$$\frac{\partial l}{\partial s_j}(s_1^*, s_2^*, \cdots, s_n^*) = 0 , \ j = 1, 2, \cdots, n$$
(5.2.9)

が満足されている.4.1 での議論から

$$\Delta(E) = \exp\left[-\sum_{n=1}^{\infty} \sum_{\gamma} \frac{(-1)^n}{n} \frac{1}{\sqrt{|2 - \operatorname{tr} P(n)|}} \exp\left(i\frac{\sqrt{2mE}}{\hbar}l\left(s_1^*, s_2^*, \cdots, s_n^*\right) - \frac{\sigma}{2}\pi i\right)\right]$$
(5.2.10)

を得る. ここで∑_γは出発点に戻って来るまでに壁と n 回衝突するような周期軌道 (頂点を s₁^{*}, s₂^{*}, ···, s_n^{*}とする定常な n 角形) すべてについての和を表す. また P(n) は頂点が n 個の 定常な多角形, 即ち周期軌道のモノドロミー行列である.

 s_1^* の位置を固定したとき, s_1^* , s_2^* ,…, s_n^* の並び方の順番は周期軌道が時間反転して区別 できないときは1通りしかなく,区別できるとき,即ち時間を反転した軌道と元の軌道が 異なる場合は2通りある.並び方の順番を1つ決めたときの s_1^* の選び方は,この壁とn回 衝突する周期軌道が壁と N_p 回衝突する素周期軌道pのr回の繰り返しであれば $N_p = n/r$ 通りある. s_1^* の選び方が異なる同じ周期軌道については1度だけ和を取ることにすると,

$$\Delta(E) = \prod_{p} \exp\left[-\sum_{r=1}^{\infty} \frac{1}{r\sqrt{\left|2 - \operatorname{tr}\left(P\left(N_{p}\right)\right)^{r}\right|}} \exp\left(i\frac{\sqrt{2mE}}{\hbar}l_{p} - \frac{\sigma_{p}}{2}\pi i + N_{p}\pi i\right)\right] \quad (5.2.11)$$

となる.ここで∏_pはすべての素周期軌道についての積を表す.

周期軌道が反射を含まない双曲型であるとき, $P(N_p)$ の固有値は exp $(\pm \lambda_p l_p)$ (ここで $\lambda_p > 0$ とする)と書ける.また周期軌道が反射を含む双曲型であるとき, $P(N_p)$ の固有値 $\mathbf{i} - \exp(\pm \lambda_p l_p)$ (ここで $\lambda_p > 0$ とする)と書ける.よって (4.3.6),(4.3.7)を用いて整理する とセルバーグ型のゼータ関数

$$\Delta(E) = \prod_{p} \prod_{k=0}^{\infty} \left[1 - \exp\left(i\frac{\sqrt{2mE}}{\hbar}l_p - \frac{\sigma_p}{2}\pi i + N_p\pi i - \left(k + \frac{1}{2}\right)\lambda_p l_p + k_p\pi i \right) \right] \quad (5.2.12)$$

を得る (Harayama & Shudo 1992b). ここで

$$k_{p} = \begin{cases} 0 & \cdots \text{ eigenvalue of } P(N_{p}) > 0 \\ k & \cdots \text{ eigenvalue of } P(N_{p}) < 0 \end{cases}$$
(5.2.13)

である.4.2 に示したようにエネルギー固有値を零点に持つような関数は半古典極限ではや はりセルバーグ型のゼータ関数として Gutzwiller 公式からも導かれる. ここで得た半古典 量子化との違いはここでは平均状態密度が現れていないことである. σはマスロフ指数に 一致し, 2 次元平面内の撞球系では自己共役点の個数に等しく, 一般のハミルトン系でも 正準変換で普遍である (Creagh, Robbins, & Littlejohn 1990, Robbins 1991).

このように境界要素法と Gutzwiller formula は非常に良く似た方法であることが分かる. 境界要素法を Gutzwiller formula の側から見ると,(5.2.2) から明らかなように様々な

多角形について和を取ることで周期軌道を炙り出すような方法であるといえる.しかも実際の計算では,これらの多角形に辺を共有させることで能率良く計算できるようにしていることが分かる.この近似の妥当性は,(5.2.2)と(5.2.5)の近似で決まる.周期軌道を炙り出すとき,各周期軌道は孤立した直線としてはっきりと浮かび上がるのではなく,その回りにゆらぎを持って少しぼやけている.このゆらぎを定常位相近似ではGaussianとするのであるが,この幅が重なってしまうぐらい多くの周期軌道が存在するとこの近似は破綻する可能性がある.逆に言えば,周期軌道が短いうちは非常に良い近似となる.これが第4章で半古典論を適用したとき量子力学の結果と良く一致した理由である.量子系に対する古典カオスの反映を知るにはかなり多くのエネルギー準位を必要とする.半古典論がそれを満足するぐらい十分多くのエネルギー準位を,平均準位間隔よりも十分小さい誤差の範囲で決定できるようなものであるかは,より長い周期軌道を和に含めてテストして明らかにしなければならない.しかし,カオス系の周期軌道を和に含めてテストして明らかにしなければならない.しかし、カオス系の周期軌道を和に含めてテストして明らかにしなければならない.しかし、カオス系の周期軌道を目期に対して指数関数的に増大するので、このような立場からはGutzwiller formula は絵に描いた餅である.そこで,Gutzwiller formula に長い周期軌道を多く含めるためには周期軌道を詳しく調べることが第一歩であると考える.

6 周期軌道の統計的性質とその普遍性

この章での目的は表 2.2 の結果を用いて周期軌道の幾何学的な性質を調べることと、それらの性質が特殊なパラメーターの値のときだけに成り立つようなものではなく、強いカオス系に普遍的であることをパラメーターを変化させることで調べることにある.まず、長さスペクトルの累積密度分布

$$N(l) = \#\{ 素周期軌道\gamma \mid \gamma o 良さ l_{\gamma} \le l \}$$
(6.1)

について調べることにする.周期軌道を長さの順ではなく衝突回数の小さい方から順に求めたためlの大きいところに相当する周期軌道すべては得られていないと考えられる.また長さの短いところでは周期軌道の数が少ないので統計法則に従うことは期待できない. これらのことを考慮して $\alpha_2 = \frac{\pi}{2.4}$ のとき長さの順で50番目から8000番目までの周期軌道を用いて長さスペクトルの累積密度分布を求めた結果が図6.1である.点線は指数関数であり,図6.1(b)は方対数表示である.これらの図からN(l)が指数関数で良く近似できることが分かる.この結果は α_2 が他の値のときでも同様であった.有限個のマルコフ分割が存在しているような系では軌道の豊富さを表す量であるトポロジカルエントロピーをhとすると

$$N(l) \approx \frac{\exp(hl)}{hl} \tag{6.2}$$

という関係が lの十分大きいところで成り立つことが厳密に証明されている (Alekseev & Yakobson 1981, Parry & Pollicott 1984, Morita 1991). Dispersing Billiards ではマルコ フ分割を作ろうとすると可算無限個の分割が出来てしまうので,N(l) の漸近形はまだ正確 には知られていないが (Sinai, Bunimovich & Chernov 1990), lが大きいと (6.2) で主には 指数関数の部分が効くことと, 図 6.1 のように指数関数に良く合うという結果がパラメー ターの値によらないことから Dispersing Billiards ならば必ず N(l) は (6.2) の形になると 考えられる. そこで図から求めた指数の値をそのパラメーターの値における系のトポロジ カルエントロピー $h(\alpha_2)$ と考えてよい. 図 6.2 に示すように α_2 が小さくなるとんの値が大 きくなるのは, α_2 が小さいほど強いカオス系になるということから理解できる.

図 6.1. 長さスペクトルの累積密度 $(a)\alpha_2 = \frac{\pi}{24}(b)$ 片対数.

長さスペクトルの累積密度が指数関数的に増大することは強いカオス系であることの 直接的な結果であり,第2章で示したようにこのような系を半古典的に量子化することの 最も大きな障害となる.しかし現時点では古典系の言葉で量子系を説明するには半古典論 を用いる以外の方法は見つかっていないので、少なくともこれらの困難を乗り越えなけれ ば古典カオス系としての性質が量子力学系としての性質のどこに反映するかを見ることは できないのである.1つの方法としては周期軌道の性質を詳しく調べ,それを利用して解 決できることが考えられる.長さスペクトルが何らかの法則に従っていれば周期軌道の長 さは予測可能となり非常に扱い易い. そこでまず長さスペクトルの最近接間隔分布を調べ ることにする. これは各素周期軌道の長さの間に短距離の相関があるかどうかを調べると いうことであり、エネルギースペクトルに関して一般に用いられている方法である.結果 がどの長さの範囲で調べたかに依存しないように, 累積密度分布を用いて平均密度が1 に なるように定義し直した長さスペクトルをエネルギースペクトルの場合の類推から開か れた長さスペクトルということにしよう. いろいろなα2の値での開かれた長さスペクトル の最近接間隔分布を図 6.3 に示す.実線は表 2.2 にあるすべてのα2の値のときの開かれた 長さスペクトルの最近接間隔分布を重ねて描いたものである. パラメーターα2の値によら ず点線で示したポアソン分布に非常に良く一致することが分かる、この結果は Dispersing Billiard 系では周期軌道の長さの間に短距離の相関がないことを示している.

更に高次の相関に関して調べることにする. ここでもやはりエネルギースペクトルの 統計的性質を調べるときの方法として用いられている Spectral Rigidity を使って調べる. これは

$$\Delta_3(L,x) \equiv \frac{1}{L} \min_{A,B} \int_{x-\frac{L}{2}}^{x+\frac{L}{2}} [n(\epsilon) - A\epsilon - B]^2 d\epsilon$$
(6.3)

で定義される 2 次の相関を調べる量である. ここで $n(\epsilon)$ は開かれた長さスペクトルの累 積密度である. $\alpha_2 = \frac{\pi}{2.4}$ のときの結果を図 6.4 に示す. 点線は $n(\epsilon)$ がポアソン分布に従う ときに得られる傾きが L/15 の直線であり, これに良く一致していることは周期軌道間に 2 次の相関がないことを示している. この結果は他の α_2 の値のときでも全く同様であるか ら Dispersing Billiard 系の周期軌道の長さの間には長距離の相関もないことが分かる. 以 上の結果から Dispersing Billiards では素周期軌道の長さの分布の仕方はデタラメである ということになる.

図 6.2. トポロジカルエントロピー.

次に出発点に戻るまでに壁とn回衝突するような周期軌道たちの長さの分布を調べる. ここでもやはり統計法則に従うくらい周期軌道の数が多いように衝突回数は十分大きい ものだけを考える.開かれた長さスペクトルの最近接間隔分布がポアソン分布になること と, nが大きくなると平均の長さも増すことを併せて考えると, nに依存する平均の長さの まわりにデタラメに分布するであろうと予想される. $\alpha_2 = \frac{\pi}{2.4}$ のときの結果を図 6.5 に示 す. 点線はガウス分布

$$P_n(l) = \frac{1}{\sqrt{2\pi n\sigma}} \exp\left(-\frac{(l-ln)^2}{2\sigma^2 n}\right)$$
(6.4)

である. ここで \bar{l}, σ は α_2 だけに依存する. このようなガウス分布に良く一致するということ から, このくらい粗い見方をしてしまうと周期軌道が酔歩によって得られる結果, 即ち, 平 均の値が n に比例して増大しそのまわりにガウス分布するものと区別できなくなくなる ことが分かる. α_2 が大きくなると撞球台の面積も大きくなるので同じ記号列に対応する周 期軌道でもその長さは増すため, 図 6.6 に示すように \bar{l} は α_2 とともに増大する. ところで衝

図 6.3. 長さスペクトルの最近接間隔分布.

図 6.4. $\alpha_2 = \frac{\pi}{2.4}$ のときの長さスペクトルの Spectral Rigidity.

突回数による累積密度分布

$$N(n) = \#\{ 素周期軌道\gamma \mid \gamma の壁との衝突回数 n_{\gamma} \le n \}$$
 (6.5)

は図 6.7 のように点線の指数関数 $const \times e^{\beta n}$ で良く近似出来る. ここで明らかに N(n) と N(l)はまったく別のものであるから混同する心配ないであろうから同じNという記号を 用いた. β はトポロジカルエントピー h に類似した量であるから図 6.8 に示すように α_2 が 小さくなると大きくなる. lが十分大きいところで定常位相近似を用いて N(n) と $P_n(l)$ と から N(l) を exp(h') という形で求めることが出来ることが知られていて (Sieber & Steiner 1990a, 付録 B), そのとき h'は

$$h' = \frac{1}{\sigma^2} \left(\overline{l} - \sqrt{\overline{l}^2 - 2\sigma^2 \beta} \right) \tag{6.6}$$

となる. 表 6.1 に示すように h'とhの差はα2のどの値においても 10%以下であるから,lが 有限であることを考えると良く一致していることが分かる.

さらに安定性についても統計則が成り立っているか考察する.まず,周期軌道の安定性 を記述する線形化ポアンカレ写像の1より大きい固有値λの絶対値の対数である不安定性 指数λのスペクトルの最近接間隔分布は図 6.9 に示すようにポアソン分布によく一致する. また、出発点に戻って来るまでに壁と n 回衝突する周期軌道の不安定性指数 λ の分布 $P'_n(\lambda)$ を調べる.周期軌道の長さに関する結果から安定性指数間にもやはり相関はないと考えら れる.そして実際図 6.10 に示すようにこれを数値的に計算した結果はガウス分布

$$P'_{n}(\lambda) = \frac{1}{\sqrt{2\pi n}\sigma'} \exp\left(-\frac{(\lambda - \bar{\lambda}n)^{2}}{2\sigma'^{2}n}\right)$$
(6.7)

に良く一致するのである、このことは α_2 の値によらない、ここで $\overline{\lambda}$ はこの系のカオスの強 さを表す平均軌道拡大率リアプノフ指数である. そのため図 6.11 のようにα2が小さくなる とより強いカオス系となるので入は大きくなるのである. この結果から周期軌道の安定性 の指数もデタラメに分布していることが分かる.

我々の撞球台はパラメーターα2の値によらず常に強いカオス系である. この節でのす べての結果もまたカオスの強さを決めるパラメーターα2の値にはよらないので強いカオ ス系の普遍的な性質であると予想される.

図 6.7. 衝突回数に対する周期軌道の個数密度 N'(n).

表 6.1. トポロジカルエントロピー h と hの比較.

 $\pi/2.4$

 $\pi/2.5$

 $\pi/2.6$

 $\pi/2.7$

 $\pi/2.3$

 $\pi/2.1$

 α_2

 $\pi/2.2$

7 結語

第6章では強いカオス系であることが厳密に証明されている Dispersing Billiards の周 期軌道の統計的性質を計算機により数値的に調べ,得られたことについて報告した.ここで 重要なことは、我々の3つの円弧から成る撞球台はカオスの強さを制御するパラメーター を持っており、この値によらない強いカオス系の周期軌道に関する普遍的な性質を引き出 すことができることである. 実際,周期軌道の個数は長さに対して指数関数的に増大する ことや長さスペクトルの最近接間隔分布と Spectral Rigidity はポアソン分布に一致し, 初 期点に戻るまでの壁との衝突回数を決めたときの長さの分布はガウス分布に一致すること がパラメーターの値に依らずに成り立つことが明らかになった.これらの結果は強いカオ ス系の周期軌道の間には全く相関がないことを示唆しているように感じさせる.しかし、 第4章で報告したように、これらの周期軌道を用いて Gutzwiller の跡公式を用いて半古典 的にこの系を量子化して得たエネルギー固有値と,厳密な量子力学の与えるものはやはり パラメーターの値に依らずに非常に良く一致するので、実はもっとずっと僅かな相関があ り、それによって周期軌道は状態密度を作れるのであり、相関がないのは我々の見方が粗 いことを示している. そのような僅かな相関を発見し、それを用いて跡公式を収束させる ことが今後の課題である. 実際 Spectral Rigidity の理論から予想されている相関もあり (Keating 1991c, Argaman, Doron, Keating, Kitaev, Sieber, Smilansky 1992), それらを取 り入れて行くことも大切である. 第4章で用いた Riemann-Siegel lookalike formula は, 有 限個の周期軌道で真の半古典的エネルギー準位を与える可能性があり,無限個の周期軌道 と収束性の問題を同時に解決するものであるから最も重要な理論である.しかし、この理 論においても周期軌道の個数の増大則は依然として残る困難であるので,周期軌道間の相 関を詳しく調べ, それを用いて必要な Pseudo Orbits を減じることが重要である. また強 いカオス系の定常状態では、短い不安定周期軌道の上に存在確率が局在する'Scar'という 現象が知られている (Heller, O'Connor & Gehlen 1989, Bogomolny 1988). 定常状態と周 期軌道との間のそのような対応は, 必ずしも全ての周期軌道により全てのエネルギー固有 値が決定されているわけではないことを示唆している可能性があり,今後詳しく調べるこ とが必要である.

ところで、本論文では定常状態に関する半古典論のみを扱ったが、時間発展に関する半 古典論も重要である (Adachi 1989, Ikeda 1992, O'Connor & Tomsovic 1991, Tomsovic & Heller 1991, Sepúlveda, Tomsovic & Heller 1992). エネルギー領域の半古典論と時間領 域の半古典論は完成すれば同値なものとなるはずである. 時間領域の半古典論ではどの くらい長い間半古典論が量子力学の結果を模倣できるかということが大きな問題である. Gutzwiller formula に関しても、時間発展についてはどこまでも半古典論が上手く機能す ることを仮定している. しかし、時間発展の半古典論は無限に長い時間良い近似を与える ことはできない (Shudo & Ikeda 1993). このことはそもそも Gutzwiller の跡公式が実エ ネルギー軸上では決して収束しないことを意味しているのかも知れない. 2 つの半古典論 の破綻は共に軌道間の相関によるものとも考えられる. 両者の関係を明らかにすることは 重要である.

また,第5章では量子撞球問題を数値的に解く際に用いている境界要素法の半古典極

限を考えることで、第4章での結果を説明できることを報告した。境界要素法では有限個 に分割された境界上の点の情報により構成される行列の行列式の零点を与えるものをエネ ルギー固有値として求める.半古典極限でこの行列式は平均累積状態密度の位相因子を除 いて Gutzwiller のゼータ関数に一致することを示した. これにより境界要素法と周期軌道 量子化法との類似が明らかになった. ところで、Gutzwiller のゼータ関数と比較して平均累 積状態密度の位相因子を掛けると実数になることを要請できるので、一般に境界要素法で は絶対値の最小値としてしかエネルギー固有値を求めることができないのに対して,実関 数の零点として計算できるようになる. このような方法では, 周期軌道間に Gutzwiller の ゼータ関数を実数にするという相関があるということを用いているとも考えられる. 実際 周期軌道量子化法にこの方法を併せて用いるのが第4 章で扱った Novel Quantization で あり、そのような相関を利用しているのでより高いエネルギー固有値を得ることができる のかも知れない、ところが境界要素法を周期軌道量子化の立場から見た場合、周期軌道の 与える値との誤差はエネルギーの周期(衝突回数)乗であるため、あるエネルギー準位か ら突然近似が悪くなるので、境界要素法にこの方法を併せても同じ分割数でより高いエネ ルギー固有値を得ることはできない. 元々の境界要素法で求めることの可能なエネルギー 領域はドブロイ波長と同じぐらいであるからこれが限界であるかも知れない. しかしより 高いあるいはより広いエネルギー領域での性質は未だに未知であるから、そのようなとこ ろまで調べられるような数値的な方法を開発することは重要である.

以上のように本論文では強いカオス系の半古典量子化に関して,Gutzwiller formula 及 びそれを基礎とする Riemann-Siegel lookalike formula と Novel Quantization,境界要素法 との関係及び周期軌道の普遍則を中心に議論した.古典力学系でみられるカオスがその系 を量子化した系にどのように現れるかを知る方法として今のところ我々には半古典論しか ない.したがってカオス系の半古典量子化の完成は避けては通れない.今まで得られた周 期軌道についてさらに様々な観点から調べ知見を積み上げて困難を乗り越えたいと考えて いる.

8 謝辞

日頃から有益な議論をして戴いている京都大学基礎物理学研究所池田研介教授と東京 工業大学清水寧氏に大変感謝致します.また大阪大学盛田健彦教授,大阪教育大学古賀真 史助手,山梨医科大学秋山真治助手には撞球系の周期軌道についてご教示戴き大変感謝致 します.最後に早稲田大学相沢洋二教授にはいつも研究を励まして戴き大変感謝致します.

9 付録

9.1 付録A. 撞球系のモノドロミー行列

撞球系の軌道の安定性はここで示すように軌道が分かるとすぐに計算できる (cf. 久 保泉 1973 (本付録と記号の使い方が異なることに注意)). これは軌道の指数関数的な不 安定性は壁との衝突だけに起因しているからである.

撞球台の壁に1点を取り原点とする.壁上の点rとは原点から反時計まわりを正方向と して壁に沿って測った距離がrの壁上の点であるとする.反射角とは壁との衝突点におけ る内向き法線ベクトルと粒子の飛び出す方向の単位ベクトルの成す角とする.また壁上の 点rでの曲率 k(r) は内向き法線ベクトルで測ることにする.まず図 A のように撞球台上 のある点から出発し時刻t後に壁上の点rにぶつかり反射角 φ で飛んで行く軌道に対して, 飛び出す方向が僅かに $d\alpha$ だけずれて同じ点から出発し壁上の点r+drでぶつかり反射角 $\varphi + d\varphi$ で飛んで行く軌道を考える.図より高次の無限小を無視すると,

$$dr = \frac{t}{\cos\varphi} d\alpha \tag{A.1}$$

$$d\beta = -k(r)dr \tag{A.2}$$

が成り立つことが分かる. これより

$$d\varphi = d\alpha - d\beta = \left[1 + \frac{k(r)t}{\cos\varphi}\right] d\alpha \tag{A.3}$$

$$d\theta = d\beta - d\varphi = -\left[1 + \frac{2k(r)t}{\cos\varphi}\right]d\alpha \qquad (A.4)$$

$$\rho = -\cos\varphi \frac{dr}{d\theta} = \frac{t}{1 + \frac{2k(r)t}{\cos\varphi}}$$
(A.5)

となる. 即ち, 方向が角度 dθだけ異なって同じ点から出発した 2 つの(壁に衝突しない) 軌道が時刻ρ後に壁上の点 rに至ったものとして置き換えることができる.

次に粒子が点 r_0 で壁にぶつかり反射角 φ_0 で飛び出し,次に点 r_1 で再び壁にぶつかり反射 角 φ_1 で飛び出していくとしよう.最初の衝突点の位置が dr_0 だけ,入射角が $d\varphi_0$ だけ異なる軌 道では,次の衝突点の位置と反射角がそれぞれ $dr_1, d\varphi_1$ だけずれるとする. (A.1), (A.3), (A.4) 及び (A.5) より

$$dr_1 = \frac{\tau + \rho}{\cos\varphi_1} d\theta = -\frac{\cos\varphi_0}{\cos\varphi_1} \left[1 + \frac{\tau k(r_0)}{\cos\varphi_0} \right] dr_0 - \frac{\tau}{\cos\varphi_1} d\varphi_0 \tag{A.6}$$

を得る. 同様にして

$$d\varphi_1 = \left[1 + \frac{k(r_1)(\tau + \rho)}{\cos \varphi_1}\right] d\theta$$
$$= -\left\{k(r_1)\frac{\cos \varphi_0}{\cos \varphi_1}\left[1 + \frac{\tau k(r_0)}{\cos \varphi_0}\right] + k(r_0)\right\} dr_1 - \left[1 + \frac{\tau k(r_1)}{\cos \varphi_1}\right] d\varphi_0 \qquad (A.7)$$

図 A 撞球系の軌道の安定性

を得る.(A.6) と (A.7) とをまとめて

$$\begin{pmatrix} dr_1 \\ d\varphi_1 \end{pmatrix} = \begin{pmatrix} -\frac{\cos\varphi_0}{\cos\varphi_1} \left[1 + \frac{\tau k(r_0)}{\cos\varphi_0} \right] & -\frac{\tau}{\cos\varphi_1} \\ -\left\{ k(r_1)\frac{\cos\varphi_0}{\cos\varphi_1} \left[1 + \frac{\tau k(r_0)}{\cos\varphi_0} \right] + k(r_0) \right\} & -\left[1 + \frac{\tau k(r_1)}{\cos\varphi_1} \right] \end{pmatrix} \begin{pmatrix} dr_0 \\ d\varphi_0 \end{pmatrix}$$
(A.8)

と書ける.ここででは点 roと点 r1とのユークリッド距離である. 簡単のためこれを

$$\begin{pmatrix} dr_1 \\ d\varphi_1 \end{pmatrix} = M_{1 \leftarrow 0} \begin{pmatrix} dr_0 \\ d\varphi_0 \end{pmatrix}$$
(A.9)

と書くことにする.

さて点 r_1, r_2, \dots, r_n に次々に衝突する周期軌道のモノドロミー行列について考えよう. 点 r_1 と点 r_2 の間の周期軌道上の1点で軌道に交差する方向にy軸を設け正準共役な運動 量を p_y とし、この点でのモノドロミー行列をMとする. モノドロミー行列とは線形化した ポアンカレ写像であるから、点 (y, p_y) のすぐ近くの点 $(y + dy_0, p_y + dp_{y0})$ を出発した点が 最初にy軸を横切るとき点 $(y + dy_1, p_y + dp_{y1})$ を通るとすると高次の無限小を除いて

$$\begin{pmatrix} dy_1 \\ dp_{y1} \end{pmatrix} = M \begin{pmatrix} dy_0 \\ dp_{y0} \end{pmatrix}$$
(A.10)

となる.Mの行列式は明らかに1なので固有方程式

$$x^2 - \text{Tr}Mx + 1 = 0 \tag{A.11}$$

の2つの根として Mの固有値が得られる.(A.11) より TrMが2より大きいとき固有値は 実数となり周期軌道は不安定であることが分かる. ところで軌道が y軸上の点 y₀において 位置としては dy_0 だけ,運動量としては dp_{y0} だけずれると次の衝突点 r_1 でぶつかる壁上の 位置が dr_1 だけ,反射角が $d\varphi_1$ だけずれるとすると高次の無限小を除いて

$$\begin{pmatrix} dr_1 \\ d\varphi_1 \end{pmatrix} = M_{1 \leftarrow y_0} \begin{pmatrix} dy_0 \\ dp_{y_0} \end{pmatrix}$$
(A.12)

と書ける. ここで $M_{1 \leftarrow y_0}$ は2×正方行列である. また同様に点 r_n での衝突において $dr_n, d\varphi_n$ だけ微小変化したときに生じる微小変化 dy_1, dp_{y1} の間の高次の無限小を除いて成り立つ関係を

$$\begin{pmatrix} dy_1 \\ dp_{y1} \end{pmatrix} = M_{y_1 \leftarrow n} \begin{pmatrix} dr_n \\ d\varphi_n \end{pmatrix}$$
(A.13)

と書くことにする. これらの行列を用いるとモノドロミー行列 Mは

$$M = M_{y_1 \leftarrow n} M_{n \leftarrow n-1} \cdots M_{3 \leftarrow 2} M_{2 \leftarrow 1} M_{1 \leftarrow y_0}$$
(A.14)

と表すことができる. ここで2 つの正方行列 A, Bについて

$$TrAB = TrBA \tag{A.15}$$

原山卓久・首藤 啓

が成り立つので

$$\operatorname{Tr} M = \operatorname{Tr} M_{1 \leftarrow y_0} M_{y_1 \leftarrow n} M_{n \leftarrow n-1} \cdots M_{3 \leftarrow 2} M_{2 \leftarrow 1} \tag{A.16}$$

となる.ここで明きらかに

$$M_{1 \leftarrow n} = M_{1 \leftarrow y_0} M_{y_1 \leftarrow n} \tag{A.17}$$

が成り立つから

$$\Gamma M = \Gamma M_{1 \leftarrow n} M_{n \leftarrow n-1} \cdots M_{3 \leftarrow 2} M_{2 \leftarrow 1}$$
(A.18)

を得る.Dispersing Billiards では壁の至るところで曲率は正であるから (A.7), (A.11) より Mの固有値は常に実数で出発点に戻って来るまでの衝突回数 n が奇数のときは負で, 偶数 のときは正であることが分かる. また

$$M_{1 \leftarrow 0} = -\left(\begin{array}{cc} \frac{1}{\cos\varphi_1} & 0\\ \frac{k_1}{\cos\varphi_1} & 1 \end{array}\right) \left(\begin{array}{cc} 1 & \tau\\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} \cos\varphi_0 & 0\\ k_0 & 1 \end{array}\right) \tag{A.19}$$

とも書けるので点 r_i と点 r_j とのユークリッド距離を τ_{ij} と書くことにすると (A.18), (A.15) より

$$\begin{aligned} \operatorname{Tr} M &= \\ (-1)^{n} \operatorname{Tr} \left(\frac{1}{\cos \varphi_{1}} & 0 \\ \frac{1}{\cos \varphi_{1}} & 1 \end{array} \right) \left(\begin{array}{c} 1 & \tau_{n1} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \cos \varphi_{n} & 0 \\ k_{n} & 1 \end{array} \right) \\ &\times \left(\begin{array}{c} \frac{1}{\cos \varphi_{n}} & 0 \\ \frac{k_{n}}{\cos \varphi_{n}} & 1 \end{array} \right) \left(\begin{array}{c} 1 & \tau_{n-1n} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \cos \varphi_{n-1} & 0 \\ k_{n-1} & 1 \end{array} \right) \\ &\times \cdots \\ &\times \left(\begin{array}{c} \frac{1}{\cos \varphi_{2}} & 0 \\ \frac{k_{2}}{\cos \varphi_{2}} & 1 \end{array} \right) \left(\begin{array}{c} 1 & \tau_{12} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \cos \varphi_{1} & 0 \\ k_{n} & 1 \end{array} \right) \\ &= (-1)^{n} \operatorname{Tr} \left(\begin{array}{c} 1 & \tau_{n1} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \cos \varphi_{n-1} & 0 \\ k_{n-1} & 1 \end{array} \right) \left(\begin{array}{c} \frac{1}{\cos \varphi_{n}} & 0 \\ \frac{k_{n-1}}{\cos \varphi_{n}} & 1 \end{array} \right) \\ &\times \left(\begin{array}{c} 1 & \tau_{n-1n} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \cos \varphi_{n-1} & 0 \\ k_{n-1} & 1 \end{array} \right) \left(\begin{array}{c} \frac{1}{\cos \varphi_{n-1}} & 0 \\ \frac{k_{n-1}}{\cos \varphi_{n-1}} & 1 \end{array} \right) \\ &\times \cdots \\ &\times \left(\begin{array}{c} 1 & \tau_{12} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \cos \varphi_{1} & 0 \\ k_{1} & 1 \end{array} \right) \left(\begin{array}{c} \frac{1}{\cos \varphi_{n}} & 0 \\ \frac{k_{n}}{\cos \varphi_{n-1}} & 1 \end{array} \right) \\ &= (-1)^{n} \operatorname{Tr} \left(\begin{array}{c} 1 + \frac{2\tau_{n1k}k_{n}}{\cos \varphi_{n}} & \tau_{n1} \\ \frac{2k_{n}}{\cos \varphi_{n-1}} & 1 \end{array} \right) \left(\begin{array}{c} 1 + \frac{2\tau_{n2k}k_{1}}{\cos \varphi_{n-1}} & \tau_{12} \\ \frac{2k_{1}}{\cos \varphi_{1}} & 1 \end{array} \right) \left(\begin{array}{c} 1 + \frac{2\pi_{n-1}k_{n-1}}{\cos \varphi_{n-1}} & 1 \end{array} \right) \cdots \left(\begin{array}{c} 1 + \frac{2\tau_{12k}k_{1}}{\cos \varphi_{1}} & \tau_{12} \\ \frac{2k_{1}}{\cos \varphi_{1}} & 1 \end{array} \right) \left(\begin{array}{c} 2k_{1} \\ \frac{2k_{1}}{\cos \varphi_{n-1}} & 1 \end{array} \right) \cdots \left(\begin{array}{c} 1 + \frac{2\tau_{12k}k_{1}}{\cos \varphi_{1}} & \tau_{12} \\ \frac{2k_{1}}{\cos \varphi_{1}} & 1 \end{array} \right) (A.20) \end{aligned}$$

9.2 付録 B. 定常位相近似

積分

$$I = \int f(x) \exp\left(i\frac{\phi(x)}{\hbar}\right) dx \qquad (B.1)$$

を $\hbar \rightarrow 0$ の極限で評価することを考える. このような極限においては, 位相因子が非常に激しく振動し, これが定常なところ以外は打ち消し合うと考えられる. 定常な点は原点 0 だけであるとして計算を進める. まず, この点の回りで $f(x) \ge \phi(x)$ を

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \cdots$$
 (B.2)

$$\phi(x) = \phi(0) + \frac{1}{2}\phi''(0)x^2 + \cdots$$
 (B.3)

と展開する. これより

$$I = \exp\left(i\frac{\phi(0)}{\hbar}\right) \times$$

$$\left[f(0)\int dx \exp\left(i\frac{\phi''(0)}{2\hbar}x^2\right) + f'(0)\int dx x \exp\left(i\frac{\phi''(0)}{2\hbar}x^2\right) + \frac{1}{2}f''(0)\int dx x^2 \exp\left(i\frac{\phi''(0)}{2\hbar}x^2\right) + \cdots\right]$$
(B.4)

となる.ここで現れた積分は

$$J_n = \int x^n \exp\left(-\frac{\alpha}{2}x^2\right) \tag{B.5}$$

という形である. 但し,

$$\alpha = \lim_{\epsilon \to 0} \left(-i \frac{\phi''(0)}{\hbar} + \epsilon \right) \tag{B.6}$$

である.従って

$$I = f(0)\sqrt{\frac{2\pi\hbar}{|\phi''(0)|}} \exp\left\{i\frac{\phi(0)}{\hbar} + \frac{\pi}{4}i \times \operatorname{sign}\phi''(0)\right\} + O(\hbar^{3/2}) \tag{B.7}$$

を得る.

9.3 付録C.1. Riemann のゼータ関数との類推

Riemann のゼータ関数はディリクレ級数,または素数についてのオイラー積を用いて

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} = \prod_p \frac{1}{1 - \frac{1}{p^z}} \quad (\text{Re } z > 1) \tag{C.1.1}$$

と定義される (z平面の至るところ解析接続により定義する). 有名な Riemann 予想とは ゼータ関数の零点が, 自明なもの (Rez = $-2, -4, \cdots$) 以外はすべて実部が 1/2 という直 線上にあるというものである (Edwards 1974, 鹿野 1991). この Critical Strip 上では Eを 実数として

$$\zeta\left(\frac{1}{2} + iE\right) = \sum_{n=1}^{\infty} \frac{\exp(-iE\log n)}{n^{1/2}}$$
(C.1.2)

となる (がこれは発散する). Eが零点を横切るときゼータ関数の対数は πi だけ増加し, $\operatorname{Re} z \rightarrow \infty$ のとき $\zeta(z) \rightarrow 1$ であるので, 零点の分布 d(E) は

$$d(E) \approx \overline{d}(E) - \operatorname{Im} \frac{i}{\pi} \sum_{p} \sum_{k=1}^{\infty} \log p \exp(-\frac{1}{2}k \log p) \exp(iEk \log p)$$
(C.1.3)

となる. 平均密度 $\overline{d}(E) = \frac{1}{2\pi} \log \left(\frac{E}{2\pi} \right)$ である (Edwards 1974, 鹿野 1991). これは Gutzwiller 公式と大変良く似ており, $\hbar = 1$ として比較すると, Riemann のゼータ関数の零点をエネ ルギー固有値とする系の古典系としての性質は, 素周期軌道 p に関して作用が

$$S_p(E) = E \log p \tag{C.1.4}$$

で周期が

$$T_p(E) = \frac{dS}{dE} = \log p \tag{C.1.5}$$

で不安定性指数が

$$\lambda_p = \log p \tag{C.1.6}$$

であることが分かる.

実際,定負曲率曲面上のラプラシアンの固有値と閉測地線を関係付ける Selberg のゼ ータ関数に関して,Riemann 予想の類似が成立する (Selberg 1956,砂田 1988) (これは Gutzwiller 公式が近似無しに成立する場合である).また,素数の分布が Riemann のゼー タ関数を用いて評価できるのと同様に,強いカオス系の周期軌道の周期の分布は Dynamical ゼータ関数を用いて評価できる場合がある (Parry & Pollicot 1983, Morita 1991) (このと き素数と同様の分布となる).さらに,Riemann のゼータ関数の零点の Form Factor は,強い カオス系の場合 (Berry 1985) と同じ振る舞いをすることも知られているので (Montgomery 1973),両者の類似を強く感じる.

さて,(2) を発散しないよう Eに関して漸近展開し,Riemann-Siegel 公式を導く. Berry は Gutzwiller のゼータ関数への類推を考慮し,それまで知られていたこの公式の導出(Edwards 1974)を非常に簡単化した (Berry 1991). まず和を2つの部分に分け,

$$\zeta(\frac{1}{2} + iE) = \sum_{n=1}^{n^*} \frac{\exp(-iE\log n)}{n^{1/2}} + \sum_{n=n^*+1}^{\infty} \frac{\exp(-iE\log n)}{n^{1/2}}$$
(C.1.7)

-272 -

とする.第2項をポアソン総和公式

$$\sum_{n=a}^{b} f(n) = \sum_{m=-\infty}^{\infty} \int_{a-1/2}^{b+1/2} dx f(x) \exp(2\pi i m x)$$

を用いて変換すると,

$$\sum_{n=n^*+1}^{\infty} \frac{\exp(-iE\log n)}{n^{1/2}} = \sum_{m=-\infty}^{\infty} \int_{n^*+1/2}^{\infty} dx \frac{\exp\{i(2\pi mx - E\log x)\}}{x^{1/2}}$$
(C.1.8)

となる. 積分を定常位相近似で評価すると, $x = rac{E}{2\pi m}$ $(1 \le m \le E/2\pi n^*)$ で定常なので

$$\sum_{n^*+1}^{\infty} \frac{\exp(-iE\log n)}{n^{1/2}} \approx \exp\{-2\pi i\overline{N}(E)\} \sum_{m=1}^{E/2\pi n^*} \frac{\exp(iE\log m)}{m^{1/2}}$$
(C.1.9)

となる.ここで

$$\overline{N}(E) = \frac{E}{2\pi} \log \frac{E}{2\pi e} + \frac{7}{8}$$
(C.1.10)

である. さらに $n^* = \left[\sqrt{\frac{E}{2\pi}}\right] \left(\sqrt{\frac{E}{2\pi}} e$ 越えない最大整数を表す(ガウス記号))とすると、

$$\zeta(\frac{1}{2} + iE) \approx 2\exp\{-\pi i\overline{N}(E)\} \sum_{m=1}^{[\sqrt{E/2\pi}]} \frac{\cos(E\log m - \pi\overline{N}(E))}{m^{1/2}}$$
(C.1.11)

を得る. 和は丁度

$$\frac{d}{dE}(E\log m - \pi \overline{N}(E)) = 0 \qquad (C.1.12)$$

を満たす *m* まで取ることになっている.*E*までの零点は [√^E/_{2π}] までの自然数から求めるこ とができるので, 大変効率が良くなっている.

9.4 付録C.2. Riemann-Siegel lookalike formula

まず周期軌道が反射を含む双曲型でないような場合,Selberg 型のゼータ関数

$$\Delta(E) = \exp\{-i\pi\overline{N}(E)\}\prod_{\gamma}\prod_{k=0}^{\infty}\left[1 - \exp\left\{-(k + \frac{1}{2})\lambda_{\gamma}T_{\gamma}\right\}\exp\left\{\frac{i}{\hbar}S_{\gamma}\right\}\right]$$
(C.2.1)

をディリクレ級数で表すことを考える. ここで, 作用 S_{γ} は Maslov 指数と Billiards の場合の衝突回数を含むとする. オイラーの恒等式

$$\prod_{k=0}^{\infty} (1 - ax^k) = \sum_{m=0}^{\infty} \frac{a^m (-1)^m x^{m(m-3)/4}}{(x^{-1/2} - x^{1/2})(x^{-1} - x) \cdots (x^{-m/2} - x^{m/2})}$$
(C.2.2)

を用いると

$$\Delta(E) = \exp\{-i\pi\overline{N}(E)\}\$$

$$\times \prod_{\gamma} \left[\sum_{m=0}^{\infty} (-1)^m \exp\left\{ -\frac{1}{4} m(m-1) \lambda_{\gamma} T_{\gamma} \right\} \exp\left\{ \frac{i}{\hbar} m S_{\gamma} \right\} \left(\left| \prod_{j=1}^m \det\left(M_{\gamma}^j - I \right) \right| \right)^{-1/2} \right] (C.2.3)$$

となる.素周期軌道についての積を展開して、

$$\Delta(E) = \exp\{-i\pi\overline{N}(E)\}\sum_{n=0}^{\infty} C_n(E) \exp\{\frac{i}{\hbar}S_n(E)\}$$
(C.2.4)

を得る. ここでn は各素周期軌道 γ が m_{γ} 回繰り返されたものの組み合わせ $n = \{m_{\gamma}\}$ を表しており, この組み合わせを Pseudo Orbits という. S_nは Pseudo Orbit n の作用

$$S_n \equiv \sum_{\gamma} m_{\gamma} S_{\gamma} \tag{C.2.5}$$

である.また係数 Cnは

$$C_n \equiv \prod_{\gamma} \left[(-1)^{m_{\gamma}} \exp\left\{-\frac{1}{4}m_{\gamma}(m_{\gamma}-1)\lambda_{\gamma}T_{\gamma}\right\} \left(\left|\prod_{j=1}^{m_{\gamma}} \det\left(M_{\gamma}^j-I\right)\right| \right)^{-1/2} \right]$$
(C.2.6)

である. もし素周期軌道が反射を伴う双曲型であるときは, $(-1)^{m_{\gamma}}$ を $(-1)^{[(m_{\gamma}+1)/2]}$ とする. さて (2) から (11) を導いたのと同様に,(4) を 2 つの部分に分け, 上手く resum できるなら ば結果は

$$\Delta(E) = 2 \sum_{n=0}^{T_n < T^*(E)} C_n(E) \cos\left\{\frac{S_n(E)}{\hbar} - \pi \overline{N}(E)\right\}$$
(C.2.7)

となると考えられる. ここで $\mathrm{T}_n = rac{d\mathrm{S}_n(E)}{dE}$ であり, $\mathrm{T}^*(E)$ は

$$\frac{d}{dE} \left[\frac{\mathcal{S}(E)}{\hbar} - \pi \overline{N}(E) \right] = 0 \qquad (C.2.8)$$

を満足するはずなので,

$$T^*(E) = \pi \hbar \frac{d}{dE} \overline{N}(E) = \frac{h\overline{d}(E)}{2}$$
(C.2.9)

である $(\overline{d}(E)$ は平均状態密度である).これは,エネルギー *E*までの固有値を知りたいときには $\frac{h\overline{d}(E)}{2}$ の時間の情報があればよいという点で,不確定性原理と一貫した結論である. また,(1) が実関数であると仮定してもやはり (7) が導出される (Keating 1991).

9.5 付録 D. 撞球台からはみ出るような定常な多角形

(4.1.30)には $-\pi < \varphi \leq \pi$ で考えると(4.1.31)の他に

$$\varphi\left(s_{j}^{*}, s_{j-1}^{*}\right) = \varphi\left(s_{j}^{*}, s_{j+1}^{*}\right) - \pi \qquad (D.1)$$

という解も存在する.(D.1) は s_{j-1} , s_{j} , s_{j+1} が一直線上に並ぶことを意味している. このような線分と (4.1.31) を満足するような定常な多角形が存在するのは, A の境界 ∂A に曲率の正の部分があることが必要である. そのとき, その多角形は A の境界 ∂A と偶数回交差する.

2 つの場合に分けて考える. まず (D.1) が続けて満たされる図 D.1 のような状況を考 えることにする. 図における s_{i0}, s_{i1}, s_{i2}及び s_{i3}の寄与を計算する.

幾何学的な考察から

$$\frac{\partial^2 l}{\partial s_{i_1}^2} = \cos^2\left(s_{i_1}, s_{i_2}\right) \left(\frac{1}{\tau_{i_1}} + \frac{1}{\tau_{i_2}}\right),\tag{D.2}$$

$$\frac{\partial^2 l}{\partial s_{i_1} s_{i_2}} = \frac{\cos\left(s_{i_1}, s_{i_2}\right) \cos\left(s_{i_2}, s_{i_3}\right)}{\tau_{i_2}} \tag{D.3}$$

を得る.

(4.1.28), (4.1.29)から $\kappa(s_{i_1}) = 0$ とおくと (D.2),(D.3) となるので B(n)は (4.1.41) で $\kappa(s_{i_1}) = 0$ として求めることができる.

境界を横切るこのような定常な多角形の一部である線分に対して s_{i0},...,s_{i3}には次のような4通りの異なる配置の仕方がある.

$$s_{i_0} = s_j, s_{i_1} = s_{j+1}, s_{i_2} = s_{j+2}, s_{i_3} = s_{j+3}$$
 (D.4)

$$s_{i_0} = s_j, s_{i_1} = s_{j+1}, s_{i_3} = s_{j+2} \tag{D.5}$$

$$s_{i_0} = s_j, s_{i_2} = s_{j+1}, s_{i_3} = s_{j+2}$$
 (D.6)

$$s_{i_0} = s_j, s_{i_3} = s_{j+1} \tag{D.7}$$

例えば (D.4) の場合には

$$\begin{pmatrix} 1 & \tau_{i_2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 + \frac{2\tau_{i_1}\kappa_{i_0}}{\cos\varphi_{i_0}} & \tau_{i_1} \\ \frac{2\kappa_{i_0}}{\cos\varphi_{i_0}} & 1 \end{pmatrix} = \begin{pmatrix} 1 + \frac{2(\tau_{i_1} + \tau_{i_2})\kappa_{i_0}}{\cos\varphi_{i_0}} & \tau_{i_1} + \tau_{i_2} \\ \frac{2\kappa_{i_0}}{\cos\varphi_{i_0}} & 1 \end{pmatrix}$$
(D.8)

という関係が得られる. これから $s_{i_0}, s_{i_1}, s_{i_2}$ 及び s_{i_3} の配置の仕方に関わらず (4.1.23) は σ を除いて等しいことが分かる. ところで (4.1.18) にこれらを代入すると配置の仕方で-1 のべきの指数が変わる. (D.7) の配置のとき-1 のべきの指数が Nであれば,(D.4) の配置 のときには指数は N+2 であり,(D.5),(D.6) の配置のときには N+1 である. したがって σ が配置によらず等しければこれらの寄与は相殺することが分かる.

Wは対称行列であるから二次超曲面の理論が適用することができるのでσは列

$$1, V(1), V(2), \cdots, V(N), \det W(N+1)$$
 (D.9)

図 D.1. 式 (D.1) が S_{i1} と S_{i2}で満足される場合.

図 D.2. 式 (D.1) が S_{i1}で満足され,式 (4.1.31) が S_{i2}で満足される場合.

の符号変化の個数に等しい. ここで

$$V(k) = \left(\prod_{j=n-k+1}^{n} \frac{\cos^2 \varphi\left(s_j^*, s_{j+1}^*\right)}{\tau\left(s_j^*, s_{j+1}^*\right)}\right) (-1)^k \frac{1}{\tau_{n-kn-k+1}} \left(\tilde{M}_n M_{n-1} M_{n-2} \cdots M_{n-k}\right)_{12} \quad (D.10)$$

である.

(D.4)の場合には

$$\left(\left(\tilde{M}_{n}M_{n-1}M_{n-2}\cdots M_{i_{2}+1}\right)\left[-\left(\begin{array}{cc}1 & \tau_{i_{2}}\\0 & 1\end{array}\right)\right]\right)_{12}$$

$$= -\left[\left(\tilde{M}_{n} M_{n-1} M_{n-2} \cdots M_{i_{2}+1} \right)_{11} \tau_{i_{2}} + \left(\tilde{M}_{n} M_{n-1} M_{n-2} \cdots M_{i_{2}+1} \right)_{12} \right]$$
(D.11)

である.

配置の仕方が (D.7) となるとき σ は $V(i_0)$ と $V(i_3)$ での符号変化に依存する. また配置 の仕方が (D.4),(D.5),(D.6) となるときには σ を決める列には $V(i_0)$ と $V(i_3)$ の間に $V(i_1)$ と $V(i_2)$ があり, σ はこれらの符号変化の回数で決まる. ところで (D.10),(D.11) より列

$$V(i_0), V(i_1), V(i_2), V(i_3)$$

は単調増加,或いは単調減少のどちらかしか有り得ないことが分かるので符号変化は $V(i_0)$ と $V(i_3)$ との間で高々 1 度である. したがって (D.4)~(D.7) の配置はすべて同じ σ の値を与える.

次に (D.1) に続いて (4.1.31) を満たす図 D.2 のような場合を考える. このとき $k(s_{i_2})$ は負となるが幾何学的考察から (4.1.41) を用いてよい. このような部分を持つ定常な多角 形では $s_{i_0}, s_{i_1}, s_{i_2}$ の配置の仕方は

$$s_{i_0} = s_j, s_{i_1} = s_{j+1}, s_{i_2} = s_{j+2} \tag{D.12}$$

$$s_{i_0} = s_{i_1}, s_{i_2} = s_{i+1} \tag{D.13}$$

の 2 通りあるがこれらは先に述べた場合と同様に (4.1.23) において符号が反対となるので 相殺する.

以上により撞球台からはみ出るような定常な多角形の $\Delta(E)$ に対する寄与は考えなく てよいことが分かる.したがって (4.1.23) では撞球系の周期軌道となるような定常な n 角 形 $s_1^*s_2^*\cdots s_n^*$ についての和を取ればよいことが分かる.

9.6 付録 E. トポロジカルエントロピー

出発点に戻るまでの壁との衝突回数を決めたときその衝突回数(nとする)の周期軌 道の長さの分布はガウス分布

$$P_n(l) = \frac{1}{\sqrt{2\pi n\sigma}} \exp\left(-\frac{(l-\bar{l}n)^2}{2\sigma^2 n}\right)$$
(E.1)

に一致する.また,衝突回数がn回以下の周期軌道の個数は指数関数 $const \times e^{\beta n}$ で良く近似出来る.ここではlが十分大きいところで定常位相近似を用いて $N(n) \ge P_n(l)$ とから $N(l) \ge exp(h')$ という形で求めることが出来ることを示す.長さが $l \ge l + dl$ との間にあるような周期軌道の個数は

$$\frac{dN(l)}{dl} = \sum_{n=1}^{\infty} P_n(l)N(n) \approx const \times \sum_{n=1}^{\infty} \frac{1}{\sqrt{2\pi n\sigma}} \exp\left(-\frac{(l-\bar{l}n)^2}{2\sigma^2 n}\right) e^{\beta n}$$
(E.2)

である.n が十分大きいところでは和を鞍点法で評価して

$$\frac{dN(l)}{dl} \approx const \times \exp h' \tag{E.3}$$

を得る.ここで

$$h' = \frac{1}{\sigma^2} \left(\bar{l} - \sqrt{\bar{l}^2 - 2\sigma^2 \beta} \right) \tag{E.4}$$

である.

10 参考文献

Abramobitz, M. & Stegun, I.A.(eds) 1964 Handbook of Mathematical functions (Wasington: U.S. National Bureau of Standards)

Adachi, S. 1989 Ann. Phys. 195, 45

Adachi, S. private communication

Aleksev, V.M. & Yakobson M.V. 1981 Phys. Pep. 75, 287

Argaman, N., Doron, E., Keating, J., Kitaev, A., & Smilansky, U. 1992 preprint

Arnol'd, V.I. & Avez, A. 1968 Ergodic Problems of Classical Mechanics (Benjamin, NY)

Arnol'd, V.I. 1978 Mathematical Methods of Classical Mechanics(Springer, NY)

Aurich, R., Bogomolny, E.B. & Steiner, F. 1991 Physica 48D, 91

Aurich, R., Matthies, C.Sieber, M. & Steiner, F. 1992 Phys. Rev. Lett. 68, 1629

Balian, R. & Bloch, C. 1972 Ann. Phys. 69, 76

Balian, R. & Bloch, C. 1974 Ann. Phys. 85, 514

Berry, M.V. & Wilkinson, M. 1984 Proc. R. Soc. Lond. A 392, 15

Berry, M.V. 1983 Chaotic Behavior of Deterministic Systems (Les Houches Lectures 36) 453

Berry, M.V. 1985 Proc. R. Soc. Lond. A 400, 229

Berry, M.V. 1986 Quantum Chaos and Statistical Nuclear Physics (Lecture Notes in Physics no. 263), pp.1-17

Berry, M.V. 1987 Proc. R. Soc. Lond. A 413, 183

Berry, M.V. 1991 in: Chaos and Quantum Physics, eds. Giannoni. M.J., Voros. A., & Zinn-Justin, J. (Elsevier, Amsterdam)

Berry, M.V. & Keating, J. 1990 J. Phys. A 23, 4839

Berry, M.V. & Mount, K.E. 1972 Rep. Prog. Phys. 35, 315

Berry, M.V. & Tabor, M. 1977 Proc. R. Soc. Lond. A 356, 375

Bogomolny, E.B. 1988 Physica 31D, 169

Bogomolny, E.B. 1992 Nonlinearity 5, 805

Bohigas, O. & Giannoni, M.J. 1984 Lecture Notes in Physics pp.1-99

Bohigas, O., Giannoni, M.J. & Schmit, C. 1984 Phys. Rev. Lett. 52, 1

Boldrighini, C, Keane, M & Marchetti, F 1978 Ann. Prob. 6, 532

Bunimovich, L.A. 1989 Dynamical Systems II (ed. Sinai, Ya.G.) (Springer), 151

Bunimovich, L.A., Sinai, Ya.G. & Chernov, N.I. 1990 Russ. Math. Surv. 45, 105

Bunimovich, L.A. & Sinai, Ya.G. 1980a Commun. Math. Phys. 73, 247

Bunimovich, L.A. & Sinai, Ya.G. 1980b Commun. Math. Phys. 73, 247

Bunimovich, L.A. & Sinai, Ya.G. 1986 Commun. Math. Phys. 107, 357

Chen, Q., Meiss, J.D. & Percival, I.C. 1987 Physica 29D, 143

Creagh, S.C., Robbins, J.M. & Littlejohn, R.G. 1990 Phys. Rev. A 42, 1907

Cvitanovic, P. & Eckhardt, B. 1989 Phys. Rev. Lett. 63, 823

Delos, J.B. 1986 Adv. Chem. Phys. 65, 161

Eckhardt, B. & Aurell, E. 1989 Europhys. Lett. 9, 509 Edwards, H.M. 1974, Riemann's Zeta Function(Academic Press New York and London) Einstein, A 1917 Verh. Dtsch. Phys. Ges. 19, 82 Fröman, N & Fröman, P.O. 1966 The JWKB Approximation; Contributions to the Theory (North-Holland, Amsterdam) Gallavotti, G. & Ornstein, G. 1974 Commun. Math. Phys. 38, 83 Gaspard, P. & Rice, S.A. 1989a J. Chem. Phys. 90, 2225 Gaspard, P. & Rice, S.A. 1989b J. Chem. Phys. 90, 2242 Gaspard, P. & Rice, S.A. 1989c J. Chem. Phys. 90, 2255 Gutkin, E. 1986 Physica 19D, 311 Gutzwiller, M.C. 1967 J. Math. Phys. 8, 1979 Gutzwiller, M.C. 1968 J. Math. Phys. 10, 1004 Gutzwiller, M.C. 1970 J. Math. Phys. 11, 1791 Gutzwiller, M.C. 1971 J. Math. Phys. 12, 343 Gutzwiller, M.C. 1977 J. Math. Phys. 18, 806 Gutzwiller, M.C. 1982 Physica 5D, 183 Harayama, T. & Shudo, A. 1992a J. Phys. A: Math. Gen. 25, 4595 Harayama, T. & Shudo, A. 1992b Phys. Lett. A 165, 417 Harayama, T., Shudo, A. & Shimizu, Y., to be published 長谷川洋 1991 物理学最前線 28 (共立出版) Heller, E.J., O'Connor, P.W. & Gehlen, 1989 J. Physica Scripta 40, 354 Ikawa, M. Osaka 1990 J. Math. 27, 281-300 Ikeda, K. 1992 preprint YITP/K-982 鹿野健1991 リーマン予想(日本評論社) Keating, J. 1991a Nonlinearity 4, 277 Keating, J. 1991b Nonlinearity 4, 309 Keating, J. 1991c Quantum Chaos (ed. Cerderia, H.A., Ramaswarmy, R., Gutzwiller, M.C. & Casati, G.) (World Scientific, Singapore) Keating, J. 1992 Proc. R. Soc. Lond. A 436, 99 久保泉 1973 撞球問題(確率論セミナー,名古屋大学) Machta, J. 1983 J. Stat. Phys. 32, 555 Mackay, R.S. & Miess, J.D. 1983 Phys. Lett. A 98, 92 Mackay, R.S. & Miess, J.D. 1987 Hamiltonian Dynamical Systems. (Adam Hilger) Maslov, V.P. & Fedoriuk, N.V. 1981, Semiclaasical Approximations in Quantum Mechanics (Reidel, Dordrecht) Montgomery, H.L. 1973 Proc. Symp. Pure. Math. 24, 181 Morita, T. 1991 Trans. A. M. S. 325, 819 O'Connor, P.W. & Tomsovic, S. 1991 Ann. Phys. 207, 218 Ozorio de Almeida, A.M. & M. Saraceno, 1991 Ann. Phys. 210, 1 Parry, W & Pollicott, M 1983 Ann. of Math. 118, 573

Percival, I.C. 1977 Adv. Chem. Phys. 36, 1 Percival, I.C. 1987 Proc. R. Soc. Lond. A 413, 131 Richens, R.J. & Berry, M.V. 1981 Physica 2D, 495 Riddel Jr, R.J. 1979 J. Comp. Phys. 31, 21 Robbins, J.M. 1991 Nonlinearity 4, 343 Sepúlveda, M.A., Tomsovic, S. & Heller, E.J. 1992 Phys. Rev. Lett. 69, 404 1993, 物性研究 Vol.59 No.6 清水寧 & 原山卓久 Shudo, A. 1992 Phys. Rev. A 46, 802 Shudo, A. & Shimizu, Y. 1992 preprint Shudo, A. & Ikeda, K., to be published Sieber, M. & Steiner, F. 1990a Physica 44D, 248 Sieber, M. & Steiner, F. 1990b Phys. Lett. A 144, 415 Sieber, M. & Steiner, F. 1990c Phys. Lett. A 144, 159 Sinai, Ya.G. 1970 Russ. Math. Surv. 25, 137 Sinai, Ya.G. 1976 An introduction to ergodic theory (Moscow: Erivan(Lecture 10)) 砂田利一 1988 基本群とラプラシアン(紀伊國屋書店) Tomsovic, S. & Heller, E.J. 1991 Phys. Rev. Lett. 67, 664 Voros, A. 1988 J. Phys. A 21, 685

-281 -