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We have found 1/1 fluctuations in the Fermi-Pasta-Ulam equation, which

is one of the simplest lattice m()dels to describe fundamental properties of

lattice vibrations of real substances. The crossover frequency Ie· between the

111 and. 1° behavior of the power spectrum density varies as a function of the

strength of the non-linear interaction Aand the system size N as Ie 'V VA/N.

Our result indicates that small non-linearity A ~ 1 in the system generates

1/I fluctuations even in a very small system N = 8. The large number of

degrees of freedom cannot be the origin of 1/f fluctuations eve~ in the realistic

systems like Fermi-Pasta-Ulam equation.

1/f fluctuations have been seen over a wid~ variety of phenomena such as those in

several devices, human activities, and social phenomena [1-5]. Phenomena which show 1/f

fluctuations cover a lot of different scales. 'The name "1/f fluctuations" has been given

to these phenomena since 1/f dependence is observed in the lowest frequency range of the

power spectrum density (PSD). When the time sequence is stationary, its PSD integrated

all over the frequency range is equal to the variance. On the other hand, 1/f fluctuations

cause the divergence of variance, which implies non-stationarity. No one has succeeded in

explaining the origin of this non-stationarity. There is no established explanation of 1/f

PSD so far.

It. is known that 1/f PSD is observed in one dimensional maps which have the intermit

tency chaos [6-8]. Slow motions through a narrow channeIeven in one dimensional maps

generate 1/f PSD. However the relation between these models and real substances remains

unclear. We must investigate 1/f PSD based upon more realistic and general models.

Statistical physics based upon approximations using harmonic potentials can explain a lot

of properties such as specific heat for Tealistic substances, but such systems are not ergodic.
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Assuming that small non-linearity in the system recovers ergodicity, Fermi, Pasta, and Ulam

investigated the energy transfers between eigenmodes in one dimensional anharmonic lattices

in 1950's [9], which is known as the first computer experiment. The FPU (Fermi, Pasta,

and Vlam) equation they adopted is composed of harmonic linear terms and small non

linear term:s (quadratic, cubic, and broken linear.forces). The FPU equation is simple and

general enough to describe the fundamental properties which non-linear lattices have. It

also satisfies the energy conservation and translational invariance.

In this letter we investigate the FPU equation with non-linear cubic terms in one dimen

sion. This equation is so general and simple that our result well reflects essential properties

of real substances. The FPU equation investigated here has 1/f PSD in the sufficiently low

frequency region and white noise in the higher frequency region. The crossover frequency

between these two types of behaviors depends on a non-linear parameter and the system

size N. Since the whole shape of PSD does not change for 8 ~ N < 32, it is concluded that

the fundamental mechanism to generate 1/f PSD does not require large degrees of freedom

even in realistic models. This new feature of 1/f fluctuations has been clarified in this letter.

The general form of the equation of motion for a one-dimensional ring of classic atoms is

(1)

where ¢/ represents the derivative of the potential ¢>. When the .displacement of Ui is suf

ficiently small~ we may approximate the potential as ¢>(x) ex x2 /2 + Ax4 /4, where A is a

parameter for non-linearity. After an appropriate renormalization, we obtain the following

FPU equation:

(2)

where Q is 3 in our case and i runs from 1 to N. We adopt the periodic boundary condition.

This FPV system is a Hamilton sy~tem and has the energy conservation, and translational

and reflective invariance (Ui -+ -Ui). This property is more physical than mathematical

maps [7,8].
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Let us first consider the computational technique for Hamilton systems. "In a Hamilton

system, it is important to calculate a time development with conserved several physical

quantities such as the total energy and the total momentum. From the view point of

differential geometry, a Hamilton system is symplectic two forms [10]. The Symplectic

Integrator (SI) is known as an effective c~mputational method for symplectic forms [11].

The fundamental formalism of the SI consists of a Trotter decomposition of symplectic two

forms. The SI conserves symplectic two forms with high accuracy. When we use the SI to

take a time development of our system, the typical relative truncation error can be estimated

phenomenologically by systematic time step changes (e.g., 0.01, 0.02,0.04..) as about 10-9

for time sequences of Ui when the time step is 0.01. This a~curacy is sufficient to estimate

the PSD up to 10-3
f"V 10-4 Hz.

In the following we investigate phOIion number fluct~at~onsdefined as follows. The FPU

equation with the periodic boundary condition starts from the initial condition that the

initial amplitude of Ui is set as a random number between -1 and 1 and the initial velocity

is set to zero at all sites. We expand the amplitude Ui as Ui = En anexp(21rinFfIN).

When A = 0, the amplitude of the nth eigenmode of lattice vibrations is an, where lanl2 is

identified with the number of excited phonon. We have investigated lan l
2 at a fixed n to

study the phonon number fluctuations. The Ian /2 oscillates regularly but sometimes bursts.

We can observe similar phenomena in intermittency chaos [7,8]. We take PSD of lan (t)1 2

by Fast Fourier Transform [12] using 213 points picked up in a single time sequence. To

drop the dependence of PSD upon "the initial conditions, we renormalize PSD so that it has

the same variance obtained from time sequence of lan l2• The variance obtained from time

sequence of /an /2 yields a good estimate of the renomalizaion of PSD since JS(f)df is equal

to the variance of lan (t)1 2 when stationary. In other words, we renormalize PSD, SCI), as

S(f)1 f S(f)df for each initial condition. After this renormalization, the sample average

runs over the PSDs which have different initial conditions for each parameter set.

The PSD at sufficiently low frequency shows 11f dependence (see Fig. 1). II! at the

lowest frequency does not saturate with f -+ °to the white noise in our computation, which
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is coincident with observation in real phenomena [1]. Fig. 1 shows that the PSD varies

smoothly from 1/f to white noise as the frequency becomes larger; It is a crossover between

1/I and 1° PSD. This is also often observed in real phenomena [1].

Let us consider the dependence of the crossover frequency upon the non-lin~arparameter

and the system size. We define the crossover frequency as follows: Let us assume that PSD,

S(f), behaves as S(/)"rv a/I +b where a a~4 b are constants. This implies S(f) rv a/ f for

I rv 0 and S(f) rv b as I -+ cp. The two extrapolated lines a/ f and b cross each other at

Ie = a/b. 81nS(/)/81nl is -1 in the 1/f region and 0 in the white noise region.(Actually

the 81nS(f)/81nf varies smoothly). The above-defined dependenc~ a/I + b yields that

81nS(/e)/81nfe = -0.5 for Ie = a/b. We also. obtain 81n(leS(le))/81nlc = 0.5 for Ie = a/b.

We define the crossover frequency Ie as the frequency where both 81nS(lc)/81nlc = -0.5

and 81n(lcS(fc))/81n/~= 0.5 are satisfied. It is useful to define the crossover frequency in

two ways to obtain a better estimation of crossover and to compute the crossover frequency

automatically.

Fig. 2 shows how Ie varies with the non-linear parameter A under the condition that

the system size is fixed. The lin~ in Fig. 2. represents Ie rv v'X, which fits data points well.

The smaller non-linearity becomes, the more difficult it becomes to see 1/1 PSD since fe'

becomes too small.

In the same way we have investigated the system size N dependence of Ie at a fixed non

linear parameter A = 1 (Fig. 3). The full line in Fig. 3 represents the relation Ie = 0.06/N,

which fits data points. Our interest is dependence of Ie on system sizes and non-linearity

in the limit of large system sizes and small non-linearity. Under such a condition properties

of low excited modes should be important, so. we consider only low excited modes. We

investigate the lowest first mode to fourth mode~ Ie is evaluated for each system size N. at

this fixed non-linear parameter and the fixed mode. Since the number of knots is fixed, the

wave number varies as I/N with the system size N. For small wave numbers, the phonon

wave number is linear to the phonon frequency. Hence the characteristic structure ofPSD

such as eigen frequencies shifts as I/N. The whole structure of PSD including 1/1 structure
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may shift as I/N, but it is not apparent. The whole structure of our PSD behaves roughly

like 1/N shift. Fig. 3 shows the trend of the 1/N shift .. Low excited modes contribute to

only the lowest frequency region of PSD. This fast indicates that it is in general difficult

to observe 1/1 PSD in the limit of large system sizes and small non-linearity, which limit

corresponds to the condition of real substances.

Our result suggests that increase of.the n':lmber of degrees of freedom does not affect

qualitative properties of 1/1 PSD very much. Hence 1/1 fluctuations do not come from the

large number of degrees of freedom.

In summary we have investigated the FPU equation to find that it shows the 1/1 fluc

tuations at suffiCiently low frequency and the crossover frequency obeys Ie I'V .../X/N. No

qualitative difference appears among investigated parameter ranges. Our result suggests

that 1/1 fluctuations do not come from the large number of degrees of freedom. We may be

.able to understand the fundamental mechanism of 1/1 fluctuations based on theories like

intermittency chaos where systems have been investigated in small degrees of freedom.

Lastly we consider the relation to experiments. One of the famous samples which sho~

1/I fluctuations is quartz oscillators. Musha'et al. [2] ~bserved the fluctuation of the imagi

nary part of quartz dielectric response to find that it shows l/f fluctuations. They suggested

that 1/1 mechanism is closely related to fluctuations of thermally activated phonons. For

the direct observation of phonon fluctuations, Musha et al. [3] took a laser-light-scattering

experiment where the flux fluctuations directly represent the phonon number fluctuations.

They found that the phonon number fluctuates as 1/f. OUf computation agrees with their

experimental results.

In this computation we have investigated the FPU equation in one dimension. We should

investigate qualitative and quantitative change of the PSD structure in higher dimensions.

It is also important whether the specific forms of non-linear terms are essential or not. The

fact that we can see 1/f PSD even for small degrees of freedom may enable us to investigate

motions in the phase space directly.

This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas
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FIG. 1. A typical power spectrum density(PSD) for N = 12, A = 1. The PSD has 1/1 in the lowest

frequency region and leads to the white noise as the frequency becomes large. The diamonds show a line

spline-interpolated with a set of local cubic spline functions by locally optimizing the spline fitting.
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FIG. 2. The dependence of Ie on the non-linear parameter A for N = 12. We estimate the errorbar by

sample average over five data of fe. One datum of fe is evaluated using a PSD already sample-averaged

over ten PSDs with other initial conditions. The line represents the relation fe "'" ...j),. The experimental

data is taken at " = 0.2 "'" 1 from the second mode data. This result suggests that it is difficult to observe
1/1 fluctuations in realistic phenomena which must have small non-linearity.
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FIG. 3. The dependence of Ic on ,the. system ,size N for ..\ = 1. Data are taken at N = 8,12,16,24,

and 32 from the second mode data. In the same way mentioned above, we estimate the errorbar by sample

average over three data of Ic' One datum of Ic is evaluated using a PSD already sample-averaged over five

PSDs with other initial conditions. ,The line Ic '" 1/N is just a guide for the eye. In thermodynamic limit

Ic becomes"'" 0, so it must be difficult to observe the 1/1 fluctuations.
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