<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>トピック</td>
<td>熱力学的ベーテ仮説法の最近の話題 基研研究会「低次元系の物性と場の理論」研究会報告</td>
</tr>
<tr>
<td>作者</td>
<td>国場 敦夫</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 基研研究会「低次元系の物性と場の理論」研究会報告</td>
</tr>
<tr>
<td>発行日</td>
<td>1994-03-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/95262</td>
</tr>
<tr>
<td>タイプ</td>
<td>部門論文</td>
</tr>
<tr>
<td>出版者</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
研究会報告

熱力学的ベーテ仮説法の最近の話題

九州大学理学部数学教室 国場敦夫

本稿は Harvard 大 Lyman 研の中西知樹氏と東大教養の鈴木淳史氏との共同研究に基づくものので、詳細については論文 [1,2,3] を御覧下さい。

1. Q-system
L(z) を Rogers dilogarithm

\[L(z) = -\frac{1}{2} \int_0^z \left(\frac{\log(1-y)}{y} + \frac{\log y}{1-y} \right) dy \] (1)

としよう。すると次の和公式が成立する。

\[\frac{6}{\pi^2} \sum_{m=1}^{\ell} L(Q_m^{-2}) = 3\ell \frac{\ell}{\ell + 2}, \] (2)

\[Q_m = \frac{\sin \frac{\pi(m+1)}{\ell + 2}}{\sin \frac{\pi}{\ell + 2}}. \] (3)

ここで、\(\ell \) は任意の正整数。 (2) の右辺はよく知られたレベル \(\ell \) の \(\hat{sl}(2) \) WZW 共形場模型の central charge であり、(3) は \(sl(2) \) の \(m + 1 \) 次元既約表現 (以下 \(V_m \) と続く) の指標のべき根における特殊値である。和公式 (1) は、量子群 \(U_q(\hat{sl}(2)) \) に付随するある可解格子模型 [4] の central charge を熱力学的ベーテ仮説法 (TBA) を用いて計算する際 [5]、最終ステップで用いられる。定義から次の関係式が自明に従う。

\[Q^2_m = Q_{m+1}Q_{m-1} + 1. \] (4)

これは、単に character identity の例であって、\(V_m \otimes V_m = V_{m+1} \otimes V_{m-1} \otimes V_0 \) からも自然。ここでは (4) を Q-system と呼ぶことにする。

2. Y-system
TBA の解析をする際いわゆる string hypothesis として、Bethe ansatz 方程式の解の pattern を仮定する事がしばしば行われる。この hypothesis は模型や考える parameter 領域の詳細に依る。この際、[5] で考えられた状況を想定して、長さ \(m \) の string と hole の密度関数をそれぞれ \(\rho_m(u), \sigma_m(u) \) としてその比を \(Y_m(u) = \rho_m(u)/\sigma_m(u) \) おく。すると自由エネルギー極小の必要条件として、\(Y_m(u) \) についての非線型積分方程式が導かれる。これは TBA 方程式と呼ばれるものので、温度 \(T \) を parameter として含むが、形式的に \(T \to \infty \) として、1/T の項を落とすと（即ち、エントロピー極大条件）次のような関数方程式に変換される。

\[Y_m(u - 1)Y_m(u + 1) = (1 + Y_{m+1}(u))(1 + Y_{m-1}(u)). \] (5)
ただし、m = 1, 2, ... , ℓ-1, Y_0(u) = Y_1(u) = 0. (5) をここでは Y-system と呼ぶ。

3. T-system

2 次正方格子上に、6-vertex 模型の fusion hierarchy のうち、縦 s 階、横 m 階のものを考える。これは、縦方向の edge には s + 1 状態、横方向の edge には m + 1 状態の vertex 模型で、Boltzmann 重率が Yang-Baxter 方程式を満たす可解格子模型である。[4] はその RSOS 版に相当。格子の縦方向の長さを N とし、周期境界条件を課し、縦方向に働く row-to-row 転送行列を T_m(u) ∈ End(V_s^N) と書く。ここで、u は spectral parameter。Yang-Baxter 方程式により、[T_m(u), T_n(v)] = 0 に注意する。すると、s と N に依らずに次の関数方程式が成立する。

\[T_m(u - 1)T_m(u + 1) = T_{m+1}(u)T_{m-1}(u) + g_m(u)Id, \] (6a)
\[g_m(u - 1)g_m(u + 1) = g_{m+1}(u)g_{m-1}(u). \] (6b)

ただし、T_0(u) = Id でまた g_m(u) はスカラー関数で、その具体形は [1] を参照。vertex 模型の場合、(6) は全ての m = 1, 2, ... で成立するが、レベル ℓ RSOS 模型の場合は、T_{ℓ+1}(u) = 0 (cf. [5,6]) により、m = 1, 2, ... ℓ で閉じる。6 のような転送行列間の関数方程式を T-system と呼ぼう。

4. T, Y, Q-systems 間の関係

まず、ここまででの話をレベル ℓ RSOS 模型に沿って整理する。T-system (6) は、縦方向のいろいろな fusion 階数に対応するレベル ℓ RSOS 模型の転送行列間の関数方程式。この RSOS 模型 (正確には、その m = s の場合に付随する 1 次元量子スピニン模型) に対する TBA 方程式の高温極限が Y-system (5) で、Y_m(u) とは m-string と m-hole の密度関数の比。TBA 解析の最終ステップで用いる dilogarithm 和公式の引数に現れる指標 (3) の間の恒等式 (4) が Q-system。

これから三つの system の間には特に前提的に想定される関係は無いにもかかわらず、以下の事が直ちに視察できる。1. T-system (6a) は Q-system (4) の Yang-Baxterization の形（spectral parameter dependent 版）をしている。2. y_m(u) = T_{m+1}(u)T_{m-1}(u)/g_m(u) という組み合わせは、Y-system (5) の一つの解になってい。なぜなら (6) を使うと、

\[y_m(u - 1)y_m(u + 1) = \frac{T_{m+1}(u - 1)T_{m-1}(u - 1)T_{m+1}(u + 1)T_{m-1}(u + 1)}{g_m(u - 1)g_m(u + 1)} = \frac{(T_{m+2}(u)T_m(u) + g_{m+1}(u))(T_m(u)T_{m-2}(u) + g_{m-1}(u))}{g_{m+1}(u)g_{m-1}(u)} = (y_{m+1}(u) + 1)(y_{m-1}(u) + 1). \]

つまり、1, 2 をあわせて次の事が観測された。

Observation:

「T-system は Q-system の Yang-Baxterization であって、
その特殊な組み合わせが Y-system の解となるものである。」
5. X_r への一般化
ここまでの話は明らかに $sl(2)$ の場合であった。一般の古典単純リーマン X_r (r:ランク) の時はどうであろうか。幸い、Q-system は [7]、Y-system は [8] によってその一般形が既知である。(対応する dilogarithm 和公式の想定は [9,10]、その「q-analogue については [11] 参照。) T-system は $X_r = sl(r+1)$ の時は [12] から導出する事ができ、前節最後に述べた observation がそのまま成立する事が証明できる。一方、$X_r \neq sl(r+1)$ の場合は、付随する可解格子模型の転送行列間関数方程式は全く未知であり、従って T-system もそうである。しかし observation の対応を仮定して、「Y-system を満たすように Q-system を Yang-Baxterize せよ」というプログラムを試してみると事はできる。結果は、そのような Yang-Baxterization が、1. 全ての X_r において可能。
2. 各 X_r につき、自明な不定性を除くと unique。

陽に、

$$T_m^{(a)}(u - \frac{1}{t_a}) T_m^{(a)}(u + \frac{1}{t_a}) = T_{m+1}^{(a)}(u) T_{m-1}^{(a)}(u) + g_m^{(a)}(u) \prod_{b=1}^r T(a,b,m,u) t_b^b, \quad (7a)$$

ここで、$a = 1, 2, \ldots, r, m = 1, 2, \ldots$ で、規約 $\forall T_0^{(a)}(u) = 1, T_m^{(a)}(u) = 1$ if $m \not\in \mathbb{Z}$ のもとに、$T(a,b,m,u)$ は次で与えられる。

$$T(a,b,m,u) = T_{t_a m / t_a}(u) \quad \text{for } \frac{t_b}{t_a} = 1, 2, 3,$$

$$= T_{\frac{1}{2}}^{(b)}(u - \frac{1}{2}) T_{\frac{1}{2}}^{(b)}(u + \frac{1}{2})$$

$$\times T_{\frac{3}{2}}^{(b)}(u) T_{\frac{3}{2}}^{(b)}(u) \quad \text{for } \frac{t_b}{t_a} = 1, 2,$$

$$= T_{\frac{3}{3}}^{(b)}(u - \frac{2}{3}) T_{\frac{3}{3}}^{(b)}(u) T_{\frac{3}{3}}^{(b)}(u + \frac{2}{3})$$

$$\times T_{\frac{3}{3}}^{(b)}(u - \frac{1}{3}) T_{\frac{3}{3}}^{(b)}(u + \frac{1}{3}) T_{\frac{3}{3}}^{(b)}(u)$$

$$\times T_{\frac{3}{3}}^{(b)}(u - \frac{1}{3}) T_{\frac{3}{3}}^{(b)}(u + \frac{1}{3}) T_{\frac{3}{3}}^{(b)}(u) \quad \text{for } \frac{t_b}{t_a} = \frac{1}{3}.$$

(7a) の I_{ab} は、X_r の Dynkin 図上で、node a と b が結ばれている時 1 それ以外は 0 というランク次元の行列。$t_a \in \{1, 2, 3\}$ は a 番目の $X_r^{(1)}$ Kac label と dual Kac label の比。$g_m^{(a)}(u)$ は (6b) と類似の関係 $g_m^{(a)}(u - \frac{1}{t_a}) g_m^{(a)}(u + \frac{1}{t_a}) = g_{m-1}^{(a)}(u) g_{m+1}^{(a)}(u)$ を満たすスカラー関数である。(7a) の右辺の 2 項の比を $Y_m^{(a)}(u)$ とおくと、それらの間で関数方程式が閉じ、それが一般の X_r に対応する Y-system [8] と一致する。

$T_m^{(a)}(u)$ が、pair (a,m) でラベルされる fusion type の転送行列であり、(7) がそれらのみする関数方程式 (T-system) であろうというのが我々の main proposal である。これは、rational, trigonometric そして elliptic の全て場合の模型について成立すると考えられる。(RSOS の場合は、m の範囲にある制限が付く。詳しくは [1] ）
6. 補説

前節最後で述べた「(a, m) でラベルされる fusion type」とはどんなものか。簡単のため rational vertex 模型の場合を考えると、それは Yangian Y(\mathfrak{g}) の既約表現に対応し、Drinfel’d 多項式によりきちんと特徴づける事ができる。それは \mathfrak{g} の a 番目の基本表現の m 階対称テンソル表現の Yangian analogue で、\mathfrak{g} 加群としての既約成分のリストや重複度まで Bethe 方程式から決定することが可能である。Q-system の役者 Q_{m}^{(a)} はこの Yangian 加群の (\mathfrak{g} 加群としての) 指標に他ならない。

最も本質的なのは 4 節の observation の内在的な機構を解明する事である。実は T と Q-system の関係については (sl(2) で rational または trigonometric な場合は) Y(sl(2)) または U_{q}(sl(2)) 加群の完全系列を用いて自然な表現論的説明を与える事ができる。そしてこのスキームはおそらく一般の \mathfrak{g} でも成立する事が期待される。一方、T と Y-system の関係は今のところ謎である。その解明は analytic Bethe ansatz や dilogarithm 恒等式そして Yangian や量子アフィン代数の有限次元表現の resolution 等とも関連する興味深い問題である。

T-system を様々な物理量の計算に応用する事も可能である。実際 [2] では、非臨界 vertex 模型の (anti-ferro 領域での) 相関長や臨界 RSOS 模型の central charge が一般の \mathfrak{g} について求められている。また、T-system は非臨界 RSOS 模型の相関長や表面張力等の計算にも用いる事ができる。（[13] 参照）

References

— 715 —