ハルデイン系としてのS=1反強磁性ハイゼンベルグ鎖
 - 隠れた秩序状態に生ずる量子的及び熱的揺

山本昌司

大阪大学教養部物理学教室

宮下精二

京都大学大学院人間環境学研究科

ハルデイン相基底状態をもつ S = 1 反強磁性ハイゼンベルグ鎖の熱力学的性質を量子モンテカルロ法を用いて調べる。いわゆる隠れた長距離秩序は基底状態においてのみ存在し、有限温度では速やかに消失することを示す。モンテカルロ計算のスナップショットを用いながら、基底状態における量子揺らぎと有限温度における 熱的な揺らぎの質的な相違を認識し、この長距離秩序の消失の機構を明らかにする。

1 序論

反強磁性ハイゼンベルグ鎖は、スピンが整数と半奇数の場合で質的な相違を示すとい うハルデインの予見[1]が提出されて以来、S = 1 反強磁性ハイゼンベルグ鎖の低温にお ける性質は精力的に研究されてきた。エネルギーギャップの存在は理論[2-4]、実験[5,6]両 側面から確認され、またスピン相関関数の指数的減衰も、量子モンテカルロ計算等により 示された[7]。また Affleck、Kennedy、Lieb 及び Tasaki によって導入された厳密可解模 型(AKLT モデル)[8]は、ハルデイン現象の物理的な機構の理解を飛躍的に高めた。

こうした一連の研究の中で den Nijs と Rommelse は、基底状態にはスピン相関感数の 指数的減衰にもかかわらず、反強磁性的な隠れた秩序(HO)が存在する、つまり $S^{z} = 0$ のサイトをすべて取り除くと $S^{z} = \pm 1$ の反強磁性的な並びが出現する(後出の Fig. 5 を 参照)ことを指摘した[9]。彼らはこの HO を定量的に議論するために、ストリング秩序 パラメタと呼ばれる以下のような非局所的秩序パラメタを導入した[9]。

$$O_{\text{string}}^{z} = -\lim_{L \to \infty} \left\{ S_{1}^{z} \exp[i\pi \sum_{j=2}^{L-1} S_{j}^{z}] S_{L}^{z} \right\}.$$
(1)

AKLT モデルの基底状態では HO は完璧であるために、ストリング秩序パラメタは値1 をとる。また S = 1 反強磁性ハイゼンベルグ鎖の基底状態においてもこのストリング秩 序パラメタの評価が行われ、有限のただし1より小さい値をとることが示された[10]。ハ イゼンベルグ鎖で HO が完璧でないのは量子揺らぎのためである[11]。本稿では HO の温 度依存性を計算し、その背後にある物理的機構を、モンテカルロスナップショットを用い ながら明らかにする。 2 モデルハミルトニアンと計算手法 我々は、ハミルトニアン

$$\mathcal{H} = \sum_{i=1}^{L-1} J_i \mathbf{S}_i \cdot \mathbf{S}_{i+1} \equiv \sum_{i=1}^{L-1} V_i , \quad (2)$$

で記述される S = 1 反強磁性ハイゼン ベルグ鎖を考える。ここで L はスピン の数である。我々は解放鎖、周期鎖の 双方について計算を行ったが、HO に関 する以下の議論において両者に定性的 差異は無い[11]ことから、ここでは解放 鎖に対する計算結果のみを示す。

図1. モンテカルロ局所フリップ

分配関数に対するチェッカーボードタイプ[12]の鈴木-トロッター分解[13]を行うと、ハ ミルトニアン(2)に対する量子モンテカルロ計算は、スピンの4体相互作用(図1(a))

$$\rho(S_i, S_{i+1}, S'_i, S'_{i+1}) = \langle S_i, S_{i+1} | e^{-\beta V_i/n} | S'_i, S'_{i+1} \rangle$$
(3)

をもつ2次元の S = 1 古典系におけるサンプリングに帰着する。ここで Si は値±1 及び 0 をとる。局所的なモンテカルロフリップは、磁化の保存則

$$S_i + S_{i+1} = S'_i + S'_{i+1} , (4)$$

を保証しながら行われる[14]。またS = 1/2の場合は、図2(a)に示される交換型局所フ リップ(図1(b))のみを考慮すればよかったが、S = 1の場合には、スピン配位を更新 する際にその行き先が複数存在する場合(図1(c))がでてくる。さらに熱的な揺らぎの 効果を取り入れるために、トロッター軸方向に沿って一斉にスピンをフリップするという 非局所フリップも行う。なお保存則(4)は等方的モデルに特有の制約で、一般に異方性や 外場が入った場合は、局所フリップの手続きは格段に複雑になる[15]。

3 隠れた秩序

HOを観測するための長距離秩序パラメタとしてここでは、計算の便宜のため、ストリング秩序パラメタ(1)とは若干違った表式を導入する。

$$O_{\rm LR} = \left[\sum_{i=1}^{L} (-1)^{\sum_{j=1}^{l} |S_j^z|} S_i^z\right] / \left[\sum_{i=1}^{L} |S_i^z|\right] = \frac{1}{\tilde{L}} \sum_{i=1}^{\tilde{L}} (-1)^i \tilde{S}_i^z \,. \tag{5}$$

ここで $\{\tilde{S}_{1}^{x}, \tilde{S}_{2}^{z}, \dots, \tilde{S}_{L}^{z}\}$ は $S^{x} \neq 0$ であるスピンのみがつくる並びであり、 \tilde{L} はそのスピンの総数である。式 (1) と (5) は見かけは違うが互いに同一の物理量を観測しようとするもので、実際例えば並進対称性がある場合には、 O_{string}^{z} と O_{LR} の間には次の関係式が成立する。

$$O_{\rm LR}^2 \equiv \frac{1}{\tilde{L}} \sum_{i=1}^{\tilde{L}} \sum_{(-1)^{i+1}} \tilde{S}_1^z \tilde{S}_i^z = \frac{1}{\tilde{L}} \sum_{i=1}^{\tilde{L}} O_{\rm string}^z(\hat{i}).$$
(6)

ここでネは0でない i 番目のスピンの本来の位置である。

熱的な期待値< O²_{LR} >の温 1.0 度依存性を図2(a) に示す。長距離 O²LR (非局所)秩序パラメタは、鎖の長 0.8 さに強く依存することがわかる。 図2(b)に同じデータを横軸を鎖の0.6 長さの逆数としてプロットした。 有限温度では熱力学的極限におい 0.4 てく O_{LR}^2 >は0となる、すなわち HO は非局所的には生き残らない ことが、今度はよくわかる。図2 の中での最低温度 $k_{\rm B}T/J = 0.05$ ももちろん厳密には有限の温度で あるが、我々は $k_{\rm B}T/J=0.05$ と $k_{
m B}T/J=0.10$ の間で、諸物理量 に数値誤差の範囲内で差異が無い ことを確認しており、従って基底 状態の性質を再現する上で、これ らの温度は十分に低いものと考え てよい。つまり図2は、基底状態 においては HO が、局所的には量 子揺らぎによって壊れていても、 非局所的に存在していることを示 している。さて図2(b)を利用する ことにより我々は、HO の相関距 離(ストリング相関長)ξDを求め ることができる。それには式(6) の第2辺において、有限温度では ストリング相関関数が指数的に減

図 2. 非局所的秩序パラメタの温度 (a) 及びサイズ (b) 依存性

(2/3)Lとして評価する。このようにして得られた ξ_D は、言ってみれば観測値であり真の値である

れば観測値であり真の値である。

一方で、別の方法でξ_Dを評価することを考えてみよう。そのために非局所的秩序パ ラメタ O_{LR}とは別に、もう1つの局所的秩序パラメタ

$$O_{\rm SR} = \frac{N(\pm \mp) - N(\pm \pm)}{N(\pm \mp) + N(\pm \pm)} = -\sum_{i=1}^{\tilde{L}-1} \tilde{S}_i^z \tilde{S}_{i+1}^z / \sum_{i=1}^{\tilde{L}-1} |\tilde{S}_i^z \tilde{S}_{i+1}^z|$$
(8)

を導入する。ここで $N(\dots)$ は、 $S^z \neq 0$ であるスピンの並びにおける、 (\dots) タイプの隣接 スピンペアの数である。ここで (±±) タイプのペアは、長距離 HO を壊すドメインウォー ル (DW) に他ならない。 $\tilde{S}_i^z \tilde{S}_{i+1}^z = \pm 1$ であることから、 $\tilde{S}^z \neq 0$ であるスピンの隣接ペ アが、HO における DW を構成している平均的な確率 P_{DW} は、 O_{SR} を用いて以下のよう に表される。

$$P_{\rm DW} = \frac{1}{2} (1 - O_{\rm SR}) \,. \tag{9}$$

複数の DW が存在している場合、一般にはそれらの間に相関があってよい。つまり各隣 接ペア $\tilde{S}_i^x \tilde{S}_{i+1}^x$ において DW が発生する確率は、 $P_{\rm DW}$ のまわりで揺らいでよい。しかしも しここで DW 間の相互作用が無いものと仮定すれば、我々は次式からストリング相関長 $\xi_{\rm D}$ を見積ることができる。

$$\xi_{\rm D}^{-1} = -\ln(1 - P_{\rm DW}) \,. \tag{10}$$

こうして見積られるξDは、式(7)に基づいて得られるものとは違い、DW は互いに独立 に発生する、言い換えれば DW は等間隔で分布するという、重大な仮定に基づいた値で あることを再度強調しておく。図3に< O_{SR} >の温度依存性を示す。< O_{LR} >とは対照的に、< O_{SR} >のサイズ依存性は極めて弱く、温度に対しても緩やかに減衰する。

-+-+-+000000-+0-00+-+-+0-+0000-+-+-+-0+00-+0-+	
-+-+-+0000-+0-+-+-+0000+000-+-+-+-+-+00+0-+0-	+ - + - 0 0 + 0 - +
-+-+-+000-0+0++++-+0000+-+0+++++++-+-0000+0++-0++++++	
-+-+-+-+-00+0++-00+-+-000+-++-+-+-0000+-0000+-+-+00-+-+-+000-+	
-+-+-+-+-000+-+-00+-+-0+-+-+-+-+-+-+-+-	(a)
-+-+-+-+-0+00+0-+-+-+-+-000+0-+-+-+-+-+	
-+-+-+-00+0-+-+-+-+-+-0+00-+-+-+-+-+-+-	
-+-+0000-00+0-+-+-+-+-+-0+00-+-+-+-+-+-	
-+-0+000-00+0-+-+-+-+-+-+-+-+-+-+-+-+-+	
00-0+000-00+0+0+0++++++++++++++++++++++	
00-0+00-0-+50+2+++++++++++++++++++++++++	
-+-00+-00-+	+ - + - 0 0 + 0 - +
-+-+-+-+-+-+-+0+-+0+-+00-+-++-+-+-+-+-+	
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	(b) I
-+-+-+-+0-+-+0-+-+0+-+0+-+0+-+0+-+-00+-+-+-+-+-+-+00+-+-+-0+-+-+-+-+-+-0+-+-+-0+-	
-+-+-+-+-+-+-+-++-+++++++++++++++++++++	
-+	
0000-+-+-+-000+-+-+-0+-+-+00-+-+-+00-+-+-+00-+-+-+00-+-+-+00-+-+-+00-+-+-+00-+-+-+00-+-+-+00-+-+-+00-++-	
0000-+-00+-+-+-0+00000-+-+-+-+0-000+-0000+-0+-	
00-+-+-00+00-+-00+-+00-+-++-+0-000+-0+-+-+-000+-+-+-+-0000-+	
00-+-+-00+00-+-00+-0+-0+-+-++++++00-00+-++00000+-+00000+-+-+	+ - + - 0 0 + 0 - +
00-+-+-00+-+-+-00+-0000+00-+-+000-0+-+-0+-+-000+00-+-+-+000-+-+00	
00-+-00+-+-+-+-00+-00+-+00+-+-+000-000+-+0000-00+0-0+-+-+000000	
-+-+-00+00-+-+-00+0-+0-+00-+-+-+-0000+-+-+00-0+00-0+-+000000	(C)
-+-0000+00-+-+-000+-+-00+0+-+-000000+-+-00+00-+0-+	
-+-0000+-+-+-+0-+-+-+-0+-+-00000+0-+0-+0	
-+-00+-+-+-+-+-+-+-+-+-000+-00+-0+-+0-+-0+-+0-+-0+-+0-+-000+-+0-00+	+-+-=0+0-+
-+0-0+-+00-+00-0+-+-+-+-+0-00+-0+-00+-+000-0000+-+-0000+-+-0+-+	
-+00-+-+00-0+-00+-+00-+-+-+00-0+-+-+0-00+-	
-+-+-+000-00+-+-+00-+-+-+00-+-+-+00-0+-+-+00-+0-+	
-+-+-+0-+0-+0-+-+-+-+0-+-+-+00-+000-+00-+00-+0-+	
-+-+-+000-+0-+0-00+-+-+-0+0000-+-++-+0-+0	

図5. モンテカルロスナップショット($k_{\rm B}T/J=$ 図6. 揺らぎのタイプ 0.10)

さて図4に、上述の2通りの方法で見積られた ξ_D を示す。黒い印が実際の観測値、白抜きの印が仮定に基づいた値である。両者の間には定性的そして決定的差異があることがわかる。 $T \rightarrow 0$ で観測値は発散するのに対して、仮定に基づいた値は20サイト余りと

いう有限値に留まる。このことは、図 2(a) において L = 97 という長い鎖においても、基 底状態で HO が非局所的に残存しているという実測と相反する。従ってこのモデル計算 から我々は、**基底状態では DW は強い相関を持って現れる**ことを結論できる。

我々は図5に示したモンテカル ロスナップショットにおいて、この ことを視覚的に確認できる。横が 鎖方向、縦がトロッター方向であ る。ここで温度は $k_{\rm B}T/J = 0.10$ であり、従ってこのスナップショ ットは基底状態の性質を表現して いるものとみなすことができる。 HO はほぼ完璧であるが、斜線で 示した部分では量子揺らぎにより 局所的に秩序が壊れている。注目 すべきは、この秩序の乱れがあく までも局所的であること、つまり DW は必ず対束縛されていること である。スナップショットの縦軸 は短いスケールでの時間発展を記 述することから、ある瞬間に対発 生した DW が束縛を逃れて離れ てゆくことなしに、短時間の後に 対消滅していることがわかる。

基底状態において DW 間に いわば引力が働く機構を考えてみ よう。基底状態のスピン配位は非 対角演算子 $S_i^+S_{i+1}^- + S_i^-S_{i+1}^+$ を 通してのみ揺らぐことができる。

図7. モンテカルロスナップショット($k_{\rm B}T/J=0.40({\rm a}),1.00({\rm b})$)

つまり全磁化を保存する形でしか揺らぎは発生しない。量子揺らぎの典型的なパターン を図 6(a) 及び (b) に示した。図 6(a) では、揺らぎは HO に対して定量的にもなんら影響 を与えない。一方図 6(b) では、量子揺らぎによって HO は乱されるが、あくまでその影 響は局所的である。つまり量子揺らぎによって発生する DW は必ず対になっている。そ して DW が消滅するときも必ず対消滅するため、DW が孤立して残されることはない。

ところが温度が有限になると揺らぎに定性的な変化が生ずる。図 6(c) に示したのは、 有限温度における熱的な揺らぎである。熱的な揺らぎというのは磁化の揺らぎであり、モ ンテカルロシミュレーションの言葉で表現すれば、非局所フリップがアクセプトされる ことに対応する。従って有限温度ではスピンは単独でフリップできるようになり、これは 孤立した DW の生成を意味する。図 6(c) から明らかなように、孤立した DW は HO に 対して深刻な影響を及ぼす、つまりもはや HO は非局所的に生き残ることはできなくな る。これが、有限温度において長距離的 HO が速やかに消失する機構である。これを再 びモンテカルロスナップショットで見てみよう。図 7(a) 及び (b) に示したものはそれぞ れ、 $k_{\rm B}T/J = 0.40, 1.00$ において得られたものである。非局所フリップが許容されるこ とにより、トロッター方向に突き抜ける形の孤立した DW が発生しているのを見ること ができる。より高温の図 7(b) では孤立した DW の数は一層増して、もはや量子揺らぎと 熱的揺らぎの区別がつきにくくなっていることがわかる。

図 9. S = 1 特有のエネルギー分散関係

図 8. 単独スピンフリップ

4 まとめと考察

S = 1反強磁性ハイゼンベルグ鎖の基底状態は、量子力学的に乱されており、また そこではスピン相関関数は指数関数的に減衰するにもかかわらず、隠れた長距離秩序をも ている。我々はこの隠れた秩序 HO の熱力学的性質を調べるために、非局所的及び局所 的秩序パラメタ $O_{LR} \ge O_{SR}$ を導入した。 $\langle O_{LR}^2 \rangle$, $\langle O_{SR} \rangle$ 共に $T \rightarrow 0$ で成長してゆく けれども、完全な値1には到達しない。これは、基底状態においても存在する量子揺ら ぎのためであり、AKLT モデルの場合とは対照的である。ただし重要なことは、絶対零 度における揺らぎ、すなわち量子力学的な揺らぎは、時空において必ず局在しており(図 5)、長距離秩序を本質的に壊すことはできないということである。このため、隠れた秩序の相関距離(ストリング相関長) ξ_D は絶対零度で発散する。長距離秩序の消失に本質的に寄与するのは、束縛されていない孤立したドメインウォール(DW)である。これは有限温度における熱的な揺らぎ、すなわち磁化の揺らぎによってのみ生成される。さらに孤立した DW のこの生成機構は、本モデル、つまりS = 1の系に特有なものである。図 8(a) に示すようにS = 1/2の場合には、反強磁性秩序状態においてスピンを単独でフリップさせても、DW は必ず対生成し孤立した DW は得られない。ここに示された DW 対は、よく知られているように1対のスピン波として、エネルギーの分散関係において連続スペクトル $\varepsilon(k) = \varepsilon_{DW}^{LS}(k') + \varepsilon_{DW}^{LS}(k - k')$ を構成する[16]。ここで $\varepsilon_{DW}^{LS}(k)$ は、ダブレットマグノンのエネルギー分散関係である。一方S = 1の場合は、単独スピンフリップ±1 \leftrightarrow 0 により、孤立した DW が発生し得ることがわかる(図 8(b))。つまりこの孤立した DW は、S = 1反強磁性ハイゼンベルグ鎖に固有の励起である。

そこで本モデルのエネルギー分 散関係として、図9のようなも のを予想することができる。波数 $k = \pi \kappa$ おいてギャップ Δ をもつ $\widehat{\ }$ 孤立スペクトルが、k=0でギャッ プ 2Δ をもちその付近では $\epsilon(k) = 5$ $\varepsilon_{\rm DW}(k') + \varepsilon_{\rm DW}(k-k')$ でよく近似 言 される連続スペクトルにもぐって ゆく、という描像である。この物 理的描像は最近、数値的な renormalization gruop の方法によって も提出されている[17]。また最近 行われた、良好なS=1準1次元 物質を用いた中性子非弾性散乱の 実験においても、連続スペクトル から分離した鋭い強度ピークが観 測されている[18]。

図 10. ストリング相関長の対数プロット

図9におけるギャップ∆はこれまでの議論から、孤立した DW の熱的な励起エネル ギーに等しいと考えられる。そこで図5のξDのカーブの低温部分を、

$$\xi_{\rm D} \propto \frac{J}{k_{\rm B}T} \exp(-\frac{\Delta}{k_{\rm B}T}) \tag{11}$$

の形にあてはめて Δ を評価してみよう。ここで T^{-1} の補正は経験的なものであるが、転送 行列法を用いた計算でも確認されている[19]。図10 に $\xi_{\rm D}$, $k_{\rm B}T\xi_{\rm D}/J$ の対数をプロットした

「低次元系の物性と場の理論」

が、 T^{-1} の補正を行うとよく直線にのることがわかる。傾きから得られる Δ の値は 0.14J 程度であった。転送行列法によってもこの値は評価されており[19]、0.326Jと報告されて いる。そのデータも併せて図 10 に示した。両者の差は小さいとはいえないが、我々の積 分評価の方法では $L \rightarrow \infty$ への外挿において特に低温で曖昧さがでてくること、また ξ_D の値が低温で大きくなってくると評価の精度が悪くなることなど、いくつかの理由が考え られる。ギャップ Δ の大きさは、理論的にはハルデインギャップ 0.4J程度になると予想さ れるが[20]、低励起エネルギースペクトルの定量的議論は、今後の課題に譲りたい。

参考文献

- 1. F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983); Phys. Lett. 93A, 464 (1983).
- R. Botet and R. Julien, Phys. Rev. B27, 613 (1983); R. Botet, R. Julien and M. Kolb, Phys. Rev. B28, 3914 (1983).
- 3. H. Betsuyaku, Phys. Rev. B34, 8125 (1986).
- 4. K. Kubo and S. Takada, J. Phys. Soc. Jpn. 55, 438 (1986). R. M. Nightingale and H. W. J. Blote, Phys. Rev. B33, 6545 (1986); M. Takahashi, Phys. Rev. Lett. 62, 2313 (1989).
- W. J. L. Buyers, R. M. Morra, R. L. Armstrong, M. J. Hogan, P. Gerlach and K. Hirakawa, Phys. Rev. lett. 56, 371 (1986); K. Kakurai, M. Steiner, R. Pynn and J. K. Kjem, J. Phys. Condens. Matt., 3, 715 (1991); Z. Tun, W. J. Buyers, A. Harrison and J. A. Rayne, Phys. Rev. B43, 13331 (1991).
- J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkens, J. Rossat-Mignod and W. G. Stirling, Europhys. Lett. 3, 945 (1987); J. P. Renard, L. P. Regnault and M. Verdaguer, J. Physique Coll. 49, C8 1425 (1988); M. Date and K. Kindou, Phys. Rev. Lett. 65, 1659 (1990); Y. Ajiro, T. Goto, H. Kikuchi, T. Sakakibara and T. Inami, Phys. Rev. Lett. 63, 1424 (1989); M. Chiba, Y. Ajiro, H. Kikuchi, T. Kubo and T. Morimoto, Phys. Rev. B44, 2838 (1991); B45, 5119 (1882); K. Katsumata, H. Hori, T. Takeuchi, M. Date, M. Yamagishi and J. P. Renard, Phys. Rev. Lett. 63, 86 (1989); N. Fujiwara, T. Goto, S. Maegawa and T. Kohmoto, Phys. Rev. B45, 7837 (1992).
- M. Takahashi, Phys. Rev. B38, 5188 (1988); K. Nomura, Phys. Rev. B40 2421 (1989); S. Liang, Phys. Rev. Lett. 64, 1597 (1990).
- I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987); Commun. Math. Phys. 115, 477 (1988).
- 9. M. den Nijs and K. Rommelse, Phys. Rev. B40, 4709 (1989).
- 10. S. M. Girvin and D. Arovas, Phys. Scr. T27, 156 (1989); Y. Hatsugai and M.

Kohmoto, Phys. Rev. B44, 11789 (1991).

- 11. S. Yamamoto and S. Miyashita, Phys. Rev. B48, 9528 (1993).
- 12. J. E. Hirsch, R. L. Sugar, D. J. Scalapino and Blankenbecler, Phys. Rev. B26, 5033 (1982).
- 13. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
- 14. S. Miyashita and S. Yamamoto, Phys. Rev. B48, 913 (1993).
- 15. S. Yamamoto and S. Miyashita, in preparation.
- 16. N. Ishimura and H. Shiba, Prog. Theor. Phys. 63, 743 (1980).
- 17. S. R. White and D. A. Huse, to be published in Phys. Rev. B.
- 18. S. Ma, C. Broholm, D. H. Reich, B. J. Sternlieb and R. W. Erwin, to be published in Phys. Rev. Lett.
- 19. K. Kubo, Phys. Rev. B46, 866 (1992).
- 20. T. Sakai, private communication; M. Takahashi, private communication.