bcc 固体³Heの核磁気転移点における帯磁率の異常

名古屋大学理学部 馬宮 孝好

高密度 bcc 固体³He の帯磁率は核磁気転移温度で異常な振る舞いを示す。帯磁率実数 成分は核磁気転移温度で鋭いピークを示し、虚数成分は秩序状態で急激に減少する。磁気 転移温度より高い温度で、交換系-ゼーマン系間の緩和時間は秩序状態移行の兆候を示 す。また実験結果は秩序状態においてスピン波熱浴への新たなエネルギー流の存在を示唆 する。

1 Introduction

固体³Heの原子の零点振動の振幅は大きく、原子は容易に位置を入れ替える。固体³He の核磁性は原子直接交換相互作用によっている。直接交換相互作用はトンネル効果であ るから、原子間隔(あるいはモル体積)に強く依存する。交換相互作用や、後述のゼー マン交換緩和時間, τ ,はモル体積の関数として大きく変化することになる。さて我々は SQUIDを使って磁化と帯磁率を数 10 μ Kの超低温まで同時測定する方法を開発した¹⁾。冷 却は PrNi₅と Cu の2段断熱消磁による。過電流発熱を少なくし、一方熱伝導がよくなる よう複合金属で耐圧セルを制作した。bcc-hcp 相の境界に近い、高密度 bcc 固体³He にお いては交換相互作用は小さく、低周波交流帯磁率は $\omega\tau ~ 1$ となる。この場合特異な交流 帯磁率が磁気転移温度近傍で現れることを見い出した²⁾。

2 帯磁率の温度変化と周波数変化

交流帯磁率及び静磁化を 44 μ K から 5mK まで測定した。試料のモル体積は 20.58~21.51cm³ である。周波数は 16~33Hz であるが、主として 19Hz で温度変化を測定した。振動磁場の 振幅は 0.13 μ T,静磁化測定のために 1.9mT の静磁場がかけられている。測定は最低温度 から温度上昇とともに行った。温度計は白金のNMRにより³He 融解圧温度スケールで校 正した。第1図に、20.97cm³/molの試料について、帯磁率の実数部、虚数部 χ' 、 χ ["]、静 磁化 M_s を温度の関数として示す。図から 66 μ K で核磁気相転移があることがわかる。静磁 化は、これまでの実験と全く同じである。低周波帯磁率はこれまで測定されたことがない が、 χ' は転移点でするどいビークを持ち、 χ "は秩序状態で大きい減少がある。これらの特 徴は温度変化の速度(+0.03 μ K/h ~-0.06 μ K/h) や、振動磁場の振幅(0.13 μ T ~0.26 μ T) には依存せず熱的不平衡のためではない。一方帯磁率の振舞は周波数に強く依存する。

第1図 磁化、帯磁率実数部、虚数部対温度の逆数

20.97cm³/mol の試料に対する周波数依存性を第2図に示す。常磁性状態と秩序状態 では振舞に相当な違いがある。この振舞を Casimer-Dupre の理論により解析した。静磁 場に平行に振動磁場をかけるとゼーマン系から交換系に緩和時間₇でエネルギー流があり、 核スピンの交流磁場に対するレスポンスは、帯磁率として、

$$\chi' = \frac{\chi_o - \chi_s}{1 + \omega^2 \tau^2} + \chi_s \tag{1}$$

$$\chi'' = \frac{(\chi_o - \chi_s)\omega\tau}{1 + \omega^2\tau^2}$$
(2)

のように表される。 χ_o は等温帯磁率、 χ_s は断熱帯磁率である。常磁性状態では $\chi_s \sim 0$ 、秩 序状態では $\chi_s \sim 0.7\chi_o$ としてこれらの式によりよく表される。

3 相転移近傍の振舞

第3図に同じ試料の相転移温度近傍の拡大図を示す。 $\chi' と\chi' から_{\tau} と\chi_{o}$ を導出した。 χ_{o} は M_{s} と独立に導出したが、 M_{s} とよく一致している。 M_{s} や χ_{o} は 66μ K(図のB点)で相転 移することを示している。一方 χ' 、 χ'' 、 τ ではそれよりも高い温度(図のA点)で相転 移の徴候が現れる。その温度差は 2μ K 程度である。この温度差は測定したすべての試料 (3個)で同じ程度存在する。固体³He は 1 次転移を示すが、相転移が起こる前から2つ の熱浴間の緩和が見え始めることを示していると考えられる。

第2図 20.97cm³/mol に対する帯磁率対周波数。 65µK は秩序状態、75µK は常磁性状態である。

4 秩序状態帯の考察

(1)、(2)の式から χ_s 、 τ の温度変化を温度の関数として導くことが出来る。ただし χ_o は静磁化 M と比例するとした。実際常磁性状態では、 χ_o は M_s によく比例する。得られた結 果を第4図に示す。緩和時間は常磁性状態ではほとんど一定である。この緩和時間はスピ ン緩和時間 T_2 と考えられ、 T_2 は温度によらず一定で交換相互作用 Jと $J = 2.78T_2(\gamma^2 \hbar/a^3)^2$ の関係がある。 γ は gyromagnetic ratio、a は格子定数である。緩和時間は転移点で小さ くなり秩序状態では常磁性状態の値に近い値に戻る。常磁性状態から強磁性状態への1次 転移ではスピン配列に drastic な変化が起こるので、 $\tau \diamond \chi$ に急激な変化が起こっている。 これに比べて、hcp 固体³He では常磁性から強磁性への相転移に際して τ は増大すること が観測されている³)。常磁性状態で $\chi_s \sim 0$ となり秩序状態では χ_s は有限となるのは次の事 情による。 $\chi_s = (C_M/C_H)\chi_o = \chi_o - T(\partial M/\partial T)_H^2/C_H$ である。ただし C_M 、 C_H は定磁化 及び定磁場比熱である。常磁性状態では磁化 Mがキュリーワイス則に従うと $\chi_s \sim 0$ とな り、秩序状態では反強磁性の性質から $\partial M/\partial T \sim 0$ から χ_s は χ_o に近い値となる。秩序状態 では χ_s が有限ということは、本研究の周波数範囲より高い周波数で帯磁率が減少するとこ ろがあることを示す。 秩序状態ではスピン波による新たな熱浴が生じ核スピンの disturbance は双極子相互 作用を通じてスピン波の速度で pore 中に拡散すると考える。この場合 $t = L/v_s(E_{ex}/E_d)^{\frac{1}{2}}$ で表される⁴)。 *L* は pore の直径で 2800 Å、 v_s はスピン波の速度で 0.8cm/s、 E_{ex} と E_d は 交換エネルギーと双極子エネルギーで 100 μ K と 1 μ K とした。この式から $\tau = 0.4$ msec と 見積もられる。即ち現在の試料に対しては 2kHz の近傍で新たな pass を示す帯磁率の変 化が生じると予測される。この緩和時間の研究は秩序状態のスピン波熱浴についての新し い知見を与える可能性がある。核磁気転移温度 T_N は現在の試料に対し 48 μ K から 111 μ K が得られた。過去の T_N のデータを含めて bcc-hcp の相境界のすぐ近くまで $T_N \propto V^{18.5}$ と なる。*V*はモル体積である。

第3図 20.97cm³/mol の転移温度近傍の拡大図。_χ。(等温帯磁率)、 Ms (静磁化)、_χ'(帯磁率実数部)、_χ"(虚数部)、_τ (緩和時間)対 温度の逆数。矢印Bは 静磁化の転移温度を表す。矢印Aは転移温度 より高い温度で転移の徴候が見られることを示す。

第4図 20.97 cm³/mol 試料に対する等温帯磁率 χ_o 、断熱帯磁率 χ_s 、緩和時間 τ 対温度。

5 今後の問題

現在のセルは金属セルで出来ており、振動磁場に対して遮蔽電流のためにバックグラ ウンドの変化が大きい。このためあまり大きい周波数までの変化を測定出来なかった。最 近我々は低温で高圧に耐える非金属セル(スタイキャスト 1264 を使用)を開発した。現 在この新しいセルを使用して実験を再開している。(1)詳細な周波数変化(2)転移温 度より高い温度での緩和時間の変化の徴候(3)秩序状態での高い周波数でのスピン波熱 浴への緩和時間の検出を計画している。

この報告は、阿部聡、竹内嗣人、近藤浩、鈴木孝尚、矢野英雄、三浦裕一、野澤優、井上 晶次、辻井宏之、池谷昭男、安田祐子の諸氏との共同研究に基づいた。 References

- M.Yano, T.Uchiyama, T.Kato, Y.Minamide, S.Inoue, Y.Miura and T.Mamiya, J. Low Temp. Phys. 78, 165 (1990)
- S.Abe, T.Takeuchi, H.Kondo, T.Suzuki, H.Yano, Y.Miura and T.Mamiya, Phys. Rev. Lett. 70, 473 (1993)
- H.Yano, H.Kondo, T.Suzuki, Y.Minamide, T.Kato, Y.Miura and T.Mamiya, Phys. Rev. Lett. 65, 3401 (1990)
- 4) T.Kusumoto, O.Ishikawa, T.Mizusaki and A.Hirai, J. Low Tem. Phys. 59, 269 (1985)