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1. Introduction

The purpose of this paper is to develop a systematic theory of interaction pulses, which is

capable of dealing with both dissipative and dispersive systems in a unified way. We emphasize

that arbitrary parameters contained in a pulse solution play a central role in the coarse-grained

description of pulse dynamics. A simple but non-trivial example in a continuum system is the

position of a localized solution.' Its specification violates the translational symmetry of the

system and hence the position is a kind of Goldstone mode. Thus when we consider weak

deformations of a localized solution, the position is a relevant slow variable. This is the basic

idea in the theory of interface and/or phase dynamics [1].

We consider the Kortweg-deVries (KdV) equation with dissipative terms:

(1.1)

where a is a positive constant. Equation (1.1) wasflrst derived and studied by Benney [2] and

is called sometimes Benney equation.' As is well known, Eq. (1.1) is compl~tely integrable

when the dissipative terms are absent, i.e., a =O. The KdV equation admits propagating pulse

(soliton) solutions. Because of the integrability, the collision of a pair of pluses can be analyzed

in a rigorous manner. However, a completely integrable system is quite exceptional in Nature.
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Some dissipation such as (1.1) is not avoidable in any realistic systems. Therefore to develop a

systematic method of deriving the pulse interaction is necessary for a perturbed KdV equation

which is not integrable any more.

There are several previous results for the pulse interaction of KdV equation and its modified

version. The interaction for a dispersive KdV equation with a fifth derivative term was

performed in Refs. [3] and [4] . Kawahara and Takaoka [5] derived the equation of motion for

pulses of (1.1) with a '# O. However it seems to us that the validity of their results is

questionable since the equation of motion obtained has a time-reversal symmetry despite the fact

that the starting equation (1.1) does not.

The pulse interaction in a dissipative system with no Lyapunov functional has been studied

by Yamada and Nozaki [6]. They have considered the FizHugh-Nagumo equation which is a

model equation for pulse propagation along a nerve axon. Although their method is close

somehow to ours, they have not applied it to dispersive systems.

The resluts presented here will be··published in Phys. Rev. E pI.
2. Pulse Interaction in KdV equation

In this section, we derive the pulse interaction of Eq. (1.1) without the dissipative terms,

i.e., a =O. In this case, one pulse solution is well known and is given by

u(x, t) = V(c, x - ct) = ~ sech2 [~ (x - ct )J

where V(c, x - ct) satisfies

(2.la)

(2.lb)

It should be noted that the velocity of the propagating pulse denoted by c is not specified but an

arbitrary positive constant.

We consider .the interaction of two pulses located at x =Xl (t) and x2(t) propagating with

almost identical velocities. The distance x2 - Xl is assumed to be nmch larger than the pulse

width 1/VC . The solution u(x, t) can be written as

u(x, t) =V( c + xl"x - ct - Xl) + V( c + x
2

' x - ct - x2) + b(x - ct, t) (2.2)
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We assume that Xl and x2 which arise from the interaction are sufficiently small compared to

·c. This will be checked self-consistently in the fmal results. Substituting (2.2) into (1.1) with a

=0, one obtains up to O(b)

bt;=Mb+g

where

(2.3a)

and VI' =V( C + X., x - ct - x.), (i =1, 2). The operator M is given by
I I

(2.4a)

Now we examine the property of the operator M. In the vicinity of the position x =xl' the

pulse solution V2 is sufficiently small so that one may ignore V2 in (2.4a). Thus the operator M

is simplified as

a a3 a aM=c- - - - 6[dY. +V-]ax ax3 ax ax (2.4b)

Here and in what follows, we occasionally omit the suffix 1 in VI when no confusion arises.

One of the zero-eigenfunctions of M is given, as in the case of the TDGL equation, by

(2.5a)

It is emphasized, however, that there is another zero-eigenfunction for M, which is given by
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~ _av
'V2-

de
(2.5b)

In fact, it is readily shown that McI>2 = - ~1 and hence M2~2= - M~l = O.

This relation can be obtained from (2.1 b) by differentiating it with respect to c. This property is

a consequence of the fact that 'the speed c in the pulse solution (2. 1) is arbitrary in the KdV

equation. The degeneracy of the zero-eigenstate requires a caution in applying the solvability

condition for (2.3) as will be shown below and in Appendix.

We need to introduce the adjoint operator M+ of M:

(2.6)

The zero eigenfunction '¥ of M+ is given by

(2.7)

Note that corresponding to 412 there is another zero-eigen function 'P such that

(2.8)

Now we derive the equation for xr Since the operator M is not self-adjoint and has

degenerate zero-states, it is not a priori obvious whether or not the orthogonality condition for

'P and the inhomogeneous tenn in (2.3a) is the proper solvability condition. What one should

require is that the 'solution b in (2.3a) must be bounded for t ~ 00. We can prove, however, that

this is indeed equivalent with the condition:

(g, 'P) = 0
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This leads us after some manupilations to the equation for Xl

(2.10)

The equation for x2 is given by changing x1by - x2 . Thus the pulse interaction is found to be

repulsive in this case.

3. Pulse interaction in the Benney equation

When the KdV equation has a dissipative term as (1.6), the interaction among pulses is

expected to be modified qualitatively. Here we explore this problem. Throughout this section,

we assume that the parameter a in (1.1), which is a measure of the strength of the dissipative

terms is sufficientlr small, 0 < a« 1.

One of the most important difference for a finite value of a is that the pulse velocity is

uniquely determined asymptotically [8,9]. The asymptoticl velocity c* can be obtained by a

singular perturhation method for small a [7].

Suppose that there is a single pulse which obeys the pure KdV equation with a=O. We

switch on the dissipative terms at some instant. The pulse profile as well as its velocity

changes gradually to the asymptotic form with c = c*. We are concerned with the interaction

between these asymptotic pulses. We put two asymptotic pulses at x=xl and x2 and see how

these pulses interact each other. Since the speed c(a) satisfying c(O) = c* is uniquely

determined, we may write the solution u(x, t) of Eq. (1.1) as

u(x, t) = Va(z - Xl) + Va(z - x
2

) + b(z, t) (3.1)

with z = x - c(a)t. The one-pulse solution is denoted by Va emphasizing the finiteness of a. It

satisfies

By the same method as in section 2, we obtain the equation for Xl
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(3.3)

where

(3.4)

The function 'P a obeys the equation similar to (4.8)

d d3 d d2 d4 .
[-c(a)-d + -3 +6V -d -a(-2+-4)] 'Pa=O (3.5)

z dz a z dz dz

It should be noted that the x term does not exist in (3.3) since the velocity has been fixed to

be the terminal one c = c(a).

In the limit a~ 0, the coefficient y vanishes identically as shown in section 2. We can

prove that this constant is positive for nonzero values of a. After substantial manupilations we

obtain

a av av 2y =-(-, -)+O(a)
c * az az

Thus the equation of motion is given by

(3.6)

(3.7)

The result (3.7) indicates that the interaction between two pulses turns out to be repulsive

under the dissipation. This implies that in a system having many pulses the distance between

adjacent pulses tend to be equal asymptotically due to the interaction.

4. Discussions

The analysis in section 3 fully relies on the assumption that a stable pulse solution exists

asymptotically after the dissipation is switched on. At first sight, this seems unlikely because

when a is positive the uniform solution u = 0 of eq. (1.1) is linearly unstable for long

wavelength perturbations and many pulses are formed. However because the most rapid
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grwoth occurs at a finite wavenumber and there is a conservation Jdt u = const. a periodic

. array of the asymptotic pulses is not entirely impossible. This does not contradict our result

that the pulse interaction is repulsive in the dissi~ative case.

The discrepancy between the present results and those in Ref. [5] may be due to the

difference of the time regime concerned such that Kawahara et. al. considered the intermediate

regime while we deal with the fmal steady state.
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