<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>複素古典力学と量子トンネル効果 モレキュール「多自由度の力学系と幾何学」研究会報告</td>
</tr>
<tr>
<td>著者</td>
<td>高橋 公也</td>
</tr>
<tr>
<td>参考文献</td>
<td>物性研究 京都大学大学院理学研究科物性物理専攻</td>
</tr>
<tr>
<td>部門</td>
<td>部門名</td>
</tr>
<tr>
<td>月日</td>
<td>1995-07-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/95564</td>
</tr>
<tr>
<td>資料種別</td>
<td>部門別研究報告</td>
</tr>
<tr>
<td>出版者</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
複素古典力学と量子トンネル効果

九工大 情報工 高橋 公也

1. はじめに

半古典領域（プランク定数が系の持つ力学的なスケールに比べて相対的に小さい場合）における、非可積分系の量子力学の問題は近年盛んに研究されている。半古典領域の量子系の振舞いは複雑であり、そのままの形で波動関数の振舞いの特徴を捉えることは極めて困難である。この様な場合、半古典論を用い古典力学の軌道の言葉で波動関数の振舞いの背景にある特性を抽出し意味付けを行うことが有効な場合が多い。近年の半古典論を用いた多くの研究で、半古典領域における量子系の特徴が明らかになってきた。しかしながら、純粋な量子効果である回折効果やトンネル効果の研究は充分行われているとはいえない。半古典領域ではこれららの効果は相対的に小さくなるが、非可積分系では古典カオスのもつ不安定性を反映して複雑になる事が予想される。これらの効果は純粋な量子効果であるのでこれまでの半古典論を用いた解析では不十分である。トンネル効果を取り扱う場合、複素空間に拡張した複素半古典論が有効である事は古くから知られている。WKB近似における複素作用積分や時間を複素化した時に得られるインスタントン解は最も簡単な例である。また、分子科学の分野ではMillerらによって複素軌道を用いた半古典論によるトンネル効果の先駆的な研究が行われている1)。これらの研究は、複素半古典論の有効性を支持しているものの、複素半古典論させ有効に働くか？また、どこまで有効なのか？複素解析特有の困難（リーマン面、複素caustics等）2)、3)をどの様に処理するか？等の基本的な取り扱いの部分においては今後依然として不明な点が多い。これらの問題を完全に理論的に解決することは現在の研究レベルでは不可能である。そこで、とりあえず個々の問題を取り扱いながら、複素半古典論のもつ問題点を整理し掘り下げて行くのが賢明な方法であるようにと思われる。本報告では、その様な試みの一つとしてトンネル効果や回折効果の特徴付けが比較的容易な周期変動するポテンシャルによる散乱問題を取り扱う。周期外力系の散乱問題を複素半古典論で解析するための定式化を試み、簡単な例題（可積分系）を用いて取り扱い上の問題点について議論する。問題の定式化や簡単な例題を用いて解析上の問題点を整理することとは、非可積分系の散乱問題を取り扱う準備として重要である。

- 372 -
2. 複素半古典論

この章では複素半古典論の取り扱いについて簡単に説明する。量子力学的な時間発展を記述するユーティラーピクノを \(\hat{U}_{t_1 \rightarrow t_2} \) とし、力学量 \(q \) 及び \(Q \) の固有状態を \(|q \rangle > \) 及び \(|Q \rangle > \) とすると \(|q \rangle \) から \(|Q \rangle \) への遷移を半古典論及び複素半古典論を用いて表せば,

半古典論

\[
\langle Q | \hat{U} | q \rangle \sim \sum_{\text{classical paths}} \left[-\frac{i}{2} \frac{\partial S(q, q)}{\partial q} \right]^{1/2} \exp \left\{ \frac{i}{\hbar} S(q, q) - \frac{\pi}{2} \tilde{M} \right\}
\]

複素半古典論

\[
\langle Q | \hat{U} | q \rangle \sim \sum_{\text{complex classical paths}} \left[\begin{array}{c}
\text{同じ}
\end{array} \right]
\]

（1）

となる。ここで、\(S \) は \(q \) 及び \(Q \) を独立変数とする正準母関数で、\(M \) はマスロフ指数である。複素半古典論は複素軌道を用いる他は普通の半古典論と同じである。半古典論では、\(q \), \(Q \) の正準共役な力学量をそれぞれ \(p \), \(P \) とすると、これらは非観測量なので、\(t = t_1 \) で \(p \) は不確定（\(-\infty < p < \infty \)），\(t = t_2 \) で \(P \) は不確定（\(-\infty < P < \infty \)）と考える。複素古典論では、観測量である \(q \) 及び \(Q \) とそれぞれ \(t = t_1 \) 及び \(t = t_2 \) で実数値になることが要求されるが、非観測量である \(p \) 及び \(P \) は不確定であるので実数値の制限を外し全ての複素値を取り得ると仮定する。そして、複素空間に拡張した正準方程式を用いて時間発展を計算し、\(q \) 及び \(Q \) がそれぞれ \(t = t_1 \) 及び \(t = t_2 \) で実数値を取るような複素軌道をソリューションする。当然の事ながら中間領域 \(t_1 < t < t_2 \) では \(q \), \(Q \) も含めた全ての変数が複素値をとる。時間領域における複素半古典近似を用いたアプローチは可積分系では極めて有効であり、非可積分系でも短い時間発展を扱う場合に限れば成功している（2), (3)。しかしながら、半古典論が経路積分の \(h \rightarrow 0 \) の時の近似として得られるのに対し、複素半古典論は量子力学のどの様な近似になっているかは現在のところ正確には分かっていない。この点に付いては将来の解析を待たなければならない。

時間領域での半古典論にフーリエ変換を施せばエネルギー領域での半古典論が求められる。エネルギー領域における自由度の半古典論はいわゆる \(\text{WK} \) \(\text{B} \) 近似になる。

エネルギー領域ではエネルギーが観測量になるので実数値を取らなければならない。この場合、時間が不確定となるので、複素化は可能である。虚時間を用いたインスタントンの理論はまさにこれに相当する。一方、正準変数 \(q \), \(p \) はハミルトニアン \(H \) \((q, p) \) が実数値を取るという条件を満たす範囲で複素化は可能である。
簡単な解析により，固定された実数値Eに対し上の条件を満たす複素変数(q, p)が作る曲面は，時間を複素化した正準方程式の解軌道により結ばれている事がわかり，複素時間$t = t_R + i t_I$上の時間発展$q(t), p(t)$として与えられる。これにより，一自由度系をエネルギー領域で扱う場合には，力学変数を複素化する事と時間を複素化する事は同等である事がわかる。固有状態の波動関数をq表示で見るとqが表示のWKB近似を用いる場合には，$I m(q) = q_1 = 0$を満たす点が波動関数に寄与する。これがいわゆるインスタントン解である。

次に二自由度可積分系$H(q_1, q_2, p_1, p_2) = H(l_1, l_2)$を考えて見よう。この場合作用変数$I_1, I_2$は時間不変になるので実数値をとらなければならな
い，一方角変数θ_1, θ_2は不確定になるので複素化可能である。この操作はトーラ
スを複素空間に解析接続することに相当する。二自由度系の場合場合時に2つのパラメーターを複素化出来るので一自由度系の場合のように複素時間（1パラメーター）のみで解の全空間をスキャンすることは不可能である。q表示の固有関数を扱う場合
には，I_1, I_2が実数となるの条件を満たしさらに$I m(q_1) = 0, I m(q_2) = 0$となる点のみが複素半古典論の計算に寄与する。

エネルギー領域における非可積分系の複素半古典論の取り扱いについては現在の
ところなにも解っていない。おそらくカオス領域では解析性が期待できないので半
古典論有効であった周期軌道を用いたトーラス公式は，簡単には複素空間には拡
張出来ないであろう。しかし，近可積分系の場合には，複素領域にトーラスをある
程度解析接続すること（複素KAM理論）は可能であると考えられ部分的に解析可
能であろう41)

3. 周期変動するポテンシャルによる散乱問題

この章では周期変動するポテンシャルによる散乱問題を複素半古典論で取り扱う
のに必要な定式化を行いその問題点について議論する。具体的に取り扱う問題は，
図1に示すような周期的に変動する散乱体に平面波を入射したときの散乱問題であ
る。
周期変動する散乱体

自由粒子領域 散乱領域 自由粒子領域

\[V(q, t) \neq 0 \quad \text{V(q, t) = 0} \]

図1. 周期変動するポテンシャルによる散乱問題

この様な系のハミルトニアンを一般的な形で書き下せば、

\[H = \frac{1}{2} p^2 + V(q, t) \]

\[(V(q, t) = V(q, t + T)) \quad (3) \]

となる。ここで、Tは外力の周期でありポテンシャルは外力の周期により変動する。ポテンシャルは図1に示す様に散乱領域では有限の値を持つが、自由粒子領域では \(V \sim 0 \) となるためポテンシャルの効果は無視でき、系は自由度の自由粒子として取り扱える。

\[\lim_{H \to \infty} \frac{H}{H_e} = \frac{1}{2} p^2 \quad (4) \]

入射波は \(q \to \infty \) で平面波に漸近する。

\[\phi(q, t) \to \exp \left(\frac{i}{\hbar} (p \cdot q - E \cdot t) \right) \quad (5) \]

ポテンシャルにより散乱された反射波及び透過波は周期的に変動するので自由粒子領域では平面波の重ね合わせとなる。

周期外力の入った系は拡大相空間を用いることにより形式的にチャンネルを持つ二自由度系として取り扱う事ができる。分子科学分野では、チャンネルを持つ二自
由度系の散乱問題は重要な問題でありこれらの方法論が周期外力の場合にも適用可能である。

まず、量子系を拡大相空間で捉えてみよう。系の時間発展を与えるユニタリー演算子を \(\hat{U}(t_1, t_0) \) とすると、外力の周期毎の時間発展は \(\hat{U}(T, 0) \) で与えられ、これを対角化することにより準固有値 \(\varepsilon_n \) 及び準固有状態 \(u_n \) もとまる。

\[
\begin{align*}
 u_n(q, T) &= \hat{U}(T, 0) u_n(q, T) \\
 &= e^{\frac{i}{\hbar} \varepsilon_n T} u_n(q, T)
\end{align*}
\]

準固有値及び準固有状態の拡大相空間での意味を考えてみよう。拡大相空間のハミルトニアン \(\hat{H} \) はもとのハミルトニアン \(H \) を用いて次の様に定義される。

\[
\hat{K} = \hat{H} - i\hbar \hat{E}'
\]

\[
\hat{E}' = \frac{i\hbar}{2\hbar}
\]

拡大相空間の取り扱いでは \(\hat{E}' \) と \(\hat{H} \) は違う意味をもつ事に注意しなければならない（以下を見よ）。拡大相空間の固有関数 \(V_n \) は準固有関数 \(u_n \) 及び準固有値 \(\varepsilon_n \) を用いて次の様に定義される。

\[
V_n = u_n e^{\frac{i}{\hbar} \varepsilon_n t} \quad (= u_n e^{\frac{i}{\hbar} \varepsilon_n T + i\frac{2\pi n}{T} t})
\]

定義よりすぐに固有関数 \(V_n \) は周期 \(T \) の時間依存性をもつことがわかる。\(V_n \) に \(\hat{K} \) を作用させると、

\[
\hat{K} V_n = \hat{H} V_n - i\hbar \frac{\partial}{\partial t} V_n = \varepsilon_n V_n
\]

となり、\(V_n \) が固有値 \(\varepsilon_n \) を持つ \(\hat{K} \) の固有関数になっていることがわかる。また、時間 \(t \) から任意定数 \(\alpha \) だけのずれを許す仮想時間 \(t' = t + \alpha \) を導入すると、拡大相空間の時間発展は

\[
\sin \frac{\alpha}{2\hbar} \phi = \hat{K} \phi
\]

- 376 -
であたえる。また、拡大相空間における波動関数 \(\phi \) が自由度の波動関数と同等であることは以下の式からも明らかである。

\[
\phi = \sum_n c_n V_n \ e^{-\frac{\epsilon_n^2}{\epsilon}}
\]

\[
= \sum_n c_n u_n \quad (c_n = c_n e^{-\frac{\epsilon_n^2}{\epsilon}})
\]

\[
= \phi \quad (11)
\]

散乱問題では当然ながら（準）固有値は連続になる。この場合の（準）固有値 \(\varepsilon \) は \(q \to \infty \) での入射波のエネルギー \(E_\theta = \frac{1}{2} p_\theta^2 \) より次のようにしてもとまる。

\[
\varepsilon = \text{mod} \left(E_\theta, \Delta \varepsilon \right) \quad (\Delta \varepsilon = \frac{2\pi k}{l})
\]

\[
E_\varepsilon = \varepsilon + n_\varepsilon \Delta \varepsilon \quad (12)
\]

したがって、\(q \to \infty \) での入射波を表す準固有状態 \(u_\varepsilon \) 及び固有状態 \(V_\varepsilon \) は、

\[
u_\varepsilon \to \exp \frac{i}{k} \left(p_\theta q - \varepsilon t - n_\varepsilon \Delta \varepsilon t \right)
\]

\[
V_\varepsilon \to \exp \frac{i}{k} \left(p_\theta q - n_\varepsilon \Delta \varepsilon t \right) \quad (13)
\]

となる。当然ながら、\(V_\varepsilon \) の固有値は \(\varepsilon \) である。反射波及び透過波は、準固有値の \(m \Delta \varepsilon \) （\(m \) 整数）分の不確定及び拡大相空間でのエネルギー \(\varepsilon \) の保存を考えれば、\(|q| \to \infty \) で以下のような平面波の重ね合わせで書ける。

\[
u_\varepsilon \to \Sigma a_m \exp \frac{i}{k} \left(p_m q - \varepsilon t - m \Delta \varepsilon t \right)
\]

\[
V_\varepsilon \to \Sigma a_m \exp \frac{i}{k} \left(p_m q - m \Delta \varepsilon t \right) \quad (14)
\]

ここで、\(p_m \) はエネルギー保存則を表す以下の関係式を満たさなければ成らない。

\[
\frac{1}{2} p_m^2 = \frac{1}{2} p_\theta^2 + (m - n_\varepsilon) \Delta \varepsilon \quad (15)
\]

反射波及び透過波の性質は係数 \(a_m \) が求とまれば決定される。\(a_m \) を求める為には
研究会報告

拡大相空間における S 行列を計算すればよい。

チャンネルを持つ二自由度系との対応から半古典近似の S 行列を求めよう。拡大相空間のハミルトニアン K を具体的に書き下せば、

$$
K = \frac{1}{2} p^2 + V(q, t) - E'
$$

となるものに対し、チャンネルを持つ二自由度系は

$$
H = \frac{1}{2} p^2 + V(q, \theta, I) + \omega I
$$

となる。したがって、形式的に $t \leftrightarrow \theta$ 及び $-E' \leftrightarrow \omega I$ の読み替えを行えば、拡大相空間による表現はポテンシャル項に作用変数 (チャンネル) I が含まれていないのを除き、チャンネルを持つ二自由度系に同等であることがわかる。チャンネルを持つ二自由度系の取り扱いは Miller にによってなされている。以下、Miller からの方法に従って、S 行列を計算してみよう。まず、S 行列を座標 q 及びチャンネル I で表すと、

$$
\langle q_2, l_2 | \hat{S} | q_1, l_1 \rangle = -\lim_{|l| \to \infty} \left(-p_1 p_2 \right)^{1/2} \exp \left\{ \frac{i}{\hbar} \left(p_1 q_1 - p_2 q_2 \right) \right\}
$$

$$
\times \int_0^\infty dt \exp \left(\frac{i}{\hbar} E t \right) \langle q_2, l_2 | \exp \left(-\frac{i}{\hbar} \hat{H} t \right) | q_1, l_1 \rangle
$$

となる。これを時間領域の半古典近似を用いて近似すると

$$
\langle q_2, l_2 | S | q_1, l_1 \rangle \sim \sum_{\text{classical paths}} \lim_{|l| \to \infty} \left(-p_1 p_2 \right)^{1/2} \exp \left\{ \frac{i}{\hbar} \left(p_1 q_1 - p_2 q_2 \right) \right\}
$$

$$
\times \int_0^\infty dt \left[\frac{1}{(-2\pi)^2} \frac{f_{\kappa}}{\omega(t_2, t_2) \omega(t_1, t_1)} \right]^{1/2}
$$

$$
\times \exp \left(\frac{i}{\hbar} \left(E t + \Phi(q_2, l_2, q_1, l_1; t) - \frac{\omega I}{\hbar} M \right) \right)
$$

$$
\Phi = \int_{t_1}^{t_2} dt' \left[p \dot{q} - \theta i - H \right] \quad (t = t_2 - t_1)
$$

- 378 -
となる。時間積分を実行しエネルギー領域へ変換し、それと同時にp, Iを独立変
数に取ることを考えよう。この場合、エネルギー一定の条件より \(|q| \to \infty \) では

\[
E = \frac{1}{2} p^2 + \omega I = \frac{1}{2} p^2 + \omega I_2
\] \hspace{1cm} (20)

となる。したがって、pまたはIのどちらか一方を独立変数にとれば充分である。
Millerらはチャンネルを独立変数とした場合の表示を与えている。

\[
S_{q_i} \sim \sum \int \left[\frac{1}{-2\pi i \lambda \delta} \frac{2i \delta}{2P_0 \delta P_1} \right]^{1/2} \exp \left(\frac{1}{\hbar} \phi - \frac{i}{2} \pi \frac{\hbar}{2} \right)
\]

\[
\Phi = \int \left[-q \, \frac{\dot{p}}{\dot{q}} - \frac{\ddot{q}}{\dot{p}} \right]
\] \hspace{1cm} (21)

周期外力系ではチャンネルよりも運動量pを独立変数にとった方が便利である。pを独立変数にとったときの表示は、

\[
S_{p_i} \sim \sum \int \left[\frac{1}{-2\pi i \lambda \delta} \frac{2i \delta}{2P_0 \delta P_1} \right]^{1/2} \exp \left(\frac{1}{\hbar} \phi - \frac{i}{2} \pi \frac{\hbar}{2} \right)
\]

\[
\phi = \int \left[-q \, \frac{\dot{p}}{\dot{q}} + t \right]
\]

\[
(E = \frac{1}{2} p^2 + V(q, t), \quad E - E' = \varepsilon)
\] \hspace{1cm} (22)

となり、結果のところ一自由度系の取り扱いと同じになる。自由粒子領域では系は
外力のない一自由度系になるのでこれは当然のことと思える。しかし、散乱領域で
は系は本質的に二自由度系としての取り扱いが必要であり、pとE'は独立な変数
になりうる。散乱領域の二自由度系の影響は、実数の軌道のみを考える場合は特に
問題にならないが、複素軌道の場合にはプランチポイントによるリーマン面の問
題となって現れてくる。

自由粒子領域ではpまたはE'のどちらかを独立な変数に選べば充分であるので、
これに正準共役な座標qの変分と時間tの変分は独立ではなくなり、以下に示す等
価交換則が成り立つ。

\[
\delta q \Leftrightarrow -p \delta t
\] \hspace{1cm} (23)
したがって、どちらかを独立な変分量として選べば充分である。ここでは、pを独立変数に選んだので、qを変分のパラメータとして動かすことで半古典近似に寄与する軌道を探し出す事が可能のようにみえる。しかし、数軌道を扱う場合には、初期座標を変化させることは初期時間をずらした事と同等であるので、等価交換則を満たすように初期点を動かしたものは本質的に同じ軌道をあたえ、軌道の正準母関数は同じ値になる。

\[
\hat{\mathcal{O}} \left(p_2, E_2' ; q_2 - p_2 \delta t, t_2 : p_1, E_1' ; q_1 - p_1 \delta t, t_1 \right)
= \hat{\mathcal{O}} \left(p_2, E_2' ; q_2, t_2 + \delta t : p_1, E_1' ; q_1, t_1 + \delta t \right)
\] (24)

したがって、明かに2つのパラメータq, tは独立ではなくどちらかをスキャンパラメータとすればよい。等価交換則を複素空間に拡張し、仮数軸に沿って時間をずらした場合（\(\delta t = i \delta t_1 \)）を考えよう。等価交換則による軸方向の時間発展が、仮想軸方向の時間発展と見なすことができる。そこで、図2に示したような\(\delta t \)だけずらした2つの時間軸路に沿って時間発展をさせた場合、自由粒子領域における等価交換則によるずらし、即ち仮想軸方向の時間発展は、p, \(E' \)を独立変数とする正準母関数に寄与しない事を考慮すると、2つの軌道の間にプランチポイントがない場合には正準母関数は同じになる（図2(a)）。しかし、プランチポイントがある場合には、2つの軌道の正準母関数は一致しなくなったり等価交換則による置き換えが成り立たなくなっている（図2(b)）。ここで、注意しなければならないのは、複素t平面上のプランチポイントの位置は初期条件によって移動することである。例えば、初期時間t_1を固定し初期座標q_1を動かした場合、散乱領域にあるプランチポイントが図3に示すようにq_1を変化させるに従い移動しq_1がある値を越えた場合別のリーマン面に接続してしまう事がありうる。当然ながら、終状態での軌道はパラメータq_1に対し不連続になる。この様な場合、初期状態を等価交換則に従い、時間の仮想軸方向にずらしてやる事によりプランチポイントによるリーマン面の問題を回避する事が可能となる。プランチポイントの問題が等価交換則をうまく適用してやることにより回避出来るという事実は、周期外力の入った系が散乱領域では本質的に二自由度系と同等であるという事から来ている。わざわざ、二自由度系でのフォーマリズムを行ったのもこの為である。ここで議論したことは例外的なものではなく次章で示すような簡単な例題でもおこる。

- 380 -
図2. 複素平面での積分経路とブランチポイント

図3. 初期条件による複素平面上でのブランチポイントの移動
4. 周期変動するポテンシャル壁による散乱

ここでは、図4に示すような周期変動する単純なポテンシャル壁による散乱を例題として計算する。具体的なハミルトニアン及びパラメーターは以下の如く示す通りである。

\[H = \frac{1}{2} p^2 + (\alpha + \gamma (1 + \sin \omega t)) \exp \left[-\frac{2 - \gamma}{\beta} \right] \]

\[\alpha = 5.0, \ \beta = 0.3, \ q_0 = 5.0, \ \gamma = 1.2, \ \omega = 0.2 \]

まず、量子系のシミュレーションの結果を示そう。プランク定数を\(h = \frac{4\pi e}{2\pi m c^2} \)
\(\sim 0.06217 \)とおき、平面波を入射させる実験を行った。なお、入射エネルギーは\(E_0 = 4.0 \)とした。図5に自由粒子状態とみなせる領域（V<0）へ戻ってきた反射波の
\(p \)表示で示した確率分布を示してある。なお、横軸には運動量の代わりにエネルギー
を用いてある。図からも明らかのように、\(E = E_0 + m \Delta \varepsilon (\Delta \varepsilon = h \omega) \)の位置に等
間隔にビークがならんでいるのがわかる。これらのビークの包絡線は、干渉による
凸凹を除けば\(E = E_0 \)付近ではほぼ一定である。この部分は、実数軌道を用いた半古典
近似で計算される部分である。両サイドのテール部分は回折効果によるエネルギー
の広がりをあらわし、複素半古典論を用いて近似計算を行う部分である。

次に、半古典近似を具体的に行ってみよう。自由粒子領域における初期条件を以
下のように設定し、初期状態の\(q \)または\(t \)を自由パラメータとして動かし、再び自
由粒子領域に戻ってきた終状態で\(\text{Im}(p) = 0 \)を満たす軌道を拾いあげて(22)式に
従い各軌道からの寄与を計算し足し上げる。

初期状態

\[t = t_{R1} + \imath t_{11} \]

\[(t_{R1} ; \text{固定, } t_{11} ; \text{任意}) \]

\[q = q_{R1} + \imath q_{11} \]

\[(q_0 \leq q_{R1} < q_0 + \rho a T) \]

\[(q_0 ; \text{固定, } q_{11} ; \text{任意}) \]

\[p = -\rho a < 0 \]

\(\text{（実数, 固定）} \)

終状態

\[t = t_{R2} + \imath t_{12} \]

\[(t_{R2} ; \text{固定, } t_{12} = t_{11}) \]

\[q = q_{R2} + \imath q_{12} \]

\[(q_{R2} ; \text{任意, } q_{12} ; \text{任意}) \]

\[p = p_{R2} + \imath p_{12} \]

\((\text{Im}(p) = p_{12} = 0) \)
図4. 周期変動するポテンシャル壁による散乱

図5. 自由粒子領域での反射波の
p 表示における確率分布
横軸は運動量の代わりに
エネルギーを用いてある。

図6. 半古典近似を用いて計算した
反射波の確率分布（p 表示）
横軸は運動量の代わりに
エネルギーを用いてある。
t, q の実数部分については等価交換則が常に成り立っており、q を独立なパラメータと考えれば、初期状態と終状態での時間の実数部分は固定しておいてよい。また、外力の周期性から座標の実数部分は \(q_0 \leq q_1 < q_0 + p_0 T \) （ \(q_0 \); 任意に固定、T; 外力の周期）の間で動かせばよいことがわかる。虚数部分も同様に、t ままたは q_1 のどちらかを独立なパラメータとして動かし、p_1 = 0 となる解を拾い出せば回折効果に対応するインスタントン解を見つける事が期待できる（図7 の概念図を示す）。しかし、この系では t_1 = 0 とおき q_1 をスキャンパラメータとした場合には、3 章でのベクトルポイントの問題が発生し、インスタントン解は途中で解折変形不可能になる。これに対し、q_1 = 0 とおき t_1 でスキャンした場にはベクトルポイントを回避することができ充分な長さのインスタントン解が求まる。以下その理由およびシミュレーションの結果を示そう。

まず、古典系の運動方程式を書き下せば、

\[
\dot{q} = p
\]

\[
\dot{p} = \frac{1}{\beta} (\alpha + \gamma (1 + \sin \omega t)) \exp \left[- \frac{\gamma}{\beta} \right]
\] (27)
となる。\(q(t)，p(t) \) をこの方程式の解とすると \(q(t) \) を \(\sin \beta q = \sin 2\pi \beta \)
（\(n; \) 整数）だけずらしたもの \(q(t) + i n \Delta q, \ p(t) \) もまた解となる。これは、系が指数関数型のポテンシャルを持たためであり、この方程式の解は虚軸方向に \(2\pi \beta \) の周期性がある。さらに、\(q = q_R + i \frac{2n+1}{2} \Delta q \) とおくとポテンシャル \(V \) は、

\[
V = (\alpha + \gamma (1 + \sin \omega t)) \exp \left[- \frac{(q_R + i \frac{2n+1}{2} \Delta q - \gamma)}{\beta} \right]
\]

\[
= - (\alpha + \gamma (1 + \sin \omega t)) \exp \left[- \frac{q_R - q_R}{\beta} \right] \quad (28)
\]

となるため、\(q_R \to -\infty \) で \(V \to -\infty \) となる。したがって、複素 \(q \) 平面で見たときには \(\lim_{q_R \to -\infty} q_R + i \frac{2n+1}{2} \Delta q \) はポールがあることになる。実際、\(t \) を実数にとり、初期条件で \(q_{11} = \frac{2n+1}{2} \Delta q \) とする解は有限の時間でポールに到達する（\(t \) が複素の場合でも \(q_{11} = \frac{2n+1}{2} \Delta q \) 付近に初期点をとるとポールに向かう解がある）。これを複素 \(t \) 平面で眺めると有限時間領域に図 2(b)に示したようなプランチポイントが存在することになる。したがって、初期状態の \(q_{11} \) を独立なパラメータとして例えば正の方向に変化させた場合、\(q_{11} < \frac{1}{2} \Delta q \) では \(t_{11} \) をパラメータとした場合と等価交換可能であるが、\(q_{11} > \frac{1}{2} \Delta q \) では別のリーマン面へ行くために、等価交換不可能となる（図 8）。当然のことながら、自由粒子領域に戻ってきた解はパラメータ \(q_{11} \) 対して不連続になる。また、虚軸方向の周期性のために \(q_{11} > \frac{1}{2} \Delta q \) の解は初期座標を \(q_{11} - \Delta q \) にシフトした解と本質的に同じになり、\(q_{11} \) をパラメータとして動かした場合には、どの様に動かそうとも \(-\frac{1}{2} \Delta q < q_{11} < \frac{1}{2} \Delta q \) の範囲で動かした以上の解を求めることはできない。これに対し、\(t_{11} \) をパラメータとして動かした場合には途中にプランチポイントがないので自由粒子領域に戻ってきたときにもパラメータに対して連続的に変化する解がえられ、連続的につながったインスタントン解が得られる。図 9 に \(t_{11} \) をパラメータとして得られた時のインスタントン解と \(q_{11} \) をパラメータとした場合とを比較してある。\(q_{11} \) をパラメータとした場合にはほとんど実数解から広がっていないのがわかる。図 6 には、半古典近似により計算した運動量表示における確率分布が示されてる。実数軌道から得られる頂上付近だけでなく、複素軌道から計算される両サイドのスロープ部分でも図 5 の量子系の結果とよい一致が見られる。
図8. 初期状態 t_{11} と q_{11} と等価交換則の関係

図9. ボアンカレマップ（$t = nT$）上でみたエネルギー一定の入射粒子群の時間発展（実数解）と反射波のインスタントン解
(a) t_{11} をスキャンパラメータとした場合
(b) q_{11} をスキャンパラメータとした場合（拡大図）
6. まとめ

周期外力系の散乱問題では、散乱領域で系が本質的に二自由度系と同じになる。この為、複素解を扱う場合には、散乱領域におけるプランチポイントの発生により、自由粒子領域で引っつ等価交換則が成り立たなくなる場合がある。そこで、計算したような極めて簡単な例題ですら、この問題を避けて通ることは不可能であった。この例題では、座標の代わりに時間を独立なパラメータとして用いることにより比較的簡単にこの問題を回避する事ができた。しかし、より一般的で複雑な問題を取り扱う場合、この様な単純な操作だけでは回避出来ない場合が多々あることが予想される。その様な場合でも、等価交換則を念頭において読み替えにより回避の手続きをとることが重要になると考えられる。非可積分系では、沢山のボールによる複雑なリーマン面のトポロジーの問題、複素空間におけるcausticsの問題、複素空間上のハミルトニアン構造の問題等が複雑に絡み合うことが予想される。これらの問題を解決し複素半古典論の手法を確立することは、非可積分系のトンネル効果を理解する上で重要である。

謝辞

この報告は、立命館大学の池田研介教授との共同研究によるものである。池田教授に感謝する。

参考文献