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Non-equilibrium Generating Functional
- Ivlethod of On-shell Expansion -

R. Fukuda and 'f. Suzuki (Keio lIni\'.)

I Non-equilibrium Generating F~nctional

When we discuss a macroscopic system which contains a huge numbr of degrees of freedom,

it is crucial to rewrite the theory in terms of a small number of co-ordinates. These variables

should include experimentally observable ones and we are interested in a theory written by

using these macroscopic co-ordinates.

There have been known several methods to accomplish the above task the method of

projection operator discusses the dynamical evolution of the system only in the space where

all the variables are projected onto the space of' the variable we are interested in. In this

way we get, for example. the equation of motion for the relevant variable. Or, although quite

different technically but essentially equivallent in philosophy to the way of projection operator.

we integrate out in path-integral representation all the variables except for those we need. The

resulting theory describes the system in terms of the co-ordinates which are left fixed.

There is another method to meet the purpose; the method of Legendre transformation.

Here we integrate, out over all the variables but it is done in the presence of the c-number

source term to probe the relevant variable. The ptobe is set to be zero in the end of calculation.

Consider the equilibrium statistical mechanics and suppose that we are interested in the

operator 6. (We use the symbol hat to denote the operator and take single operator but

the g~neralization to the multiple operator case is straightforward.) The Hamiltonian H of

the system is changed into HJ == H- JO and trace out by all the co-ordinates (including 0).

Thus we define the generating function, or the Gibbs free energy, l'V[J] as

exp( -dWtJ]) = Tr exp( -;3HJ ).
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r[</>] == W[J] - Jd:JJ] ,
dW[J]

¢=--­dJ . (1.2)

In the above expression J is expressed by <P through the inversion of the second equation of

(1.2) and we insert it into the first one. We call r[</>] the Helmholtz free energy. Now we have

an identity of the Legendre transformation dr[¢]/d</> = -J, and the mathemati~alexpression

for removing the probe is the stationary equation

dr[¢>] = 0
diP . (1.3) -

This determines the expectation value of 6 and is in fact an exact self-consistent 'equation for

<p.

The method of Legendre transformation deals only with the expectation values and so all

the variables that appear in any expressions are c-numbers. This is because we have integrated

over all the fluctuations. However, since it is done in the presence of the probe coupled to 0

, the fluctuations in the channel 6 can be extracted in the form of correlation functions by

the appropriate differentiations of W[J] by the probe J. The same is also true for f[</>]. In

this sense W[J] or r[¢>] has two meanings at the same time: free energy and the generator of

correlation functions.

The technique can readily be extended to the dynamical time-dependent case where we

introduce the time dependent probe term and the time dependent stationary equation detern­

imes the time evolution of the expectation value, i.e. equation of motion of < 6 >t.

Let us define the non-equilibrium generating functional. Consider a field theoretical system

described by the Hamiltonian operator iI .. (Although we take a field theoretical system in

this paper, the arguments below apply to any dynamical system.) Since' we want to study the

dynamical non-equilibrium processes, a time-dependent external force J(-x, t) is introduced'

which couples, to some physical quantity O(x) of the system. This J(x, t) is a fictitious source

to be set zero in the end. Thus the Hamiltonian of the system changes with time. It is

expressed as

iI(t) = iI -/ d3xJ(x, t)O(x),.
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Then the expectation value (6(x))t is now given as follows,

(1.5 )

(1.6)

where the symbol T implies the time ordering operation and t denotes the adjoint. The

matrix h is an arbitrary density operator of the initial time t[ which need not necessarily be

an equilibrium distribution.

Now we try to extend the equilibrium generating functions presented in the Introduction

to the non-equilibrium systems. There are two types of the non-equilibriumgellerating func­

tionals W[J1•J2] and r[¢l' cP2] which 'are the extensions of Gibbs' and Helmholtz's free energy

in the equilibrium case respectively. The definitions of W[Jll J2] and r[</>I, <1>2] are given as

follows. 'The generating functional W[Jll J2] is first defined by introducing two kinds of real

valued sources J1(t) and J2(t);

e*W[Jl,J2] = Tr{LTJ1PI(VJ2)t},

VJ, = T exp (-~ i:F

dt{ iI - Jd3xJi(X, t)6(x)} ) (i = 1,2).

(1.7)

(1.8)

The final time tF here is taken to be sufficiently large satisfying t[ < t < tF where t is the

time we are looking at the system.

The double path formulation of non-equilibrium theory has a long history, starting from

Schwinger's work [1, 2, 3, 4, 5]. For an extensive investigation, see the articles [5], [6].

Since J1 # J2 in (1.7) (otherwise W becomes independent of J1 and J2 ), the time evolution

of p[ is not physical. So that W[JI, J2 ] itself is not a physical quantity in contrast to the

equilibrium Gibbs free energy W[J] of (1.1) which is a physical one in the sense that it is the

free energy of the system with Hamiltonian iJ - JO. In this sense it is important to note that

there is no genuine generating functional of equilibrium type for the non-equilibrium processes.

However this does not invalidate the use of W[J1 , J2]; the functional W[Jll J2] does play the

role of the generating functional and all the physical quantities (as far as they are related to

the channel we are probing) can be extracted from it. These will become clear in the following.
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Second non-equilibrium generating functional is defined by the double Legendre transfor-

mation;

(1.9)

(1.10)

(1.11)

where the four dimensional notations have been introduced; x == (t, x) and I d4x == Itt: dt I d3x.

8/8Ji ( x) signifies the functional derivative defined as

8Jj (x) . 4 ,

8Jj(x') = lJ jj 8 (x - x ).

Here lJ4( x) is the four dimensional lJ-function. Then the physically observed expectation value

of O(x, t) with t > tf is given by

(1.12)

=

¢(x) == (O(x)) = 8W[J} , J2] I
8J} (x) J1=J2=0

8W[J}, J2] I
8J2(x) J 1=J2=0'

The equation of motion of ¢( x) is obtained as follows. We note here the inverted relation of

(1.10);

(1.13)(-i = 1,2)
bT[ ]
~,(j)2 = (-I)iJ.(x)

lJ¢i(X) . 1

which comes from the definitions (1.9) and (1.10). In (1.7) we have assumed that J1,2 are

fictitious sources which are made to vanish at the end. In case a phsical source coupled

to 0 is really present, the artificial source term Ji has to be set to a physical source J(t):

J1 (t) = J2 (t) = J(x). If the source J(x) is absent, we are considering the case where the non­

equilibrium process is realized because the initial density matrix is not equal to the equilibrium

distribution. Let us consider the latter case for simplicity. Then we are led to the equation of

motion of ¢( x );

8r[¢} , ¢2] = 8f[¢t, ¢2] = 0
6¢}(x) 8¢2(X) .

(1.14)

The solution to (1.14) satisfies (PI (x) = ¢2(X) = ¢(x) because of the symmetry under 1 ~ 2.

Therefore we can use another type of equation of motion,

(1.15)
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This has a similar form of the equation of motion for the co-ordinate variable q in classical

analytical dynamics which is obtained by the stationary condition on the action functional

I[q]; bI[q]j6q(t) = O. Because of this analogy, r is also called the effective action.

We remind here the relation between the equation of motion and its solution for the case

of non-vanishing physical source, J1 = J2 = J ;f O. If we set J1 = J2 = J in (1.12) and

<PI = <1>2 = q> in (1.13), we get

(1.17)

(1.16)<I>(x) =

-J(x) =

bW[Jl, J2] I
bJ1(x) J1=J2=J'

b[[¢1l ¢2] I
6</>1(X) <Pl=tP2=,p'

which are the solution and the equation of motion under the presence of the physical source

J(x) respectively. Actually we get (1.17) by solving (1.16) with respect to J(x); i.e. inversion

of (1.16). When the initial density matrix is of the equilibrium form PI = exp( -;3H), it is

convenient to introduce another source J3 in the third imaginary time path. This enables one

. to study the connection with the equilibrium free energy.

The evaluation ofl'V[Jll J2] is based on the definition (1.7). In the case of perturbative

expansion, for example, there arises 2 x 2 propagator matrix[2] specific to the non-equilibrium

processes. When the initial correlation is taken into account and if the initial density matrix

is assumed to be the equilibrium one, then the propagator becomes 3 x 3[7, 8,9]. The problem

is how to calculte [[<1>1, ¢2] by perf~rming the Legendre transformation (1.9). For the zero

temperature and for equilibrium non-zero temperature case, the diagrammatical rule has been

known[11 , 12] for several types of operators 6. The results are usually given in the form of

the loop expansion.

Up to now there are three ways of performing the Legendre transformation to get this

result: the functional method, the method relying on the combinatorics of the graphs and the

inversion method. Among others the inversion method[13] consists of taking perturbatively

the inverse of the relation c/> = ¢[J] to get J = J[c/>] which is the essential part of the Legendre

transformation. This type of manipulation can readily be applied to the non-equilibrium case.

In the following, when the superfluid 4He is discussed in Section IV, we need an explicit form
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of the loop expansion for the non-equilibrium case. For this purpose we generalize the results

of loop expansion for the zero temperature or the equilibrium case by introducing the contour

time "integration.

lIOn-shell Expansion of f[4>l , 4>2]

On-shell expansion is a technique for extracting physical quantities from the gen~rating fUllc­

tional r [4>1. <])2]' Since r[<PI, <P2] plays the analogous role of the action functional in classical

analytical dynamics, let us consider first a classical mechanical system with the co-ordinates

qi, (i = 1 '" N). The Lgrangian is written as L(qi, 4d and in the time interval tI ~ t ~ iF, the

action is defined to be

(2.1 )

The stationary equation for the action functional is the Euler-Lagrange equation of motion,

which is obtained by writing qi(t) = ql°)(t) + 6qi(t) and requiring" that the action I[qi] is

stationary for qfO)(t).

0= 6I[qi] = 8L _ ~~. (2.2)
6qj(t) aqi(t) dt a4i(t)

Here the derivative 6jIJqj(t) is a functional one defined in (1.11) and'-the variation is assumed

" t.o satisfy the boundary conditions qi(tI) = qi(tF) = O.

If qfO) (t) is a solution, i.e. a physically realizable trajectory, then q!O) (t) +6qi( t) is not. This

is because the variation IJq is the one to be taken for the purpose of searching for the physical

trajectory. In this sense we call 6q the unphysical (or off-shell) variation. (The terminology

"off-shell" will become clear when we discuss the field theory.)

Now consider another physical trajectory which lies near gl°)(t) and write it as qi(t) =

q!O)(t) + ~qi(t) . In this case both q!O)(t) and q~O)(t)+ ~qi(t) satisfy the equation of motion so·

that ~qi (t I) and ~qi(tF) are not zero in general. The variation ~qj (t) is called the physical (or

on-shell) variation since it leads to the physically realizable trajectory. The equation satisfied

by ~qi(t) is obtained as follows;

o = (8I[qi])
8qj(t) q=qlO)+~q
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(2.3)

(2.4)

= (6I[q]) +t I tF
dt' ( 6

2

I[q].) Llqj(t') + ...
6qi(t) q=q(OI j=1 t] 6qj(t)6qj(t') q=q(O)

Since q~O)(t) is a stationary solution and Llqi(t) is assumed to be a small quantity, the equation

for the small deviation Llqj (t) is

t ItF
dt' ( 6

2

I[q] ) . ~qj(t') = O.
j=1 t] 6qi(t)6qj(t') q=q(Oj

The solution of the above equation describes a small oscillation around q~O)(t). Equation

(2.4) can be looked upon as an eigenvalue equation in matrix form with rows and columns

specified by U. t'). Therefore we expect discrete set of solutions which are called the modes

of oscillations. Equation (2.4) is t4erefore called the mode determining equation (on-shell

equation in the case of field theory). The higher order equations denotedby dots··· in

eq.(2.3) determine the scattering among the various modes of small oscillation thus obtained.

In field theoretical systems and fOf zero temperature case, we have already shown[14, 15, 16,

17] that the complete parallelism between the calssical action and the effective action persists

and that the formal scheme of on-shell expansion produces the physical quantities such as

scattering martix (S-matix) elements among the excitation modes. These modes themselves

are determined by the lowest equation of the on-shell expansion.

The purpose of the present Chapter is to apply the same technique to the non-equilibrium

genarating functional f[</>1l cP2], generalizing the discussions to th~ field theoretical case. Con­

sider a system described by the Hermitian scalar field J(x). We have in mind the phonon field,

photon field or theYukawa meson (Klein-Gordon) field etc:. Let us introduce the canonically

conjugate momentum field ft(x). Then the standard Hamiltonian has the structure

(2.5 )

Here w( - V) is the bare dispersion relation of the field ¢ and HI represents the unharmonic

interacion term. The corresponding Lagrangian or the action functional 1[</>] is given as (at =
it),

(2.6)

In the Heisenberg representation, the following relations hold:
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~ ~ 1 3
[7l"(t, X), ¢(t, y)] = ~8 (X - y).

t
(2.7)

Now take the operator ¢(x) as 6. Then we are going to study the expectation value;

(2.8)

(2.9)

The solution to (1.14) always satisfies the relation <Pl(X) = ¢2(X) which is written as </>(O)(x).

Then (1.15) takes the form

(
8f[¢b <1>2])

8¢1 (x) ,pl=,p2=,p(O) = o.

Let us perform our on-shell expansion. For this purpose we expand f[¢1' ¢2] around ¢(O)

writing ¢1 = <1>2 = ¢(O) + fj,¢;

(2.10)

Here (.. ')0 implies that (... ) is evaluated at ¢ = ¢(O). We further expand 6.¢ as

(2.11)

assuming that D.</>(n) is of the order (D.4P))n. Then we get our on-shell expansion by requiring

that (2.10) holds in each power of 6.</>(1). The zero-th order vanishes because of (2.9) and for

the first order we get the mode determining equation;

(2.12)

Here and in what follows we take tf ---+ -00 for simplicity. Equation (2.12) is the geraralizatioll

of the mode determinig equation of the small oscillation (2.4) to the nonequilibrium system.

Now the following identities are noted. The first one is a consequence of the Legendre

transformation and the second is a straightforward result of the definition of W[Jll J2].

(2.13 )
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.?= (WS)(X'Y)))I=)2 = 0,
1,)=1,2

(2) _ b2 l'V
Wij (X,y) = fJJi(x)bJj(y)

By using these relations we can derive

(2.14)

(2.15 )

(2.16)

Indeed this relation follows by choosing i 1 = ·i3 = 1 in (2.13) and by the repeated use of (2.14).

However ltvg) + wgl is the retarded Green's function;

(W:;l(y, z) + lVgl(y, z)) )1=)2=) == (VV~2l(y, z))) = iO(ljO - zO)([~(y), ¢(z)])), (2.17)

therefore the relation (rii) + r~;))o = - (wk2») ~~o implies that eq.(2.12) determines the pole

of wji). For consta.nt </>(0). (r~~)(x,y)) is a function of x-y, therefore in Fourjer space (2.12)
o .

takes the form

(2.18)

The dispersion relation w = w(P) can be fixed by requiring that we have non-vanishing ~qP)

and in this case ~¢(1) has the support on the shell defined by w = w(p) in four dimensional

space of p = (w, p). This is the reason why we call (2.12) the on-shell equation and our scheme

the on-shell expansion. Because the Hamiltonian or the action given in (2.6) is symmetric

under w +-+ -w, r(2)(w, p) is a function of 1,1)2. Therefore we can write in the vicinity of the

shell

(2.19)

where VZ is the wave function renormalization factor. i.e. the inverse of the residue of the

pole of WA2), of the corresponding mode. In x-space, by using the notation px = wt - P . x,

(r~i)(x - y) + rW(x - y))o = (2~)4 Jd4pexp(-ip(x - y)) (rg\w,p) + rg>(w,p))o

. = -Z-1(8; +w2(V'x))b4(x - y)

(2.20)
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Here, as indicated, the differentiation applies to the coordinate x. There are two independent

solutions to (2.18), each having an undetermined constant C(±):

~<,h(I)(W,p) = C(p)6(w2
- ui(p))

= C(w = w(p), p) 6(w _ w(p)) + C(w = -w(p), p) 6(w +w(p)). (2.21)
2w(p) . 2w(p)

Let us define

C
-'(±) - C(w ~ ±w(p), ±p)

(p) = '.
(21r)\/2w(p)

Then, in the coordinate space we have

~d,(1l(xl = (2~)4 Jd4pexp(-ipx)~<IP)(w,p)

= J d
3

p [C(+I(p)exp(-ip(O)x) + C(-I(p)exp(ip(O)x)L (2.23)
J2w(p)

where w(p) = w( -p) is assumed and p(Olx = w(p)t - p. x. We will see below that ~4P)(x) is

the wave function (plane wave) of the excited mode. This is shown by deriving another form

of ~c/Pl(x) using the technique of formula due to LSZ[18, 19]. (Here ~qP)(.r) is a simple

plane wave since we havetaken <b(x) as 6. If the composite operator eb(x)~(y), for example,

is adopted then ~4,(1)(x) has the dependence on the internal coordinate besides exp( ip(O) x )).

For the second or higher orders the required relations are

,L Jd4y (r~~)(x, Y))o ~q)l2)(y)
1=1,2

+~i ~ Jd
4
y1d

4
Y2 (r~~!i2(X'Y}'Y2))o~qP)(,Yd~dP)(Y2) = O. (2.24)

11,12

,L Jd4 y (r~~)(x. Y))o Ll<,h(3)(y)
1=1,2

+~, ~Jd4 y1 d4Y2 (r~~~i2 (x, YI, Y2))0 (~<IP)(Yd~4>(2)(Y2) + ~4>(2)(yd~4>(I)(Y2))
,1,12

+:" ~,_ Jd4YI~Y2d4Y3 (r~~!i2i3(X'YI'Y2'Y3))o~4P)(Yd~4>(I)(Y2)~4>(I)(Y3) = 0,
,1,12,13

etc. . . . (2.25)

After some calculations, ~4>(n) can be expressed by ~4>(1) in a compact form;

~4>(n)(x) =~,Jd4YI ... d4Yn d4z1 ••• d4zn (wkn+I»)o(x, y~'"'' Yn)

(
.... (2») -I ( +- (2») -I ( +- (2») -I I (I)'

X WR 0 (Yll zd w R 0 (Y2, Z2)'" w R 0 (Yn, Zn)~¢( )(ZI)'" ~4> (Zn),

(2.26)
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TI,r(n+l l( , )
I'YR X.yl,···.yn

- ;,~n (M.( x )J;~;:'l)~: .J;n (y) },=J,

= (~) n Tr (PI L (J(tx. t yl • •..• tYn H[· .. [J(X), J(Yd], ...]. J(Yn)])
P{yl.· ..Yn}

. n .

- (k) (R(J(x)J(Yd" ·.~(Yn))). (2.27)

Here we have defined < ... >= TrpI(' .. ) and LP{YI'''''Y~} implies the sum over all possible

permutations of {Yl" .. ,Yn}. Equation (2.26) expresses the fact that among n + 1 external

lines n lines are amputated by the retarded Green ~s function. The arrow on WA2l implies that

(
+-(2»)-1 ~'n 1) . '

it operates to the left, i.e. W R 0 first amputates the pole of WR + and then we multIply

6q}l) .. ·6</>(1).

Now the above formulas are rewritten by the operator form through the reverse use of the

LSZ reduction technique[18. 19] and we get another physical interpretation of our expansion

scheme. In particular infinite series -of on-shell expansion can be summed up into a coherent

state of the excitation mode. Consider first i.lqP l (.r). W'e show that it is related to the wave

function of the excited mode. For this purose let us rewrite ~d>(ll(x) using (2.16) and (2.20);

~</>(I)(X) = - Jd4yJd4y'6dPl(y) ,L ri~l(;1' - y') ,L H:IIJl(y' - y)
t=I,2 1=1,2

= Z-l Jd4 y6</>(I) (y)!(ax)i < R(J(x)¢(y)) > .

(2.28)

(2.29)

We have used the fact that since the factor 6</>(I)(y) is present we can use the expression (2.20)

for r l2l in (2'.28). The arrow indicates that it operates to the right. Since we are assuming the

homogeous system, < R(~(x)~(y)) > is a function of x - y so that f(8x) = f(a- y ) = f(a y )

(because! is the even function of its argument, see (2.20). Now remembering the fact that

eq.(2.12) is equivalent to

(2.30)

the partial integration over f d4 y in (2.29) is performed. The boundary term at spacial jnfinity

is assumed to vanish by utilizing the wave packet regularization for the plane wave. We keep

the boundary term at t = ±oo by using the identity
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A8;B = 8t (A li B) + (8;A)B,
+-+

A 8t B == A8tB - (8t A)B. (2.31)

By (2.30) we get, using the notation y = (yO, y), the following expression. Note that we have

taken tI = -00.

~4>(l)(X) = Z-l Jd4 y8yo (~qP)(y) 8yo i < R(¢(x)¢(y)) >)

= iZ-1(1iIllyo--+oo -limyo--+t[)Jd3y~c1P)(y) 8yo< R(~(x)¢(y)) > .

We note here that liIllyo--+oc makes vanishing contribution because of the presence of O-functioll

in W~2) and also that at equal time the fields ~(t. x) commute among themselves. Thus we

arrive at

.~4>(l)(X) = < [¢(x),A]>,

A = -iZ- 1 Jd3y (~4>(1)(Y)7r(Y) - (8yo~c1P)(Y))~(Y))yo=tI'

(2.32)

(2.33)

In momentum representation A takes a simple form. Let us expand J> and ir in terms of the

creation and annihilation operators;

¢(tI!X) = (2· 131i j'..fi!t;, (a(p)e-i"""I +a(p)tei"",XI) ,
71") 2w(p)

h(t ) = -·i Jd3 V'''(PJ (h ( ) -iplOJ X1 _ ~ ( )t iP(OJ XI )71" I, X (271" )3/2 P 2 ape ape .

where p(O)x[ = w(p)t[ - p' x and

(2.34)

(2.35)

(2.36 )

while other commutators are zero. Now inserting (2.23), (2.34) and (2.35) into the definition

(2.33), we get

A = at - a+,

a(t) _ Z-1(271" )3/2 Jd3pC(=f)(p )a(p)W,

(2.37)

(2.38)

At this point we assume that the initial density matrix to be the equilibrium one: PI =

exp( -pH). Then PI does not change the number of particles corresponding to a or at. This

is seen as follows. Since tI = -00, ¢(tI, x) corresponds to in-field of LSZ formalism and lilt)

annihilates or creates the mode which is an eigen-state of the total Hamiltonian. Recall here

that it is defined by the pole of wk2
) •
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Now ~<lP)(x) can be looked upon as a linear combination of the wave function of the state

(which is not normalized) containing one excited mode annihilated or created by a or at. In

order to see this, let us write (2.32) explicitly in the number representation using (2.37);

~¢P)(x) = LPlnn < n/[¢(x),at - a]ln >
n

= LPlnn {- < nl¢(x)ln -1> + < nl¢(x)ln + 1 >
n

+ < n + 11~(x)ln > - < n - l!J(x)ln >}. (2.39)

Here the summation over the indices other than n is supressed and the following notations

have been used,

aln >= In - 1 >,

The.above result is the generalization of the zero temperature case to finite temperature where

the excited modes and the thermal background are present at the same same time. Indeed we

can show that (2.39) reduces to the known expression if we keep only the ground state 10 >

in the sum. Using alO >=< Olat = 0, we see that ~qP)(x) is written as

where c.c. implies the complex conjugate. The above expression is precisely the wave function

of the mode for the case of Hermite field.

Consider next Ll<p(2) (x) which can be handled in a similar manner:

The integration over Y2 is done first. Following the same process as we have done abov.e, the

partial integration leads to

JlfY2iZ-1~ciP)(Y2)f(8112) < R(¢(x)¢(yt)¢(Y2» >

= iZ-1Jd4Y2ollg[~<!>(1)(Y2)allg< R(¢(x)~(Yd¢(Y2») >]

1 J 3 (1) - A A A= iZ- d Y2(limllg--+oo -liIIlyg--+tI)~<!> (Y2) Oyg< R(</>(x)<!>(yd</>(Y2») >

= -iZ-1Jd3Y2~</>(1)(Y2)allg< [R(¢(x)¢(Yd), ¢(Y2)] > lyg=tI

= < [R(¢(x)¢(Yd),A] > .

The remaining integration of Y1 can be done similarly with the result
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(2.42)

Looking at above expressions. it is an easy task to guess the results for general ~et>(n)(x). In

fact by using the mathematical induction technique, we can show the following form:

Now it is a simple matter to sum up over n and we get

x

ilet>{x) = L ~et>(n)(x)

n=l

= Tr (PI exp( -.4)~(x) exp(.4)) = Tr (exp(.4)PI exp( -A)¢(x)) .

(2.43 )

(2.44)

Usually the initial density matrix is written by 7r(x) and ¢(x) so that. by noting the definition

of (2.33) of A, we get the c-number shift of the initial variables;

exp(A)PI (i(x),~(x))exp(-A) = PI (i(x) -7I"c(x),J(x) - d>c(x)).

7I"c(x) = Z-l (axo~<tP)(J~))tl .

<Pc(x) = Z-l (~et>(l)(X))tI'

The initial coordinate is shifted as it should:

~</>(tI,X) = Tr(pd¢(tI.X)+[¢(tI,X),-·iZ-1An)

= Tr (pd~(tI'X)+ (-iZ-1)i~4P)(tI'X)})

= Tr (PI¢(tI,X)) + Z-1~4P)(tI,X).

In the momentum representation

(2.4.5 )

(2.46)

(2.47)

(2.48)

(2.49)

exp(A)PI (a(p),at(p)) exp(-A) = PI (a(p) - C<+)(p),at(p) - C(+)(p)), (2.50)

C(±)(p) _ Z-1(271" )3/2C(±)(p).

Note that exp( -A) coincides with the familiar operator which brings about the coherent state..

Now we have at hand a novel way of searching for the correct condensed state; vary C<±)(p)

in such a way that ~¢(x) becomes stationary in time. Then C(±) (p) is determined and we

get the density matrix corresponding to the condensed state. This is illustrated for superfluid

4He in the next Section. (Application of this technique to other real physical systems is under

way.)
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III Superftuid 4He -- an example

Let us exemplify the formulas obtained above taking the system of 4He. Her~ the complex

(Le. non-Hermite).field operator w(x) of 4He has a non-vanishing expectation value below the

temperature Tc corresponding. to the onset of Bose condensation. The model Hamiltonian is

the usual one[20]

if =Jd'x,pl(x) ( - :~ 'il' - I') ';;(x) + ~JJ 3xJ3y,j,I(xJJ.I(y)Uo(x - y),j.(y),p(x),

Uo(x -y) = Uo(y - x), [J,(t. x), J,t(t, y)] = 83 (x - y). (3.1)

Here Uo(x - y) is the assumed repulsive potential of the Herlium atom and J-L the chemical

potential. Below w~ set </>(tl(x) == (J)(tl(x)) and introduce the notations,

J,a == (~,t, ¢), . ~ta == eJ,. ,J,t), , (0' = 1,2).(3.2)

(Don't mix the superfix 0: with the suffix i or j which discriminates the branch of the two real

time paths.) "We need two kinds of sources Ji , Ji and define

(3.3)

In the above definition, i = 1,2,3. If i = 3, we are assuming the equilibrium initial distribution

PI =exp( - f3H) and the time variable takes the imaginary value: t = tf- iT. with 0 :::; T :::; hj3.

Here we introduce the notion of the complex contour of the time integration in order to

write various formulas in a compact way. We are going to generalize the dOl,lble path formalisn

due to Schwinger[l], Keldysh[2], Hao et.al. [5], to the three time path including the imaginary

time path. See for this purpose Niemi and Semenoff[4], Wagner[8], Fukuda[9]. The contour

time integral Ie dt extends over the contour C which runs as C1 ---+ C2 ---+ C3 • Each path is

defined to be C1 : tf ---+ tF and C2 : tF ---+ t f (return path) C3 : tf ---+ tf - 'ij3f1, (imaginary

time path). The contour time ordering operator Tc orders the time sequence according to its

location on the contour. Furthermore the following notation is used;

J(t) = Ji(t) if t is on Ci(i = 1,2,3). (3.4)

With the'se notations and assuming the equilibrium initial distribution, we can write
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(3.5)exp ~W[Jt, J2 , J3 ] == exp ~W[J] = TrTc exp ( -~ fc dtHJ(i)) ,

where HJ( t) is equal to ifJ;(t) given in (3.3) if t is on Ci with i = 1,2,3 respectively. The

contour h function is introduced as

fc dthc(t - t')f(t) = f(t').

Similarly the contour () function and the contour functional differentiation are defined;

(3.6)

(}c(t - t')

hf(t)

hf(t')

= /; dt"hc(i" - t').

= hc(t - t').

(3.7)

(3.8)

As for the Legendre transformed r, the formula of the loop expansion has been established

by several authors [11 , 12] but these works are limited to the zero temperature case or to the

equilibrium systems. The non-equilibrium case where the imaginary time path is absent has

been discussed by Hao et.al.[5] . We use in the following the contour time path defined above

in case where the imaginary time path is needed. It turs out that the use of contour integral

makes it easy to generalize the known results to the non-equilibrium case.

3.1 On-shell expansion

3.1.1 the case 6 = v.~01

Let us take a stationary homogeneous solution dP == (-0 01 (x)). (For T ~ Te , there are two

solutions.) For the moment we consider only J1 and J 2 assuming J3 = O. Then the on-shell

condition takes the for~

(3.9)

Here !l( - \7) is the complete dispersion relation including the corrections due to the interaction.

The solution in Fourier space is written as;

(3.10)

where p(O)x = !l(p)i - P . x. In the formula (2.26), owing to the presence of the on-shell

projection ~4P), WA2
)-1 can be replaced by its pole part;
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{
~~:)1Pt1P~:(X,y) = -Z-l(-i1i~t% +O(-V'x))64

(x.- y),

""~ )VJ1P t (x,y) = -Z,-1(-·t1i8t%+ O(-V'x))64 (x - y).

Here vIZ is the wave function renormalization factor of the 4He field.

(3.11 )

Inserting (3.9), (3.11) into (2.26), the reverse use of the LSZ reduction formula, as was done

in the previous Chapter, leads to the following expression which has the n-fold commutator:

~4>Q,(n)(x) = ~([[.. '. [~~,Q(x). A], ...J, A]),
n.

A == Z-l Jd3y (~<i>(l)(y)~t(y) - ~4}(l)(Y)~(Y))yo=tJ . (3.12)

Let us rewrite Ii by expanding 'lj..l(t) in terms of the creation and annihilation operators;

(3.13)

where p(O)XI = O(p)t I - P . x. Now inserting, (3.10) and (3.13) into the definition (3.12), we

get

(3.14)

(3.15)

Assuming the equilibrium initial density matrix, we have the following expression for the wave

function analogous to (2.39);

~4>(t)(l)(X) = L PInn < nl[¢(t)(x). at - a]\n >
n

= LPInn{- < nl¢(t)(x)ln -1, > + < nl¢ltl(;t)In + 1 >
n

+ < n + 11¢W(x)ln.> - < n - 11¢(t)(x)ln >}.

We can sum up ~4>(),(n)(x) into an exponential form to get ~</P(x) as follows;

(3.16)

00

~4>()(x) = L ~<I>(),(n)(x)

n=l

= Tr (PI[~'~t]e-AJ,()(x)eA) (3.17)

= Tr (PI[~," ~'t]~Q(x)) . (3.18)

~' = ~ - Z-l~</)l)(tI), J,'t = J,t - Z-l ~<bt(l)(tr).

Equation (3.18) tells us that ~</>()(x) is the same as (~()(x)) but with the initial operator

inside PI shifted by the amount -Z-l~</>~l)(tI'X)which is a c-number. This' is reminiscent of
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the shift of boundary conditions under the on-shell variation in classical analytical dynamics,

see the discussion preceeding (2.3). However only the shift of the initial value comes in the

formula here compared with the case of the classical mechanics where the change of q(t) at

both t = t[ and t = tF appear. The reason is that we have a closed time path for the case of

finite temperature while the time flows straightly from t = -00 to +00 in zero temperature

case.

It can be shown that if we choose C± (p) in such a way that ~4>(x) be independent of .r,

then c/J(O) + D..<P represents another stationary value of the equilibrium free energy.

3.1.2 the case 6 = J,oJ,o

Next the pairing condensation is discussed. In super-fluid 4He, many people pointed out that

not only 'If;Ot but also 1/JOtv'Ot may condense. There has been controversy concerning the existence

or the absence of the gap in the excitation spectrum. But the gap can be sown to be absent

in full order using the symmetry transformation property of r[4>1' ¢2)'

Here the result of the applicaton of the on-shell expansion to the paring theory is briefly

summarized below. We will see that in our formalism the Bogoliubov angle naturally comes

in. For this purpose the pairing is taken up in momentum representation (~( -p).,f(p)),

(~lt(p)~~t(-p)) by adding the source term to the Hamiltonian separately for two thne paths

as follows:

We do not write the J3 dependence and the argument goes through in a similar way as the case

of (-JOt). We first define thegeneratiIig functional ltV as before and introduce the notations for

Q: = 1,2;

Ci _ t . _ oW
CPi (t,p) - (CPdt,P),CPi(t,P)) - fJJPI(t

. I ,p
(3.19)

Then r is introduced as

r[cp~,~~] = W[Jf,J~] - ~Jdt Jd3pJnt ,p)cpf(t,p).
I,Ot

(3.20)

Then the equation which governs the time development of the order parameter is written as
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(
hf )

h~OI t = O.d ,p) ~l=~h=~

On-shell expansion around the uncondensed solution ~(t)(O) is gotten by writing

~OI(t,p) = ~OI(O) + ~~OI(t,p),

where the varibles without the suffix i is the physical quantities;

Then ~~Q(t,p) is obtained. after some algebra. as follows:

=, Tr (ef d
3
qib(tr,q) pl~~'. 'J,t]e- f d3q..h(t1,q)<I>0I( t, p))

= Tr (PI[~/~'J"t]~OI(t,p).).

Here the following notations are employed:

J.,' = cosh OkJ,(k) - exp(i arg )Ok) sinh Ok'J,t( -k),

~tt = cosh Ok~t(k) - exp( i arg )Ot) sinh Ok'$( -k),

A2(tl, q) = Z-l(Ll~(l)(tl, q)J.t(tl, q),J,t(tI' -q) - ~~t(1)(tl, q),¢(t l , -q)~(tl' q)),

'Pk = Z-1 (~~(1)(tl'k) + ~~(1)(tl' -k)) . Ok = l'Pkl.

(3.21 )

The angl~ Ok is nothing but the Bogoliubov angle which is determined by requiring that

~~i(t,p) is independent of t. As in the case of ('1/,01), this will coincide with the condition of

minimizing equilibrium free energy.

We summarize our findings of this Section. On-shell expansion naturally changes the initial

density matrix into

which causes the shift of the operator J, of the initial state by c-number C(t) or the rotation of

the pair field by the amount O. It is our claim that em or°can be obtained by the requirement

that (~)t or (;P;P)t be independent of t, which coincides with the value fixed by minimizing

the equilibrium free energy. The above form of the tranformed density matrix implies that

the new state is constructeq by adding an infinite number of the unstable modes present in

the uncondensed state in a coherent way.
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