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Eigenvalue Problem of Evolution Operators and Dissipation
in Conservative Maps

Shuichi Tasaki
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Abstract

We derive, for the bakel' and multibaker maps, the eigendistributions of the evolution operator
of distribution functions, which characterize the weak relaxation to the 'equilibrium' state. Non
equilibrium stationary states are also constructed for ,the multibaker map. We show an important
role of fractal functions in the realization of dissipative eigenmodes as well as non-equilibrium
stationary states.

§l. Problenl of dissipation in conservative systenls

Understanding of dissipation in conservative systems is a long standing problem in

statistical mechanics. The widely accepted picture is as follows: Firstly, one assumes that

there exists a part of the system's degrees of freedom (such as very small regions in the

phase space or 'environments') which is uncontrollable in the sense that dynamical 'infor

mation' flowed there cannot be restored practically. Then the dynamical evolution, which

promotes the flow of 'infonnation' to the uncontrollable part, appears as dissipative. In

order to formulate this picture, various approaches have been proposed so far(l). Although

the conventional approaches can derive dissipative time 'evolutions, they are not fully sat

isfactory since they usually neglect parts of the dynamical information. Moreover, recent

progress of the dynanlical systenl theory reveals the variety of behaviors of nonlinear dy

nanlical systems, and suggests a necessity of formulating a theory of irreversibility which

could take into account specific features of systems in question.

Hereafter, we concentrate on conservative mixing systems, where expectation value of

a given observable with respect to any initial distribution asymptotically tends to the one
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with respect to the ergodic measure. This convergence could be regarded as a relaxation

of the initial distribution to the 'equilibrium' one and thus as a dissipative process. The

mechanism of such a weak relaxation is simple: The long time limit of the distribution

should spread over an arbitrary domain of the phase space in order to satisfy the mixing

condition, while the phase space volume is conserved. This is possible only when the distri

bution evolves into the one with finer structures as time goes on. Hence, the 'information'

carried by the initial distribution moves into smaller phase-space regions in the course of

the time evolution and will be lost through the averaging of a given observable.

For two classes of mixing systems, namely axiom-A systems and expanding maps,

Pollicott(2) and Ruelle(3) have shown that the rates of the weak relaxations can be char

acterized by the complex poles of the power spectra of the correlation functions, known

as Pollicott-Ruelle resonances. Moreover, it is easy to see that those complex poles are

eigenvalues of the generator of motion for the distributions. Note that the aforementioned

eigenvalue problem associated with the weak relaxation should be understood in a gener

alized sense, because, in the conventional Hilbert space setting, the generator of motion is

Hermitian and possesses only real eigenvalues.

The possibility and the generality of such a characterization of the relaxation rates in

terms of the (generalized) eigenvalue problem of the evolution operator have been empha

sized and discussed by Prigogine and coworkers{4,5) over the last thirty years in the field of

non-equilibrium statistical mechanics. The novelty of this approach is that the relaxation

is described at the level of the microscopic phase-space dynamics without any modification

of the laws of motion.

In the presenf article, we review the (generalized) eigenvalue problem associated with

the (weak) relaxation processes for conservative maps. In the next section, the relaxation

modes in the baker map are constructed and their properties are discussed. In §3, for a

conservative model of deterministic diffusion, called the multibaker map, the relaxation

modes are obtained and compared with the phenomenological decay modes of diffusion.

Non-equilibrium stationary states for the- same model are derived in §4 and the problem of

irreversibility in reversible systems is investigated. We found that these relaxation modes

and non-equilibrium stationary states are described by fractal phase-space functions. The
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result suggests that there exist fractal structures which play an important role in the

appearance of dissipation in conservative systems. This point is discussed in the last

section.

§2. Dissipative eigenvalue problem of evolution op~rator I

- weak relaxation to 'equilibrium' in the baker map -,

The baker map is a text book example of the mixing systems(l) admitting the Lebesgue

measure as an invariant measure, where the expectation value of a given observable with

respect to any initial distribution converges, in an infinitely long time, to the one with

respect to the Lebesgue measure. As mentioned in the previous section, these relaxation

processes are characterized by the Pollicott-Ruelle resonances, which correspond to (gen

eralized) eigenvalues of the evolution operator of the distribution functions. Hasegawa and

Saphir(6) solved the generalized eigenvalue problem for the dyadic baker map and, then,

Antoniou and Tasaki(7) solved the corresponding problem for the ,a-adic baker map. For

the ,a-adic baker map, the evolution operator is found to have generalized eigenvalues 1/,am
(m = 0,1,·· '), each of which is m-fold degenerate and associated with a Jordan block of

size m + 1, and a procedure of calculating the corresponding principal vectors is shown.

Here, we reproduce the results for the dyadic baker map, but in a more explicit manner.

The dyadic baker map is defined on. a unit square [0, I? by two step operations:

r-----·-J~

Fig. 1 Baker map
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1) the square is stretched by a factor 2 in x-direction and squeezed by a factor 1/2 in the

perpendicular y-direction and 2) the so-obtained 2x1/2 rectangle is cut into two 1x1/2

rectangles and the right part is piled up onto the left one (cf. Fig.1):

( )
_ { (2x, ~) , 0 ::; x < 1/2

B x, y - (2x _ 1, yt1), 1/2::; x < 1 (2.1)

The map is uniformly hyperbolic with the maximum Lyapunov exponent log 2. The evo

lution operator U of distribution functions is given by

U ( ) - (B-l( )) {P(t,2Y) ,
P x, Y = P x, Y = (1I+ 1 ? _ 1)p 2 , ...y ,

o::; y < 1/2
1/2 ::; Y < 1

(2.2)

The operator is unitary in the Hil?ert space of square integrable functions on the unit

square [0,1)2 and satisfies, for any observable A and normalized initial distribution p,

(A)t == [ dxdyA(x,y)Utp(x,y) ~ [ dxdyA(x,y) ,
~[OI1)2 ~[O,1)2

(t ~ +00) (2.3)

as a consequence of the mixing property of B.

Once observables are restricted to functions smooth in y and initial densities to the

ones smooth in x, the relaxation (2.3) can berepresented as a sum of exponentially decaying

terms. Terms up to O(t/2t ) are given by

where linear functionals Fj's are given by

(Fo,p) == f dxdyp(x,y) ,
~[O,l)2

(Ft,p) == f dxdy8i p(x,y) ,
- ~[O,1)2
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and Fj's by

(A, Fo) == r dxdyA(x, y) ,
J[O,I)2

(2.6a)

(2.6b)

(2.6c)(A,F;) == r dxdy8y A(x,y) .
J[O,I)2

In (2.5c) and (2.6b), T is the Takagi function(8,9) and S is a related function, defined

respectively as unique solutions of functional equations:

_ { 1 T( 2x ) + x , 0 ~ x ~ 1/2
T( x) - IT( 2x - 1) + 1 - x, 1/2 ~ x ~ 1

and

(2.7)

_ { 1 S(2x) , 0 ~ x ~ 1/2
S(x) - lS(2x -1) + (1 - x)(x - !). 1/2 ~ x ~ 1 (2.8)

Time dependence of each term of (2.4) indicates that the functional Fo is the eigendis

tribution of evolution operator U with eigenvalue 1 and Ff (j = a, b) the eigendistributions

of U with eigenvalue 1/2, and that Po and Pf (j = a, b) are the eigendistributions of the ad

joint operator ut with eigenvalue 1 and 1/2 respectively. Indeed, we have, for an arbitrary

A,

and, for an arbitrary p,

(A, UFo) == (U tA, Fo) = (A, Fo) ,

(A, UFI
a

) = ~(A, Ff) + ~(A, Ft) ,

bIb(A, UFI ) = 2(A, FI ) ,
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1.0
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0.5
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0.8

Fig. 2 Takagi function T(x) (left) and function Sex) defined by (2.8) (right).

We have shown that the weak convergence of the expectation value (2.3) is character-

, ized by eigendistributions of the evolution operator and its adjoint. ,Remarkable feature

is that parts of the decaying eigendistributions Pf and Ff are given as functionals repre

sented by Stieltjes integrals with respect to T and S. The Takagi function T was firstly

proposed by Takagi as a simple example of a continuous function without finite derivatives

everywhere(8,9). The function S has the similar properties. Their singular properties can

be seen in their graphs, which are typical fractals (Fig. 2). Note that the eigendistribution

Ff of the forwaJ.'d evolution operator U and the eigendistribution Pf of the 'backward' evo

lution operator Ut = U- I are singular along their respective contracting directions (the

expanding direction of the forward evolution is the contracting direction of the backward

evolution!). Hence, one can consider that the singularity of eigendistributions reflects the

fragmentation of the distribution resulting from thefolding'along the contracting direction.

§3. Dissipative eigenvalue problenl of evolution operator n
- diffusive relaxation in the multibaker map -

In this 'and the next sections, we con-sider a reversible model of deterministic diffusion,

called the multibaker map, which is as simple as the baker map, but is more "physical".

- 28-



IJ

D-I n n+l

n
~

Fig. 3 Multibaker map. n stands for the lattice site.

The multibaker map is defined on a periodic array of countably many unit squares and

exhibits diffusion processes. A 4-adic multibaker map has been proposed by one of US(lO)

and the properties of diffusion and nonequilibrium states have been rigorously studied

with the aid of zeta functions and of the "thermodynamic formalism". "Multibaker maps

admit the Lebesgue measure as an invariant measure and the relaxation of the deviations

from this equilibrium state is described by the corresponding Frobenius-Perron opera

tor. The spectral properties of the Frobenius-Perron operator are recently studied by

Gaspard(ll), Hasegawa and Driebe(12) and Tasaki, ,Hakmi and Antoniou(13). The loga

rithms of the eigenvalues of the F'robenius-Perron operator give the decay rates of the

correlation functions(1l-13), which are known as Pollicott-Ruelle resonances(2,3). In this

section, we discuss the spectral properties of the F'robenius-Perron operator.

9.1 Diffusive relaxation modes

The multibaker map discussed in this article is the simplest one defined on a one

dimensional array of unit squares:

! < x < 1

- I(n -1, 2x, ~)
B(n,x,y) = (

n +1, 2x -1,

-29 -

o < x < 1
2" ,
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where an integer n labels the unit squares and a pair (x, y) of real numbers (0 ~ x <

1, 0 ~ Y < 1) stands for the coordinates in each unit square. The map iJ is schematically

depicted in Fig. 3. This map is area-preserving so that it admits the Lebesgue measure,

dxdy, as an invariant measure. As the baker map, the multibaker map iJ is uniformly

hyperbolic with a stretching factor 2 and, thus, possesses a positive Lyapunov exponent

equal to log 2.

The map iJ is time-reversal invariant, i.e., there exists an involution I satisfying

iJ- 1 = I iJ I ,

which corresponds to the velocity inversion in the particle system

I(n,x,y) == (n, 1- y, 1 - x) .

(3.2)

(3.3)

The evolution operator of the distribution functions (i.e., the Frobenius-Perron oper

ator) [; is then given by

_ _ _ -1 (p(n +1, ~, 2Y)
Up(n,x,y)=p(B (n,x,y»)= ( .)

P n ~ 1 x+1 2y - 1, 2'

o ~ y < 1

'2 '
(3.4)

Because of the periodicity of the system, it is convenient to introduce the Fourier repre

sentation:
+00

Pq(x, y) == L e-inq p(n, x, y) ,
n=-oo

(3.5)

where the quasi-momemtum q runs from -7r to 7r. Then, the expectation value of a given

observable A at time t with respect to the initial distribution p can be rewritten as

+00
(A),,=, L 1 dxdyA(n,x,y)(j'p(n,x,y)

n=-oo [0,1)2

= j1l' 2
dq r dxdyA.;(x,y)U;Pq(x,y) , (3.6)

-7i' 7r J[0,1)2

where Uq is the Fourier component of the Frobenius-Perron operator given by

! < y < 1

- 30-
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The operator Uq is unitary in the 'Hilbert space of square integrable functions on the unit

square [0,1)2. Notice that the operator Uq for q = 0 is equal to the Frobenius-Perron

operator U for the baker map.

As in the case of the baker map, once observables are restricted to functions which are

smooth in y and initial densities to other functions which are smooth in x, the integrand in

(3.6) with respect to q-integration can be represented as a sum of exponentially decaying

terms. When Aq and pq are two times continuously differentiable with respect 'to y and x

respectively, we have

where linear functionals Fj's are given by

j dGq(x)dYPq(X,y)
[0,1)2

j l dYPQ(l,y) - j dGq(x)dy8x pq(X,y)
o [0,1)2

(for Icos ql>1/2)

(for 1/2?:1 cos ql>I/4)

,(3.9a)

(3.9b)

and antilinear functionals Fj's by

(..4, Foq ) =
j dxdGq(y)A;(x, y)

[0,1)2

j l dx.4;(x, 1) - j dxdG q(y)8y .4;(x, y)
o [0,1)2

- 31-
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with pq(x, y) and Aq(x, y) being the Fourier transfomis of p(n, x, y) and A(n, x, y) respec

tively. In (3.9) and (3.10),-functions Gq, G~ (I cos ql > 1/2) and Gq (1/2 ;::: Icos ql > 1/4)

are defined respectively as unique solutions of functional equations:

{

eiq G (2 )
2 cos q q x ;

Gq(x) = , ,
~G 2x-1 ~2 cos q q( ) + 2 cos q ,

o~ x ~ 1/2

1/2 ~ x ~ 1
(3.11a)

{

eiq G1 (2) ~. e-
iq rx d 'G ( ')

2 cos q q x + 8 cos 2 q - 2 cos q J0 x q x ,
G~(x)= , . .

~Gl(2x - 1) + G q (x)-G q (1/2) - ~ JX dx' [1 - G (x')]
2 cos qq. 8 cos2 q 2 cos q 1/2 q

o~ x ~ 1/2

1/2 ~ x ~ 1
(3.11b)

and

{

iq -

_ 4 ~os q Gq(2x) , .
Gq(x)=. .

~ - 2x-l ~x__l_.
4cosqGq(, ) + 2cosq 8cos2 q . 1/2 ~ x ~ 1

(3.11c)

As shown in Fig. 4, the graph of Gq is fractal. The other functions G~' and Gq have

the similar properties. Hence, the functionals Foq , Fiq and Ftq are singular in y, or the

contracting direction for the forward evolution, and the functionals Foq , Fiq and Ftq are

singular in x, or the contracting direction for the 'backward' evolution. As in the case

0.8

0.4

o
0.5 1.0

X

0.4

0.2

o
0.5 1.0 X

Fig. 4 Singular function Gq( x) for cos q = 3/5. Real part (left) and imaginary part (right).
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of the baker n1ap, these singularities can be regarded as reflecting the fragmentation of the

distribution along the contracting direction.

As before, the time dependence of each term of (3.8) suggests that the functionals

Foq and Flq (j = a, b) are eigendistributions of the Frobenius-Perron operator () with

eigenvalues cos q and cos q/2 respectively, and that the functionals Foq and F/q (j = a, b)

are eigendistributions of its adjoint corresponding respectively to the eigenvalues cos q and

cos q/2. Indeed, we have, for an arbitrary A,

(3.12a)

(3.12b)

(3.12c)

and, for an arbitrary p,

(3.13a)

(3.13b)

(3.13c)

9.2 Scaling limit and correspondence to diffusion

In the multibaker map, hopping from one square to the other is deterministically

controlled by the baker map, which is a deterministic model of a uniform random generator.

Therefore, the multibaker map can be regarded as a determinisitic model of a random walk.

Indeed, the part of the expectation value (3.8) involving cost q precisely corresponds to the·

time evolution of the probability distribution for the random walk. To see the relation

with the diffusion more in detail, we consider the scaling limit: n -+ VMx, t -+ Mr and

M -+ +00, where the distribution and observable are scaled, in the limit of M -+ +00,

as VMp(VMX,x,y) -+ ps(X,x,y) and A(VMX,x,y) -+ As(X,x,y) respectively. Note
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that the operation n -+ vIM}( corresponds to the operation q -+ k/ vIM for the quasi

momentum. Carrying out the scaling in the expectation value (3.8), one obtains

O(vlM
T

)+ 2.JMr . (3.14)

Because of the factor 1/2.../Mr, the second term of (3.14) disappears in the limit of M -+

+00. Since, for M -+ +00, we have

+00
~(A,Fo k/..;M) = .~ L eikX [ dxdGk/.../M(y)A(vlMX,x,y)

V Al ' V M if[IO 1)2..;MX=-oo I

;
+00 1, ;+00_

-+ d)[e ikX dxdyAs(X,x,y) = dXe ikX As(X) ,-00 [0,1)2 -00

- 1 ~ 'kX [ hi hi
(FO,k/v'M'P) = ru L.J e- I

·.1 ifl 2 dGk/v'M(x)dyvMp(vMX,x,y)
y lVl ..JMX=-oo [0,1)

-+ ;+00 dXe-ikX [ dxdyps(X, x, y).= ;+00 dXe-ikX ps(X) ,
-00 i[O,l)2 -00

with double bar (=) denoting the average with respect to (x, y), the scaling limit of the

expectation value finally becon1es

(scaling) l~ (A)y'Mr = j+oo dXA s(X) j+oo dXo ~exp( (X ~:O)2) ps(Xo) ,
M ~OO -00 -00 V 2?TT

(3.15)

which agrees precisely with the averaged observable calculated from the diffusion equation

with the diffusion coefficient D= 1/2. Therefore, in the scaling limit, the deterministic

dynamics of the multibaker map reduces to the diffusion process. It is worthwhile to note

that 1) the intra-square information is averaged out automatically in the scaling limit

and 2) the eigenfunctionals FOq and FOq reduce to the eigenfunction exp(-ikX) of the

diffusion operator (d. eqs. before (3.15)). From this observation, the eigenfunctionals Foq
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and Foq can be regarded as exact decay modes representing the diffusive relaxation. In

other words, one can construct diffusive relaxation modes exactly as eigendistributions of

the Frobenius-Perron operator with the aid of singular functions with fractal properties.

§4. Nonequilibriu111 states and eigenvalue problelu of evolution operator

- nonequilibri1£m stationary states with flow in the multibaker map -

4.1 Equation of motion and conservation law

Here we consider nonequilibrium stationaJ:y states in the multibaker map, following

the argunlent of Ref. 14. The problem formally corresponds to solving the eigenvalue

equation [r p = p, but, as we have seen before, if one only considers states represented by

density functions with respect to the Lebesgue measure, the equation admits the Lebesgue

measure as the unique invariant measure. So we consider more general states represented

by Borel measures p. Such states are completely specified by the cumulative function G:

(4.1)

where the subscript n in {[O, ~) X [0, y)} n denotes that the rectangle [0, x) X [0, y) belongs

to the T/,th square.

The equation of motion for the cumulative function is derived from the conservation

of the measure (analog to the Liouville theorem):

G, ( n + 1, ~' 2Y) , 0 :::; Y <! '

G'+l(n, x, y) =UG,(n, x, y) == G,(n + 1,~, 1) + G'(n - 1, xt1
, 2y -1)

- G.(n -1, !, 2y -1), ! :::; y :::; 1 ,
(4.2)

where the subscript t stands for the tinle. The operator U precisely corresponds to the

Frobenius-Perron operator U.

For the multibaker map, one could introduce the flow of particles across the boundary

between the nth and (n +l)th unit squares. Under the multibaker map B, the half-square
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[1/2,1) x [0,1) in the nt.h unit square moves to the right and the half-square [0,1/2) x [0,1)

in the (11, + l)th unit square nloves to the left. Thus, the flow Jnln+1(t) from left to right

at the 11,-(11, +1) boundary and at time t is given by

As expected, the flow Jnl n+1 together with Gt(11" 1, 1) satisfy the equation of continuity

(4.4)

4. 2 Homogeneous stationary states and the~r properties

Now we turn our attention to the stationary solutions of the equation of motion

(4.2). Since x- and v-directions are mapped onto themselves in the multibaker map and

are therefore independent, we can expect the existence of a product invariant measure,

for which the cumulative function is a product of a function F(n, x) of x and a function

G(n, 1, y) of y:

G(n,x,y) = G(11"l,y)F(11"x). (4.5)

It then turns out that the equation of lTIotion (4.2) is separable in the sense that it is

separated into two distinct equations for F(11" x) and G(11" 1, V), where F(11" 1/2) plays a

role of a separation constant. The constant is set to be a, which satisfies 0 < a < 1 because

of the positivity of the invariant measure. The separated equations are given by(14)

G( 1 ) _ {aG(n +1,1, 2y} , 0 ~ y < ! '
11",y - (1-a)G(n-1,1,2y-1)+aG(11,+1,1,1), !~y~l,

(4.6a)

( ) {
aF( 11, - 1, 2x) ,

F 11"x =
(1 - a)F(11, +1, 2x -1) +a ,

(4.6b)

The set of equations admits a unique solution for each a once two values of G(n, 1, 1) are

given. Two cases should be distinguished:
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(a) a i= 1/2. 0 < a < 1

In this case,

(4.7)

where Al and A2 are constants determined by the boundary condition. The function!ex

is defined as the unique solution of deRham's functional equation(9,I5)

! ex (x) = { a!ex(2x) ,
(1-a)!ex(2x-1)+a,

(4.8)

which is a Lebesgue singular function, i.e., a monotonically increasing continuous function

with zero derivatives almost everywhere(9,15,16).

As seen in (4.7), the intercell distribution is exponential with respect to the cell co

ordinate while the intracell distribution is singular since it is expressed by the Lebesgue

singular function!ex' The inter- and intra-cell distributions are depicted in Fig.5a and 5b,

5c respectively. The corresponding flow is calculated from (4.3):

Jnln+I = (1 - a)G(n, 1,1) - aG(n +1,1,1) = (1 - 2a)A2 • (4.9)

In this case, the flow is due to the term of (4.7) which is independent of the cell coordinate

n. This part of the measure gives a weight aA2 to the left-hand half of each cell and a

weight (1 - a)A2 to the right-hand half. One iteration of the multibaker map induces

a left-to-right flow of (1 - 0') ..4.2 and a right-to-Ieft Row of O'A2 , and as a result, a net

flow of (1 - 20' )A2 fronl left to right. In other words, the difference of the weights of the

half-cells is at the origin of the flow. In this sense, the flow (4.9) corresponds to a ballistic

motion. On the contrary, the term of (4.7) which depends on the cell coordinate n does

not contribute to the net flow as a consequence of the cancellation between the ballistic .

and diffusive flows.

(b) 0'=1/2

In this case,

(4.10)
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where B 1 and B 2 are constants d~termined fronl the boundary condition, and T(y) is the

Takagi function. We remark that the iritercell distribution is here linear with respect to

the cell coordinates while the intracell distribution is singular in the y-direction. The inter

and intra-cell distributions are depicted in Fig.6a and 6b, 6c respectively. The singularity

of the distribution is due to the self-similarity of the Takagi function T(y).

In this case, the flow is given by

B 1 1 [ ]Jn ln+1 = -2 = -2 G(n + 1,1,1) - G(n, 1, 1) , (4.11)

Contrary to the previous case, the flow is here due to the nonuniformity of the distribution,

i.e. to the term of (4.10) which depends on the cell coordinate n. The flow is here

proportional to the gradient G(n +1,1,1) - G(n, 1, 1) with a negative constant -1/2. As

seen in the previous section, this constant gives the diffusion coefficient D = 1/2 of the

multibal~er map E. Therefore, the relation (4.11) is nothing but Fick's law.

Further stationary states 11lay be obtained by the tillle-reversal operation since the

luultibaker map E is symmetric under tinle reversal. It turns out, however, that no new

states are obtained in case of Q =I 1/2. For Q = 1/2, we have

Cd Time reversa.l of ex = 1/2

The cumulativ function 01/2(n,x,y) of the time-reversed state is given by

G1/ 2(n,x, y) == f.' (I{[O, x) x [0, y)} n) = f.' ({(1- y, 1J x (1- x, 1J) n)
= G1/2 (n, 1, 1) +G1/2 (n, 1 - y, 1 - x) - G1/2(n, 1 - y, 1) - G1/2 (n, 1, 1 - x)

=y {B 1 [nx-T(x)]+B2x} , (4.12)

for which the intercell distribution is identicai to the original one. However, the original

distribution (4.10) is regular in x and singular in y although the time reversed state (4.12)

is singular jn x and regular in y. Because of the tenu with the Takagi function, the flow

for the tinle-reversed state obeys an anti-Fick la.w

- 1 1[- -]
J~ln+l = "2B1 = "2 G1 / 2 (n + 1,1,1) - G 1 / 2(n, 1, 1)

=D [01/2(n +1,1,1) - 01/2(n, 1, 1)] ,
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(4.14)

where the flow is positively proportional to the concentration difference. It is important

to note the role of the intracell distribution in the derivation of this result.

Before closing this subsection, we remark important implications of the appearance of

singular functions in the stationary states. Firstly, according to Mandelbrot, self-similar

and singular functions like the Takagi function are referred to as fractals. In this respect,

an important implication of our results is that nonequilibrium steady states of mechanical

systems turn out to be typical fractal objects. Secondly, since the singular functions have

no finite derivatives almost everywhere, the corresponding invariant measures (except in

the case where Q' = 1/2 and B 1 = 0) are not absolutely continuous with respect to

the Lebesgue measure. As a consequence, they cannot be expressed in terms of density

functions p(n, x, y):
{X (Y

G(n,x,y) =1= Jo dx' Jo dy'p(n,x',y').

Therefore, it was essential to consider the time evolution of the measure directly represented

by its cumulative distribution function rather than by its density function, in contrast with

conventional treatments of statistical mechanics.

4.9 Physical states, fractals and irreversibility

The results in the previous section imply that the multibaker map admits uncount

ably many stationary states for a boundary condition imposed at the level of the intercell

distribution. Indeed, uncountably many distributions are possible if we specify two num

bers like G(O, 1, 1) and G(N, 1, 1) at both ends of a chain of length N. Such boundary

conditions may be considered as coarse-grained boundary conditions in which only an av

eraged value is imposed on the distribution. However, as in the case of several dynamical

systems(17-19), everyone of these nleasures is not physically realizable. In order to specify

the physical measures, we studied the tinle evolution of an open multibaker chain of scat

tering type where measures at the both edges of the chain are fixed as uniform Lebesgue

measures with different densities(14). W~ then found that any initial distribution smooth

in x-direction asymptotically tends, for t --+ +00, to the stationary distribution with a

uniform intercellular gradient and obeys Fick's law. As time evolves, the distribution first
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becomes uniform along the expanding direction on a short kinetic time scale given by the

inverse of the Lyapunov exponent (corresponding to a decay rate of In 2). Thereafter,

the linear concentration profile is achieved through diffusion on a longer hydrodynamic

time scale given by the rate of escape out of the finite chain (corresponding to the decay

rate -In cos( rr / (N + 2)) for the chain of lengthN + 1). It is important to note that the

so-obtained stationary state is uniform along the expanding x-direction as the state (4.10).

This observation also suggests an in1portant role of fractals in the emergence of ir

reversibility in the multibaker lnap. First we note that non-Ficldan stationary states are

all singular in the expanding direction. On the other hand, the multibaker map iJ has

a tendency to uniformize the distribution along the expanding direction. Therefore, the

maintenance of a stationary state which is singular in the expanding direction requires

the self-silnilarity of the initial states along the expanding direction in order to prevent

the uniformization. This ~mplies that, except for very special initial states prepared to

be self-similar, almost all initial states converge to the one which is uniform in the ex

panding direction, and which obeys Fick's law. The stationary state with Fick'slaw is

stable in this sense. In other words, it is the necessity of the fractal initial conditions for

realizing non-Fickian states that lnakes those states exceptional and, thus, prevents them

from being realized 'naturally'. Note that the singularity along the expanding direction of

the anti-Fickian state, i.e., the stationary state obeying anti-Fick's law, is the very con

sequence of the singularity along the c.ontracting direction of the Fickian state as well as

the time-reversal symmetry of the dynamics. Therefore, in a sense, the fractality of the

Fickian state auton1atically prevents the realization of its time-reversed state and, thus,

can be regarded as the origin of irreversibility.

We also remark that the similar arguments can be applied to the decay modes dis

cussed in the previous section. The diffusive relaxation mode FOq for Icos ql > 1/2 cor

responds to the cUlnulative function G(n,x,y) = einqxGq(y). Its time-reversed state is

represented by G(n,x,y) = einqG;(x)y. Then aecording to the equation of motion (4.2)

for the cumulative function, the time-reversed state is found to grow in time:

( )

t
t - 1-U G(n,x,y) = -- G(n,x,y).

cosq
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Since the time-reversed state G(n, x, y) is frae.tal along the expanding direction, it is ex

ceptional and is not realized 'naturally' as the non-Fickian states. Hence, also in this case,

the fractality of the relaxation modes prevents the unphysical growing modes from being

realized.

§5. Perspective

We have rigorously constructed decay modes associated with (weak) relaxation pro

cesses as well as non-equilibrium stationary states with the aid of fractal functions for the

baker and multibaker maps. The results seem to suggest that the fractality of relaxation

modes as well as non-equilibrium stationary states is the origin of irreversibility. We believe

that this is generally true for mixing systems. The reason is as follows. Suppose a given

reversible system ~ is mixing with respect to the Liouville measure, then any state de

scribed by a density function, i.e., by an absolutely continuous measure with respect to the

equilibrium Liouville Ineasure, ,veakly eonverges to the equilibrium state and there eannot

be any other stationary state. Therefore, if the system ~ admits non-equilibrium sta

tionary states, they eannot be deseribed by density functions, but should be deseribed by

measures whieh are singular with respect to the equilibrium Liouville Ineasure. Because of

the folding along the contracting direction, any distribution evolves into the one which has

a fragmented structure along the contracting direction. Hence, non-equilibrium stationary

states obtained as long-time limits are eonsidered to be singular along the contracting di

rection. Moreover, the singularity can be regarded as the origin. of irreversibility from the

sinlilar reason to that for the multibaker map. Firstly, since the time-reversal operation

interchanges the contracting and expanding directions, the time-reversed non-equilibrium

states are singular along the expanding direction. On the other hand, dynamics has a

tendency of uniformize the distribution along the expanding direction. Therefore, to real

ize the time-reversed non-equilibriuln states, one needs a fine tuning of the initial states

so that they are self-similar along the expanding direction. Since such an initial state is

exceptional, the tinle-reversed non-equilibrium states are not realized 'naturally'.
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A similar picture about the appearance of irreversibility has been discussed by Horita

and Mori(20). They studied the distribution of the local Lyapunov exponents, which should

be an even function of the argument if the system is time-reversal symmetric. They found

an asymmetric distribution for the standard map, which corresponds to the emergence of

irreversibility, and considered the instability of the time-reversed motion against errors as

its reason. The key point of their arguments is the observation that any error entering

into the reversed motion prevents th~ phase point from going back to its initial value as a

result of the chaotic nature of the dynamics.

Moreover, recent studies have shown that certain fractal sets in the phase space,

called fractal repellors, play an important role in the transport processes for conservative

dynamical systems(lO,21). Let C be a physical quantitity in question, then the fractal

repellor consists of trajectories, for which C-values always fall in the interval Co $ C $

Co +~. Then the relaxation of the physical quantity C corresponds to the escape from

the repellor and its rate can be obtained from the dynamical properties of the trajectories

forming the repellor. This and the results discussed in the previous sections seem to show

a new picture

(CHAOS) =} (FRACTAL STRUCTURE) =} (IRREVERSIBILITY)

of the emergence of irreversibility in conservative mixing dynamical systems.
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