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Abstracts

We review some techniques and notions for quantum information theory
established by one of the present authors. New treatment of Kolmogorov - Sinai

type entropies is discussed and a numerical computations of these entropies are
carried for modulated states.

Introduction

In §1, we briefly review quantum channels and liftings and the formulations of
quantum entropy and quantum mutual entropy for general quantum states. In §2, we
explain new formulations of quantum entropy and quantum mutual entropy of K-S
(Kolmogorov - Sinai) type. In §3, we show some numerical computations of these K-S
type entropies for optical modulated states.

"§1. Channels and Entropies

When we send information carried by a state, the state is caused to change under
some effects from physical devices or the outside of the system. This state change is
expressed by the concepts of channels and liftings [A.1,0.1,0.2,0.6].

In order to define the channel in quantum dynamical systems, we need two dy-
namical systems; input system denoted by (A, &(A),a(G)) and an output system by
(A, 8(A),a(G)), where A (resp. A) is a C*-algebra or the set all bounded operators
B(H) on a Hilbert space H (resp. H), &(A) (resp. G(A)) is the set of all states on A
(resp. A) or the set of all density operators in H (resp. H) and a(G) (resp. @(G)) is
an automorphism of .4 representing the dynamics of the input (resp. output) system.

A map A* : 6(A) — G(A) is called a channel.

(1) A* is a linear channel if A* is affine.

(2) A* is a completely positive (CP) channel if its dual map A : 4 — A satisfies

Y BIA(A}4;)B; >0

i,j=1

for any {B;} C A,{A,-} C A and any n € N.
(3) A* is Schwarz type if A (4*) = A (4)" and A (A)" A (4) < A (A*4).
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Take A = A = B (M), hence G(A) = 6(A) = G(H) is the set of all density
operators on a Hilbert space H, and let B be a C*-algebra on another Hilbert space
K. Then the state space of the total system is described by & (H ® K). As is dis-
cussed in [0.4,0.5,0.8], we have several examples of channels encountered in physics
and engineering, among which we show one example used in §3.

Quantum communication process is described by the following scheme [0.2].

v € 6(K)
!
G(H)>3p —p = A*p € G(H)
!
Loss

6H) 2 &(H)
71 Ta*
S(H®K) - G(H®K)
The above maps v*, a* are given as
7 (p)=p®v, p€G(H),
a* (@) =trxf, 0 S(H®K),
where v is a noise coming from the outside of the system. The map 7* is a certain

channel determined by physma.l properties of the combined system Hence the channel
for the above process are given as

Ep=1"(p®v)=(r"07")(p),
ANp=trgr* (p@v) =(a* o™ ov")(p).
Based on the above setting, the attenuation channel A* for an input state p is defined

as follows:
‘ A (p) =trxV(p @ v)V*, (1.1)

where v is the vacuum noise state expressed by v = |yo >< yo| and V is given by

n
Vizn @ yo >= Z C?“”j ® Yn—j >,
Jj=0

3 = e

and 7 is the transmission ratio for the channel.

Let us discuss the entropy in C* systems introduced in [0.4]. The formulation of
quantum entropy was presented by von Neumann [N.1] about 1930, 20 years ahead of
Shannon, and it now becomes a fundamental tool in analysing physical phenomena.
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For a density operator p € G('H), the von Neumann entropy is defined by

S(p) = ~trplogp. (12)

Now, the spectral set of p is discrete, so that we write the spectral decomposition of p
as ‘
p=2_ nPn,
n

where A, is an eigenvalue of p and P, is the projection from H onto the eigenspace asso-
ciated with )\,,. Therefore, if every eigenvalue A, is non-degenerate, then the dimension
of the range of P, is one (we denote this by dimP, = 1). If a certain eigenvalue, say
An, 18 degenerate, then P, can be further decomposed into one dimensional projections:

dim P,
P,= Y EM.
=1

j
eigenvector zg-") (j =1,2,--- ,dim P,) for \,. By relabelling the indices j,n of {EJ(-")},

we write _
p=) ME, (1.3)

where E{™ is a one-dimensional projection expressed by E}") = Imgn) >< a:g")| with the

with
M2 > An 2

" EplEn(nlm).

We call this decomposition the Schatten decomposition. Then the entropy S(p) can be
expressed as

S(p) = - Z'/\n log A,..

The relative entropy of two states was introduced in [U.2] for o-finite and semifinite von
Neumann algebras. For two density operators p and o it is defined as

S(p,0) =trp(log p — log o). (1.4)

Umegaki [U.2] and Lindblad [L.1] studied some fundamental properties of this relative
entropy corresponding to those of classical Shannon’s type relative entropy. There were
several trials to extend the relative entropy to more general quantum systems and apply
it to some other fields [A.3, U.1, 0.6].

Another important entropy is the mutual entropy, which was discussed by Shannon
to study the information transmission in classical systems and the quantum mutual en-
tropy was introduced in [0.2,0.3], and its fully general quantum version was formulated
in [0.4]. ,

Since the Schatten decomposition of p is not unique unless every eigenvalue A, is
nondegenerate, the compound state og is given by

O = Z’\nEn®A~En’ (15)
n
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where E represents a Schatten decomposition {E, }. The compound state o expresses
the correlation between the input state p and the output state A*p. Then the mutual
entropy for p and the channel A* is given by

I(p; A*) = sup{lp(p; A*); E = {E,} of p}, (1.6)

with
Ig(p; A*) = S(0E,00) = trog(logog — log 00). (1.7)
where g = p @ A*p. ‘

Since every Schaten decomposition is discrete and orthogonal, for a state p, we have
the following fundamental inequality [0.2,0.4].

Theorem 1.1
0 < I(p; A*) < min{S(p),S(A*p)}

This theorem tells us that the information correctly transmitted from the input sys-
tem to the output system is less than that carried by the initial state. When we send an
information through a channel, we have to consider the efficiency of the communication.
This efficiency is measurcd by the mutual entropy; namely, we ask for which channel is
the mutual entropy becomes larger (see Theorem 5.5 of [0.4]).

In order to discuss some physical phenomena, for instance, phase transitions, we
had better start without Hilbert space, so that we need to formulate the entropy of a
state in a C* system [O.6).

Let (A, 6(A), a(R)) be a C*-dynamical system and S be a weak* compact and
~ convex subset of G(A). For instance, § = 6(A); § = I(a), the set of all invatiant
states for a; § = K(a), the set of all KMS states.

Every state ¢ € S has a maximal measure p pseudosupported on ezS (the set of all
extreme points of §) such that

@ = /s wdp. (1.8)

The measure u giving the above decomposition is not unique unless § is a Choquet
simplex, so that we denote the set of all such measures by M,(S). Put

Dy,(8) = {M,(S); 3ur C Rt and {pk} C ezS
st Y e =lu=)Y mbler)}),
k k

where (i) is the Dirac measure concentrated on an state ¢, and define

H(py= - prlogpux
k

for a measure g € D,(S). Then the entropy of a state ¢ € S w.r.t. S (S-mxinig
entropy) is defined by

+00 ifDy(S)=0.

This entropy is an extension of von Neumann’s entropy [N.1], and it depends on the set
S chosen. Hence it represents the uncertainty of the state measured from the reference

system S. When § = &(A), we simply denote SSA) () by S(p) in the sequel.
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When A is the full algebra B(H), any normal state ¢ is described by a density
operator p such as p(A) = trpA for any A € A. Then C*-éntropy S(y) defined by
(1.9) is equal to that of von Neumann: S(¢) (= S(p)) = —trplogp. Every Schatten
decomposition p = 3~ A, E,, E, = |z, >< z,| provides every orthogonal measure in

D,(6(A)) defining the entropy S(p).

For an initial state ¢ € S and a channel A* : &(A) — &(B), two fundamental
compound states are

&5 = [sw@A*wdp ' (1.10)
P = ® A%p. (1.11)
The mutual entropy w.r.t. S and p is
I (p; A*) =S (235, &) (1.12)
and the mutual entropy w.r.t. S is defined as
I° (¢ 5 A*) = sup {I; (¢ ;A%) 5 p € M, (S)}. (1.13)

When a state ¢ is expressed as ¢ = ), prr (fixed), the mutual entropy is given by

I(p;A%) = > mS(A%w,A%p). - (114)
k

The CNT entropy [C.1] for a subalgebra 91 of A is
H,M) = sup{z AeS(wr | M, 0 | M)
k

p= E Arwy finite decomposition of go}. (1.15)
k

where ¢ | M is the restriction of a state ¢ to 91 and S(-, -) is the relative entropy for
C*-algebra.

The relations between S° () and H, (M) were discussed in [M.1] and it was shown
that S® () distinguishes states more sharply than H, ().

§2. Quantum mean mutual entropy of K-S type

2.1 A new formulation of quantum mean mutual entropy of K-S type

In quantum information theory, a stationary information source is described by a
C*triple (A, 6(A),64) with a stationary state ¢ with respect to 64; that is, A is a
unital C*-algebra, G(.A) is the set of all states on A, 64 is an automorphism of A, and
¢ € 6(A) is a state over A with p 084 = ¢.

Let an output C*-dynamical system be the triple (B, &(B),0s), and A* : G(A) —
G&(B) be a covariant c.p. channel: A: B — A such that Aofg =64 0A.
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In this section we explain new functionals S‘E(aM ), $5(a™M), Ii(aM ,BY)and 1°(aM,
BY) introduced in [0.7,M.2] for a pair of finite sequences of a™ = (a1, az, -+ , apm),
BN = (81,2, ,Bn) of completely positive unital maps am : Am — A, Bn : Bn — B
where A, and B, (m = 1,--- M, n = 1,--- |N) are finite dimensional unital C*-
algebras.

For a given finite sequences of completely positive unital maps a, : A, — A and a

given measure u of ¢ € M,(S), the compound state of o}y, a3y, -+ ,a}sp on the tesor
product algebra ®¥_, A4,, is given by [0.7,M.2]
M
&) = [ 8 atw duw) (21)
S(A) m=1
Furthermore &5 (o™ UBN) is a compound state of ®5(aM) and &5 (8N) with aMUBN =
(1,02, - yaMm,P1,P2, -+ ,BN) constructed as
M N
@g (a™uph) = / ( ® a’,"nw) ( ® ﬂ;w) du. (2.2)
‘ S(A) \m=1 n=1
For any pair (a™,B") of finite sequences a™ = (ay, -+, ap) and BN = (B4,

-++, Bn) of completely positive unital maps (c.p.u. maps for short) ap, : An — A,
Bn : Bn — Afrom finite dimensional unital C*-algebras and any extremal decomposition
measure g of ¢, the entropy functional S, and the mutual entropy functional I, are

defined by [0.7,M.2]

Si(ia™) = [ 5 (@Nahe, B5(M) dulw), (2.3)
5(A)
Li(psa, pY) = S (25(a™ U BY), 25(o™) @ 25(8")) , (24)
where S(-,-) is the relative entropy for a finite algebra.
For a given pair of finite sequences of c.p.u. maps a™ = (ay,---,anm), BN =

(B1,* -+ ,Bn), the functional S%(p;a™M) (resp. I°(p;a™,BN)) is given by taking the
supremum of S‘z(cp; aM) (resp. Iﬁ((,o; oM, BN)) for all possible extremal decompositions
p's of ¢: ,
5%(p; M) = sup{Si(p;a™); 1 € My(S)}, (2.5)
Is(cp; aM,BN) = sup{Iﬁ(tp; aM,BN); p € My(S)}. (2.6)

Let A (resp. B) be a unital C*-algebra with a fixed automorphism 64 (resp. 6p),

A be a covariant c.p.u. map from B to A, and ¢ be an invariant state over A4, i.e.,
pobs=e.

aNE(a, GAoa,---,Gﬁ_loa), (2.7

N =(AoB,Aobgop, -+ ,A0bT 10p). (2.8)
For each c.p.u. map a: 4y — A (resp. f: By — B) from a finite dimensional unital

C*-algebra Ay (resp. By) to A (resp. B), gs(go; 04,a), is(go;A*,GA,GB,a,ﬂ) are given
by

§8(Lp; 64,a) = limsup iS's((,a; o), (2.9)
N—oo IV

- 1

I°(; A*, 04,08, 0,8) = li_gl sup Fls(w; o™, By). (2.10)



The functionals §° (cp, 0 A) and I° (¢; A*, 6.4, 65) are defined by taking the supremum for
all possible Ay’s, a’s, By’s, and f’s:

gs(cp; 04) = supgs(cp; 04,0), (2.11)

1°(; A*, 0.4, 68) = sup I° (1p; A*, 6.4, 08, @, B). (2.12)
a,f

The fundamental inequality in information theory holds for és(cp; 6.4) and is(cp; A*,
64, 0B).

Theorem 2.1 0 < T°(¢; A%, 04,05) < min{S°(¢;0.4),5° (A*p; 65)}.

Our formulations gs(cp; 64) and is(go; A*,04,60p) are K-S type entropies and gen-
eralize both classical and quantum K-S entropies. In particular, we have the following
propositions. :

Proposition 2.2 If Ai, A are abelian C*-algebras and each ay 13 an embedding, then
our functionals concide with classical K-S entropies:

m=1

, M .

Sf(.A) (30; 0[M) ____Szlaaalcal< v Am) :
classica M

IS(A) (¢; aM,ﬂﬁ) — I"' i ( Y

for any finite partitions A, B, of a certain probability space.
In general quantum systems, we have the following theorems [0.7,M.2].

Thorem 2.3 Let a,, be a sequence of c.p.u. maps oy, : An — A such that there
exist c.p.u. maps al, 1 A — An satisfying am 0 al, — id4 in the pointwise topology.

Then s s
57(p;6.4) = lim 5"(¢;64,am).

Theorem 2.4 Let ap, and By, be sequences of c.p. maps am : A — A and B, :
B, — B such that there ezist c.p.u. maps al, : A= Ay and B, : B — By, satisfying
amoal, = idg and By, 0 B), — idp in the pomthse topology. Then

T(p3A*,04,08) = lim 1(¢5A*,04,05, am, ).

This theorem is a Kolmogorov-Sinai type convergence thorem for the mutual entropy.

Based on the above construction, we rewrite the mean mutual entropy in terms of
density operators.
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Let B(Ho) (resp. B(Ho)) be the set of all bounded linear operators on _a Hilbert
space Hy (resp. Hp) and Ay (resp. By) be a finite subset in B(H,) (resp. B(Hy)). Let
A (resp. B) be an infinite tensor product space of B(Hg) (resp. B(Hp)) represented by

A= ® B(Mo)

1==—00

Moreover, let 4 (resp. 8s) be a shift transformations on A (resp. B) defined by

9..4(_?8? A) = ® As (! =i-1)  for any ® A; €A,
t/=—00

i=—00 iI=—00

05( ® B))= ® By (f=j—1) forany ® B;€B,
j'=—o0

j=—o0 j=—o00
Let a (resp. () be the embedding map from Ay to A, (resp. By to B) given by

a(A)=-- IQRIQAQRI® - € A, for any A € Ay
A(B)=---I®RI®BQI®---€B, forany B € By

We denote the set of all density operators on Hy (resp. Hy) by &g (resp. &p), and let
G (resp. 6) be the set of all states p € ® 6o (resp. p € ® So)-
i=—00 i=—o00
The dual maps 6%, 65, a*, 8* of 64,08, a, § are obtained as follows:
(1) 6% is a map from & to G satisfying

84 ® Pi)=.,§ po (#=i+1), forany & pi€6,
3I=—00 3 =—00

t=—00
(2) 6} is a map from & to & satisfying

65( 8 7)=_8 7y ('=j+1), forany 8 5;€6,
= J'="°° =-—00
(3) a* is a map from & to &g such as

o0 o0 o0
o*( ® pi)=trizo( ® pi)=po, forany ® pi€6,

1=—00

(4) B* is a map from & to & such as

j=—o0

. 'B*(j=@°°ﬁj) = t"j;éo(j=@6°ﬁj) = Po» forany ® 7;€86,

where trixo means to take a partial trace except ¢ = 0.
Under the above settings, we rewrite the mean mutual entropy of K-S type for
density operators as follows:

Take
oV =(a,0400a,- - ,Bﬁ"loa),

BN =(AoB,Aobgof, - ,A08Y !0 p),



where A* = ® A* is a channel from & to &. For any p = ?8? pi € 6, an input

i=—o00 i=—00

compound state &5 (p; a’V) with respect to a*(p), - ,a* o 0 =1(p) is defined as

®e(p; N) = nz—:l An ® o 00""('_69@:> E(')) = 1:1(=§01 Pi

When a Schatten decomposition of p; € &y (¢ =0,:-+ ,N — 1) is given by

M; M; -
pi = Z /\n.-En.-, (Z /\n.- =1, 0< An.- < 1)1

n;=1 ni=1

the compound state ®g(p; @) is expressed as

M
. N —_— \ .« o N-l
@E(p,.a ) = Z Z_ ( ’\ng)( ,@0 En.')
By relabelling the indices ng,- -+ ,ny—; of {Ey,}, the above state can be written as
Bp(al) = E An ( ® E¢ >) (2.13)

For an initial state p € &, an output compouhd state ®g(p; ﬂ}:’ ) with respect to §* o
A*(p),+-- ,B* 005N 0 A*(p) is defined as

2r(pi )= 8 o oA ()= @ A", (2.14)

For any state p = ® pi € 6, the correlated compound state with respect to @ e(p;

1=—00

o) and ®g(p; BY) is given by
N-1 N-1
25(pia™) ® 2u(si8Y) = (8, £1) © (8 A'5i). (215)

Using the decomposition of (2.13), the state ®g(p; o™ U BY) is written as

& 5(p;a UBA)-—Z,\ ( E())®(® A*E(')) (2.16)

i'=0

For any inital state p = ® pi € 6, the functionals IE(p,a BN, I(p; N, BY),

t=—00

Se(p; &) and S(p; a”) are given by

Ig(p;a, BY) = S(®r(p; ™ UBY), 2p(p;a™) ® ®E(p; BY))
I(p;aV,BY) = sup{Ie(p; ™, BY); E ={E.}}
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where the supremum of Ig(p; aN,Bf\V ) is taken over possible choices E = {E,} of the
Schatten decompositions of p;.

N-1_. N-1
Seloa®) = ) S8, Bur 8, 00)

S(p;a™) = sup{Sg(p;a™); E = {E,}}

Then the mean mutual entropy and the mean entropy of K-S type are
~ . . 1
I(P’ A aoAa 9Ba a, ﬂ) = I\}Ernw WI(P, aN7 :BIJ\V))
I = lim —S(paV
S(p;0a,@) = lim =S(p;a™).

when the above limits exist.

§3. Computation of K-S entropies for modulated states

We here introduce the concept of ideal modulator and give some examples of the

ideal modulator (IPAM, IPPM).

Let {ay,:-- ,an} be an alphabet set constructing input signals and {E,,---,En}
be the set of all one dimensional projections on certain a Hilbert space H, satisfying
(1) EnLlEpn (n#m),

(2) E, corresponds to the alphabet a,.
We denote the set of all density operators on Hy by

N
So = {po = 2 AnEp;po 2 0,trpy =1},

n=1

whose element represents a state of the quantum input system. A state is transmitted
from the quantum input system to a quantum modulator in order to send information
effectively, whose transmitted state is called the quantum modulated state. Ideal quan-
tum modulated states are considered as follows: A modulator M is said to ideal if the

set of some modulated states {ng), e ,pEVM)} satisfies pSM)_Lpg-M) when p; Lp;. We
denote the set of all modulated states by

N
M M M M
8" ={oo =) MBMs 05" 2 0,1 = 1),

n=1

There are many expressions for the modulations. In this paper, we construct the mod-
ualted states by photon number states.

Let 43, be a map from &, to GSM) satisfying that vy, is a completely positive
unital map from Ay to A. The map 77, is called ideal if 47y, (Er) Lyf3s(Em) for any
orthogonal {E,,} C &;. Some examples of ideal modulator are given as follows:

(1) For any E, € &y, the IPAM (Ideal Pulse Amplitude Modulator) is defined by

Yipam(En) = E,(zIPAM) =|n ><nl,



where |n >< n| is the n photon number state on H.
(2) For any E, € &y, the IPPM (Ideal Pulse Position Modulator) is defined by

Yippm(En) = E(IPPM)

_ E(IPAM) ® - E(IPAM) ® E(IPAM) ® E(IPAM) Q- ® E(IPAM)

where E'((,IPAM) is a vacuum state and E(IPAM) |d >< d|.

Some ideal modulators were used to compute the transmission efficiency by the
mutual entropy ratio [W.1].

Now we calculate the mean mutual entropy of K-S type for some ideal modulated
states (IPAM, IPPM) expressed by the photon number states as above.

The maps a(IM), ﬂA(IM) are given by

aﬁM) = (@ o Y(rmy, 0.4 0 @0 A(1ary, < 04 T 0 @0 F(rary),
ﬂl-I:’(IM) = (Famyo Ao B, Fumyo Moo B, - ,umyoAobg ' op),
where we took a special channel and modulator such that A = ?8? A and Yqm) =

o0

® YuM)-
oo

(I) IPAM  Take a stationary initial state
p=Y tim ﬁm o e 6. (3.1)

Let p(') =D _1 )\(m)Em € Gy be a Schatten decomposition of ps,?. Then we have

‘I’E(G(IPAM)) = Z Z (Z Bm H /\(m)) (]:"__é: ET(tI.'PAM))S (3.2)

no=1 nN-1=1 m k=0

o uma)= 3o 35 (Ten TN0) (B 0849). 03

=0
no=1 ny-1=1 m

When A* is an attenuation channel, we have [0.2]

(IPAM) Z lcn. F;'IPAM)’
Ji=0

where F},.IPAM) = |j; >< j;| is the j;-photon number state in the output space S, and

n;!
IC5 |2 = —mn"(l—ﬂ)("' B
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where 7 is the transmission ratio of the channel [0.2,0.4]. The compound states through
a channel A* becomes

‘I’E(af\IrPAM) U ﬂI'I\V(IPAM))

M M nN-1
S 8 (D) 5 3 (e
mo=1  nNy-y=1 m k=0 jo=0  jN-_1=0 k'=0
(.@o BPAM) (,@0 FPAM), | (3.4)

‘I’E(a(l\}PAM)) ® (I)E(ﬂiI\V(IPAM))
N-1

SIS (zumnxs::ﬂ)i: > (SI)

nN-1=1 m k=0

"Nl

x L Y (1‘[ loihd )( ® EUPAM>)(§ F}’_“M)). (3.5)

7'0=0  j'n_1=0 k"=0

Lemma 3.1  For an initial state p in (3.1), we have

Ip(p; a(]\}PAM)’ ﬂ,}'xv(IPAM))

-3 Y S Y (T I (T i)

Jo=0  jN-1=0no=Jy =nan-1=IN-1 m k'=0

iso IC 1

x log —.
M M N-1 ’ ! g
zn'o=.]0 e Zn'n_1=JN-1 (Em’ Him! Hk'=0 ASl"",,r)) (Hk”—O |Cn ; IZ)

Under the above lemma, we obtain the following theorem.

Theorem 3.2 (1) For an initial state p in (3.1), we have the lower bound of S(p; 6.4,
a(rpam)) such as

S(p; 04, 0(1PAM)) 2 meS(ps,‘:)).

(2) Let po = 1,ux = 0 (Vk 2 1) and AD = ), in (3.1). Then we have the following
equalities:

g(P; 64, a(IPAM)) == Z An log An.

n=1

ICT 12

1(0; A*,0.4,88, (1P Ay, Bupamy) = E Z An|C}I? log g
=0 n=J En’ =J A IO I



(II) IPPM  For an initial state p in (3.1), we have the following compound states:

u al N-1
Ep(alppay)= D 0 Y. (E e H A<m>)(§ E'(l{PPM))

no=1 nN-1=1 m
3 3 (m)) (V! N 1 (IPAM)
=Zl._- Zl(Zu HA )(8 (e ® B )- @)
no= nN-1= m
M -
QE(ﬂ}\V(IPPM)) = Zl Z l(zu H )\(m)) (’:’gol A*EgPPM))
no= nN-1=1 m
M
Y (ke H,\<';'>)
nN-1=1 m
1,n dbM,ny_, s o
s Z C D 1C P IC T x (,@o(® FGed™®)). 37
£o=0 ¢N-1=0

®5(afippan Y IBII\V(IPPM)) |
-3 35 (T B8 A (B8 o)

d61,n° dsM,nN_l

M
IR D0 378 1 €10 B D Do S e

no=1 nN-1=1 m k=0 £1=0 IN-1=0
N-1 N-1/ M
(IPAM) (IPAM) _ _
X (i?o (,?1 Bt n, )) (,.,‘20 (,-go Fty s )) (3.8)

QE(Q?}PPM)) ® (I’E(ﬂf([ppM))

Y 3 (e D) (8(5 2000))

no=1 nN-1=1 m

3 3 (S T ) (B (8, mE7))

=1
n'o=1 n'N_1=1

=féiwa@gw

no=1 nN-1=1n'p=1
ds1,ny  dMiay_, 1 is M N-1
,n M,n
x 3 3 O G Y (Zum 11 5)
=0 ¢nN-1=0 n/o=1 nNy-.1=1 m'
N-1 N-1/ M
(IPAM))) ( ( (IPAM)))
X E F . 3.9
(:_o (® d8j,n i'go jgl im0 ( )
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Lemma 3.3 For an initial state p in (3.1), we have

IE(p; a(A;PPM)’ 'le\v(IPPM))

N-1 . N
SRS (X m HA‘"‘))Z >
no=1 aN-1=1 m k=0 p=1 {411,"',qp}C{1 2,-+,N}
d d
x 3 Y IChPICd (- n)""’log(z o 11 AE:;;’))
4H=1 =1 m’ k'=0

Theorem 3.4 (1) For an initial state p in (3.1), we have the lower bound of S(p; 6.4,
a(]pPM)) such as

S(p; 0.4, a(1pPyy) > Z pmS(pR).

(2) Let po = L, pp = 0 (Vk > 1) and A = A, in (3.1). Then we have the following
equalities:

M
S(p; 0.4, a(rpPPM)) = — Z Anlog Ay

n=1

I(p; A*, 64,08, a1ppry, Brpray) = (1 — (1 —10)9)S(p; 0.4, arppany)-

The detail computation of the quantum K-S entropies will be shown in [0.9,0.10]. The

computation of quantum K-S entropy in quantum Markov chain is studied for some .
simple models [A.2].
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