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Abstracts

We review some techniques and notions for quantum information theory
established by one of the present authors. New treatment of Kolmogorov - Sinai
type entropies is discussed and a numerical computations of these entropies are
carried for modulated states.

IntrodDction

In §1, we briefly review quantum channels and liftings and the formulations of
quantum entropy and quantum mutual entropy for general quantum states. In §2, we
explain new formulations of quantum entropy and quantum mutual entropy of K-S
(Kolmogorov - Sinai) type. In §3, we show some numerical computations of these K-S
type entropies for optical modulated states.

. §l. Channels and Entropies

When we send information carried by a state, the state is caused to change under
some effects from physical devices or the outside of the system. This state change is
expressed by the concepts of channels and liftings [A.l,O.1,O.2,O.6].

In order to define the channel in quantum dynamical systems, we need two dy
namical systems; input system denoted by (A, 6(A), 0:(G)) and an output system by
(:4, 6(A), li(G)), where A (resp. A) is a C*-algebra or the set all bounded operators
B(1i) on a Hilbert space 1i (resp. 1i), SeA) (resp. SeA)) is the set of all states on A
(resp. A) or the set of all density operators in 1i (resp. 1i) and o:(G) (resp.o:(G)) is
an automorphism of A representing the dynamics of the input (resp. output) system.

A map A* : 6(A) --+ 6(A) is called a channel.
(1) A* is a linear channel if A* is affine.
(2) A* is a completely positive (CP) channel if its dual map A : A --+ A satisfies

n

L B;A(AiAj)Bj ~ 0
i,j=1

for any {Bjl C A, {Ail c A and any n E N.
(3) A* is Schwarz type if A (A*) = A (Ar and A (Ar A (A) ~ A (A* A).
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Take A = A = B (1i), hence 6(A) = 6(A) = 6 (1i) is the set of all density
operators on a Hilbert space 1i, and let B be a C*-algebra on another Hilbert space
/C. Then the state space of the total system is described by 6 (1i ® /C). As is dis
cussed in [0.4,0.5,0.8], we have several examples of channels encountered in physics
and engineering, among which we show one example used in §3.

Quantum communication process is described by the following scheme [0.2].

v E 6(JC)

!
6(1i):;) p-------+lp = A*p E 6(1i)

Loss

A*
6 (1i) ~ 6 (1i)

"'{* ! i a*

6 (1i ® JC) ~ 6 (1i ® JC)
",*

The above maps "'{*, a* are given as

-y* (p) = p ® v,

a* (8) = trlC8,

P E 6 (1i),

8 E 6 (1i ® JC) ,

where v is a noise coming from the outside of the system. The map 7("* is a certain
channel determined by physical. properties of the combined system. Hence the channel
for the above process are given as

. £*p == 7("* (p ® v) = (7("* 0 "'{*) (p) ,

A*p == trlC7("* (p ® v) = (a* 07("* 0 "'{*) (p).

Based on the above setting, the attenuation channel A* for an input state p is defined
as follows:

A*(p) = trlCV(p ® v)V*,

where v is the vacuum noise state expressed by v = Iyo >< Yo I and V is given by

n

Vlx n ® Yo >= L Cjlxj ® Yn-j >,
j=O

(1.1)

Cj =
n!. .

3(1 )n-3
( _ ')'" TJ - TJn J .J.

and TJ is the transmission ratio for the channel.

Let us discuss the entropy in C* systems introduced in [0.4]. The formulation of
quantum entropy was presented by von Neumann [N.1] about 1930, 20 years ahead of
Shannon, and it now becomes a fundamental tool in analysing physical phenomena.
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For a density operatorp E 6('H)~ the von Newnano entropy is defined by

S(p) = -trplogp. (1.2)

Now, the spectral set of p is discrete, so that we write the spectral decomposition of p
as

where An is an eigenvalue of p and Pn is the projection from 'H onto the eigenspace asso
ciated with An. Therefore, if every eigenvalue An is non-degenerate, then the dimension
of the range of Pn is one (we denote this by dimPn = 1). If a certain eigenvalue, say
An, is degenerate, then Pn can be further decomposed into one dimensional projections:

dimPn

Pn = L E;n).
j=l

where E;n) is a one-dimensional projection expressed by E;n) = Ix;n) >< x;n) I with the

eigenvector xln) (j = 1,2"" ,dimPn ) for An. By relabelling the indices j, n of {E;n)},
we write

(1.3)
n

with
Al ~ A2 ~ ... An ~ ... ,

En..LEm(n..Lm).

We call this decomposition the Schatten decomposition. Then the entropy S(p) can be
expressed as

S(p) = - L'An log An.
n

The relative entropy of two states was introduced in [U.2] for u-finite and semifinite von
Neumann algebras. For two density operators p and u it is defined as

S(p,u) = trp(logp -logu). (1.4)

Umegaki [U.2] and Lindblad [L.l] studied some fundamental properties of this relative
entropy corresponding to those of classical Shannon's type relative entropy. There were
several trials to extend the relative entropy to more general quantwn systems and apply
it to some other fields [A.3, U.l, 0.6].

Another important entropy is the mutual entropy, which was discussed by Shannon
to study the information transmission in classical systems and the quantum mutual en
tropy was introduced in [0.2,0.3], and its fully general quantwn version was formulated
in [0.4].

Sirice the Schatten decomposition of p is not unique unless every eigenvalue An is
nondegenerate, the compound state u E is given by

UE = LAnEn®A*En,
n

-8-
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where E represents a Schatten decomposition {En}. The compound state aE expresses
the correlation between the input state p and the output state A*p. Then the mutual
entropy for p and the channel A* is given by

with

I(pj A*) = sup{IE(pj A*)j E = {En} of p}, (1.6)

IE(pjA*) = S(aE,aO) = traE(logaE -logao). (1.7)

where ao = p ® A*p.
Since every Schaten decomposition is discrete and orthogonal, for a state p, we have

the following fundamental inequality [0.2,0.4].

Theorem 1.1
o~ I(pj A*) ~ min{S(p), S(A*pn.

This theorem tells us that the information correctly transmitted from the input sys
tem to the output system is less than that carried by the initial state. When we send an
information through a channel, we have to consider the efficiency of the communication.
This efficiency is measured by the mutual entropYj namely, we ask for which channel is
the mutual entropy becomes larger (see Theorem 5.5 of [0.4]).

In order to discuss some physical phenomena, for instance, phase transitions, we
had better start without Hilbert space, so that we need to formulate the entropy of a
state in a C* system [0.6].

Let (A, 6(A), a(R)) be a C*-dynamical system and S be °a weak* compact and
convex subset of 6(A). For instance, S = 6(A)j S = 1(a), the set of all invatiant
states for aj S = K(a), the set of all KMS states.

Every state <p E S has a maximal measure J.L pseudosupported on exS (the set of all
extreme points of S) such that

<p = Is wdJ.L. (1.8)

The measure J.L giving the above decomposition is not unique unless S is a Choquet
simplex, so that we denote the set of all such measures by Mtp(S). Put

Dtp(S) = {Mtp(S)j 3J.Lk c R+ and {<Pk} C exS

s.t. L J.Lk = 1, J.L = E J-tk 6(<Pkn,
k k

where 6(<p) is the Dirac measure concentrated on an state <P, and define

H(JJ) = - L J.Lk log JJk
k

for a measure JJ E Dtp(S). Then the entropy of a state <P E S w.r.t. S (S-rnxinig
entropy) is defined by

(1.9)

This entropy is an extension of von Neumann's entropy [N.l], and it depends on the set
S chosen. Hence it represents the uncertainty of the state measured from the reference
system S. When S = 6(A), we simply denote S6(A)(<p) by S(<p) in the sequel.
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When A is the full algebra B(1i), any normal state t.p is described by a density
operator p such as <p(A) = trpA for any A E A. Then C*-entropy S(<p) defined by
(1.9) is equal to that of von Neumann: S(t.p) (= S(p)) = -trplogp. Every Schatten
decomposition p = En AnEn, En = IXn >< xnl provides every orthogonal measure in
Dlp(<5(A)) defining the entropy S(t.p).

For an initial state t.p E S and a channel A* : <5 (A) -+ <5 (B), two fundamental
compound states are

tj}~ = f. W ® A*wdlJ
S .

tj}o = t.p ® A*t.p.

The mutual entropy w.r.t. S and J1. is

I~ (t.p j A*) = S (tj)~, tj}o)

and the mutual entropy w.r.t. S is defined as

(1.10)

(1.11)

(1.12)

(1.13)

When a state t.p is expressed as t.p = Ek J1.kt.pk (fixed), the mutual entropy is given by

I (t.p j A*) = L J1.kS(A*w, A*t.p).
k

The CNT entropy [C.1] for a subalgebra ')1 of A is

Hlp(')1) = sup{L: AkS(Wk 1')1, t.p 1')1) j

k

t.p = L: AkWk finite decomposition of t.p }.
k

(1.14)

(1.15)

where <p I ')1 is the restriction of a state t.p to ')1 and S(', .) is the relative entropy for
C* -algebra.

The relations between SS (t.p) and Hlp (')1) were discussed in [M.1] and it was shown
that SS (<p) distinguishes states more sharply than Hlp (')1).

§2. Quantum mean mutual entropy of K-S type

2.1 A new formulation of quantum mean mutual entropy of K-S type

In quantum information theory, a stationary information source is described by a
C*triple (A, 6(A), 904) with a stationary state t.p with respect to 904; that is, A is a
unital C*-algebra, 6(A) is the set of all states on A, 904 is an automorphism of A, and
t.p E 6(A) is a state over A with t.p 0 904 = t.p.

Let an output C*-dynamical system be the triple (B,6(B),98 ), and A*: 6(A)-+
6(B) be a covariant c.p. channel: A: B -+ A such that A 0 98 = 904 0 A.
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(2.1)

In this section we explain ne~functionalsS~(aM),SS(aM), 1~(aM, f3N) and IS(aM,
f3N) introduced in [0.7,M.2) for a pair of finite sequences of aM = (a}, a2, ... , aM),
f3N = (f3I, f32," . , f3N) of completely positive unital maps am : Am -+ A, f3n : 8 n -+ 8
where Am and 8 n (m = 1"" ,M, n = 1"" ,N) are finite dimensional unital C"'
algebras.

For a given finite sequences of completely positive unital maps am : Am -+ A and a
given measure J.I. of'P E Mcp(S), the compound state of ai'P, a2'P,'" ,aM<P on the tesor
product algebra ®~=IAm is given by [0.7,M.2)

s( M ;, M '"~I£ a ) = ® amw dJ.l.(w).
8(A) m=1

Furthermore ~~(aMUf3N)is a compound state of ~~(aM) and ~~(f3N)with aMUf3N ==
(aI, a2,' .. ,aM, f31, f32,' .. ,f3N) constructed as

~~ (aM U f3N) = f ( ~ a~w) ( ~ f3:w) dJ.l.. (2.2)
} S(A) m=1 n=1

For any pair (aM, f3N) of finite sequences aM = (a}, ... , aM) and f3N = (f31'
... , f3N) of completely positive unital maps (c.p.u. maps for short) am : Am -+ A,
f3n : 8 n -+ A from finite dimensional unital C'"-algebras and any extremal decomposition
measure J.I. of <p, the entropy functional Sp and the mutual entropy functional Ip are
defined by [O.7,M.2]

S~('PiaM)= f S(®~=la~w,~~(aM))dJ.l.(w), (2.3)
}S(A)

I~ ('Pi aM, f3N) = S (~~(aM U f3N), ~~ (aM) ® ~~U~N)) , (2.4)

where B(·, .) is the relative entropy for a finite algebra.
For a given pair of finite sequences of c.p.u. maps aM = (a},'" ,aM), f3N =

(f31,'" ,f3N), the functional SS ('Pi aM) (resp. IS
( <Pi aM, f3N)) is given by taking the

supremum of S~ ('Pi aM) (resp. I~ ('Pi aM, f3N)) for all possible extremal decompositions
J.I.'S of <p:

SS(<Pi aM ) = sUP{S~('PiaM)i J.I. E Mtp(S)},

IS
( <Pi aM, f3N) = sup{I~( 'Pi aM, f3N)i J.I. E Mtp(S)}.

(2.5)

(2.6)

Let A (resp. 8) be a unital C"'-algebra with a fixed automorphism BA (resp. BB),
A be a covariant c.p.u. map from 8 to A, and 'P be an invariant state over A, Le.,
'P 0 BA = <po

N - ( B BN - 1 ) (2 7)a = a, ,A 0 a, ,,A 0 a , .

f3f == (A 0 f3,A 0 Bs 013, ,A 0 B~-1 0 (3) . (2.8)

For each c.p.u. map a : Ao -+ A (resp. 13 : 80 -+ 8) from a finite dimensional unital
-s -s

C"'-algebra Ao (resp. 80 ) to A (resp. 8), S ('PiB,A,a), I ('Pi A"',B,A,BB, a,(3) are given
by

-S . 1 S N
S ('PiB,A,a) = lim sup N S ('Pia ),

N-+oo

is('Pi A., BA, Bs, a, (3) = lim sup N
1

IS
( 'Pi aN, f3f).

N-+oo
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-s -s
The functionals 8 (cpj 8..4) and I (cpj A*, 8,A, 8s ) are defined by taking the supremum for
all possible Ao's, a's, 8 0 's, and f3's:

-s -s
8 (cp;8,A) = sup 8 (cp; 8,A, a),

a

-s -s
I (cpjA"8,A,8s ) = sup I (cpjA*,8,A,8s ,a,f3).

a,p

(2.11)

(2.12)

The fundamental inequality in information theory holds for §s (cpj 8,A) and is (cp; A*,
8,A, 8s).

Theorem 2.1
-s -s-so::; I (cp j A*, 8,A, 8s) ::; min{S (cp; 8,A), 8 (A*cp; 8s )}.

-s -s
Our formulations 8 (cpj8,A) and I (cpjA*,8,A,8s ) are K-S type entropies and gen-

eralize both classical and quantum K-8 entropies. In particular, we have the following
propositions.

Proposition 2.2 If Ak, A are abelian C* -algebras and each ak is an embedding, then
our funetionals concide with classical K-S entropies:

8 6 (,A) (In' aM) - 8classical( ~ A )
P T' - P m=l m ,

16 (..4) (In' aM f3~) = Iclauical (.~ A
p T , , ad p m=l m,

for any finite partitions Am, En of a certain probability space.
In general quantum systems, we have the following theorems [O.7,M.2].

Thorem 2.3 Let am be a sequence of c.p.u. maps am : Am -+ A such that there
exist c.p.u. maps a~ : A -+ Am satisfying am 0 a~ -+ id,A in the pointwise topology.
Then

-s -s
8 (cpj 8,A) = lim S (cpj 8,A, am).

m-oo

Theorem 2.4 Let am and f3m be sequences of c.p.maps am : Am -+ A and f3m :
8 m -+ B such that there exist c.p.u. maps a~ : A -+ Am and,f3~ : 8 -+ 8 m satisfying
am 0 a~ -+ id..4 and 13m 0 f3:n -+ ids in the pointwise topology. Then

This theorem is a Kolmogorov-8inai type convergence thorem for the mutual entropy.
Based on the above construction, we rewrite the mean mutual entropy in terms of

density operators.
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rm3@ [f';jfSf~*(J)it:1C~t~~d1 ~/*,:J7AJ (J(-(J)1)

Let B(1io) (resp. B(1io)) be the set of all bounded linear operators on a Hilbert
space 1i0 (resp. 1io) and Ao (resp. Bo) be a finite subset in B(1io) (resp. B(1io)). Let
A (resp. B) be an infinite tensor product space of B(1io) (resp. B(1io)) represented by

00

A == . 0 B(1io)
1=-00

00 _

B == 0 B(1io)
i=-oo

Moreover, let (JA (resp. (JB) be a shift transformations on A (resp. B) defined by

00 00

(JB(. 0 Bj) = ., 0 B j , (it = j - 1)
)=-00 J =-00

00

for any 0 .Ai E A,
i=-oo

00

for any . 0 B j E B,
)=-00

Let a (resp. (3) be the embedding map from Ao to A, (resp. Bo to B) given by

a(A) = ... 10 10 A0 10'" E A,

(3(B) = .. ·I010B010"· E B,

for any A E Ao

for any B E Bo

We denote the set of all density operators on 1io (resp. 1io) by 6 0 (resp. ( 0 ), and let
_ 00 00 _

6 (resp. 6) be the set of all states P E . 0 6 0 (resp. p E . 0 ( 0 ),
1=-00 1=-00

The dual maps (JA' (Js, a*, (3* of (JA, (J8, a, (3 are obtained as follows:
(1) (J,A is a map from 6 to 6 satisfying

00 00

(J,A(, 0 Pi) = . 0 Pi' (it = i +1),
1=-00 1'=-00

(2) (Js is a map from 6 to 6 satisfying

00 00

(J8(, 0 Pj) = . 0 Pi' (jt = j +1),
J=-OO J'=-oo

(3) a* is a map from 6 to 60 such as

00 00

a*(, 0 Pi) == tri¢OC 0 Pi) = po,
1=-00 1=-00

(4) {3* is a map from 6 to 6 0 such as

00

for any 0 Pi E 6,
i=-oo

00

for any . 0 Pj E 6,
J=-OO

00

for any . 0 Pi E 6,
1=-00

00 .

for any . 0 Pj E 6,
J=-OO

where tri¢O means to take a partial trace except i = O.
Under the above settings, we rewrite the mean mutual entropy of K-S type for

density operators as follows:

Take
N - ( (J (IN-l)a = a, A 0 a, . ", A 0 a ,

(3f == (A 0 (3, A 0 (JB 0 (3,,,, ,A 0 (J~-l 0 (3),
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00 00

where A* == . ® A* is a channel from 6 to 6. For any P = . ® Pi E 6, an input
1=-00 1=-00

compound state <)~(PiaN) with respect to a*(p),··· ,a* 0 8t'-I(p) is defined as

When a Schatten decomposition of Pi E 6 0 (i = 0, ... ,N - 1) is given by

Mi

Pi = L AniEni ,
ni=1

Mi

(L Ani = 1, 0 ~ Ani ~ 1),
ni=1

the compound state <) E(Pi aN) is expressed as

By relabelling the indices no,'" ,nN-l of {Eni }, the above state can be written as

N '" (N-l (i»)<)E(a ) = L..JAn i~O En .
n=1

(2.13)

For an initial state P E 6, an output compound state <) E(Pi f3f) with respect to 13* 0

A*(p),,,, ,13* 0 8~N-l 0 A*(p) is defined as

N N-l . N-l
<)E(Pif3A )==.® 13* 08'81 oA*(p) = .® A*Pi,

1=0 1=0
(2.14)

00

For any state P = ® Pi E 6, the correlated compound state with respect to <) E(Pi
i=-oo

aN) and <) E(Pi f3f) is given by

N N (N -1 ) (N -1 * )<)E(Pi a ) ® <)E(Pif3A) =i~O Pi ® i~O A Pi .

Using the decomposition of (2.13), the state <) E(Pi aN U f3f) is written as

<) E(Pi aN U f3f) == L An (~@1 E~i») ® (~@1 A*E~i')).
1=0 1'=0

n=1

(2.15)

(2.16)

00

For any inital state P = . ® Pi E 6, the functionals IE(Pi aN, f3f), I(Pi aN, f3f),
1=-00

SE(Pi aN) and S(Pi aN) are given by

IE(Pi aN, f3f) == S(<) E(Pi aN U f3f), <)E(Pi aN) ® <) E(Pi f3f))

I(PiaN,f3f) == SUp{IE(PiaN,f3f); E = {En}}
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where the supremum of IE(p;a'N,(3f) is taken over possible choices E = {En} of the
Schatten decompositions of Pi.

N """ N-l. N-l
SEep; a ) == L.J AnS( i~O E~, i'~O pi')

n -

Then the mean mutual entropy and the mean entropy of K-S type are

I(pi A., 8,A, 88, a, (3) == lim N
I

I(p; aN, (3f),
N-oo

S(p;8,A,a) == lim N
1

S(p;aN).
N-oo

when the above limits exist.

§3. Computation of K-S entropies for modulated states

We here introduce the concept of ideal modulator and give some examples of the
ideal modulator (IPAM, IPPM).

Let {al"" ,aN} be an alphabet set constructing input signals and {E1 ,' •• , EN}
be the set of all one dimensional projections on certain a Hilbert space 110 satisfying
(1) En.lEm (n 1= m),
(2) En corresponds to the alphabet an,
We denote the set of all density operators on 110 by

N

6 0 == {Po = L AnEn;po ~ 0, trpo = I},
n=l

whose element represents a state of the quantum input system. A state is transmitted
from the quantum input system to a quantum modulator in order to send information
effectively, whose transmitted state is called the quantum modulated state. Ideal quan
tum modulated states are considered as follows: A modulator M is said to ideal if the
set of some modulated states {p~M), ... ,p~M)} satisfies p~M) .lp}M) when Pi.lPj. We
denote the set of all modulated states by

N

6~M) == {p~M) = L AnE~M); p~M) ~ 0, trp~M) = I}.
n=l

There are many expressions for the modulations. In this paper, we construct the mod
ualted states by photon number states.

Let 'M be a map from 6 0 to 6~M) satisfying that 'M is a completely positive
unital map from Ao to A. The map ,iM is called ideal if ,jM(En).l,iM(Em ) for any
orthogonal {En} C 6 0 , Some examples of ideal modulator are given as follows:

(1) For any En E 6 0 , the IPAM (Ideal Pulse Amplitude Modulator) is defined by

"V* (E ) = E(IPAM) = In >< nlIIPAM n - n . ,
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where In >< nl is the n photon number state on 1i.
(2) For any En E 60, the IPPM (Ideal Pulse Position Modulator) is defined by

.....,'" (E ) = E(IPPM)t1PPM n - n

=E~1PAM) ® ... ® EfPAM) ® E~1PAM) ® EfPAM) ® ... ® EfPAM)

(IPAM) . (IPAM) Iwhere Eo IS a vacuum state and Ed = Id >< d .
Some ideal modulators were used to compute the transmission efficiency by the

mutual entropy ratio [W.1].
Now we calculate the mean mutual entropy of K-S type for some ideal modulated

states (IPAM, IPPM) expressed by the photon number states as above.
The maps a~M)' (3f(IM) are given by

N ( - LI - L1N-l - )
aUM) == aO'(IM),uAoao'(IM),'" 'UA oao'(IM),

(3f(IM) == (..y(IM) °A° (3,..y(IM) °A°88 0(3,'" ,..y(IM) °A°8:-
1

0 (3),

_ 00

where we took a special channel and modulator such that A == . ® A and ..y(IM) -
1=-00

00

. ® '(1M)'
1=-00

(I) IPAM Take a stationary initial state

P = L J1.m i=~OO p<;2 E 6.
m

(3.1)

Let p<;2 = E~=l A~7)En, E 6 0 be a Schatten decomposition of p<;2. Then we have

M M N-l

~E(a~PAM»)= L ... L (LJ1.m II A~':») (~~ol E~~PAM»), (3.2)
no=l nN-l=l m k=O

When A'" is an attenuation channel, we have [0.2]

nj

A'" E(1PAM) = '" Ie'!' 12F~1PAM)
nj L....J Jj Jj ,

i,=O

where Fi~1PAM) = Iii >< ii I is the ii-photon number state in the output space 6 0 and
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where TJ is the transmission ratio of the channel [0.2,0.4]. The compound states through
a channel A* becomes

~E(a~PAM) U f3f(IPAM»
M M N-l no nN-l N-l

=2: ... 2: (Lllm II A~':») L ... 2: (IT le;:~' 12 )

no=l nN-l=l m k=O jo=O jN-l=O k'=O

(
N-l (IPAM») (N-l (IPAM»)

X ® En' ® FJ", ,
i=O' i'=O'

(3.4)

~E(a~PAM» ® <I> E(f3f(IPAM»
M M N-l M

= L ... L (Lllm IT A~7») L
no=l nN-l=l m k=O n'o=l

M N-l

.L (L IT A~~})
n' N-l=l m' k'=O

n'o n'N-l N-l

X '"'" ... ~ (II le~'Ie" 12) (N0"l E(~PAM») (N®l F~/PAM»). (3.5)
L..J L..J J Ie" i=O n. i'=O J.'

j'o=O j'N-l=O k"=O

Lemma 3.1 For an initial state P in (3.1), we have

M

2:
N-l N-l

(2: Ilm II A~':») (II le;:~' 1
2

)

;0=0 jN-l=O no=Jo nN-l=JN-l m k=O k'=O

X1 nf~l Ie;:12 .
og E~o=Jo ... E~N-l=JN-l(Em' 11m' nZ:~ A~~::) (n~,:~ lei:,~" 12) .

IE(Pi a~PAM)' f3f(I PAM»
M M M

=2: ... 2: 2: ...

Under the above lemma, we obtain the following theorem.

Theorem 3.2 (1) For an initial state P in (3.1), we have the lower bound of S(Pi (}A,

a(IPAM» such as

m

(2) Let 1J0 =1, IJk =0 (Vk ~ 1) and A~) =An in (3.1). Then we have the following
equalities:

M

S(Pi ()A, a(IPAM» = - 2: An log An.
n=l
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(II) IPPM For an initial state pin (3.1), we have the following compound states:

M M N-l

~E(a~PPM»)= L ... L (LJlm II A~':») (~~01 E~~PPM»)
no=1 nN-l=1 m k=O

M M N-l

= " ... " (" /-lm II A(m» (N@I(N@1 E(I:AM»)). (3.6)LJ LJ LJ n. i=O j=O d61 ,ni
no=1 nN_l=1 m k=O

M M N-l N 1

~E(f3MIPPM») = L'" L (EJlm II A~':»)(i~O A·E~~PPM»)
no=1 nN_l=1 m k=O

M M N-l

= L ... L (LJlm II A~':»)
no=1 nN_l=1 m k=O

dch,no d6M,nN_l

X " ••• " \cd61
,no 12... ICd6M,nN-l 12 X (N®1 (~ F(~P~M»). (3.7)

L..J L..J lo IN-l i=O j=1 l.M+l
lo=O IN_l=O

M M N-l d61 ,no

= L ... E (LJlm II A~':») E
no=1 nN_l=1 m k=O 11=0

(3.8) .

~E(a~PPM») ® ~E(f3MIPPM»)

M M N-l N 1 M

= E ... E (2: Jlm IT A~':») (i~O C~1 E~~~~M») )
no=1 nN_l=1 m k=O

M M N-l

X2: "("'"' Jlm' IT An'.') (~@1(.~ A·E~~~A~»))L..J L..J .'=0 1'=1 1 ,n i'
n'o=1 n'N-l=1 m' k'=O

M M M M N-l

= L ... L L'" L (LJlm II A~':»)
n'N-l=1 m k=O

d61,no d6M,nN_l M

X E ... E IC;161 ,no
1
2.. 'IC:~~~nN-112 E

11=0 IN-l=O n'o=1

-18 -
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Lemma 3.3 For an initial siate P in (3.1), we have

IE (Pi a~PPM)' f3MIPPM»

M M N-1. N

= - L ... L (LJLm II A~':-») L L
no=l nN_1=1 m k=O p=l h1,'" ,qp }t{1,2, .. · ,N}

d d . p

xL'" L Ict1 12 .. 'lctp I2(1- 7])N-
P log(LJLm' II A~':2)·

11=1 lp=l m' k'=O

Theorem 3.4 (1) For an initial state P in (3.1), we have the lower bound of S(Pi (JoA,

a(IPPM» such as

m

(2) Let JLo = 1, JLk = 0 (\:Ik ~ 1) and A~O) = An in (3.1). Then we have the following
equalities:

M

S(Pi (J,A, Q:(IPPM» = - L An log An.
n=l

The detail computation of the quantum K-S entropies will be shown in [0.9,0.10]. The
computation of quantum K-S entropy in quantum Markov chain is studied for some
simple models [A.2].
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