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Abstract

There are several damping phenomena in quantum optics. Such phenomena
have been usually explained by open systems. In statistical physics, open system
dynamics have been used to study the irreversibility and the approach to equilib­
rium.

In this paper the dynamical change of the mutual entropy is discussed for a
model of quantum Markov chain. The concrete Stinespring's expression for this
model is obtained and applied to the derivation of the mutual entropy, and some
computational results are presented.

1 Introduction

The purpose of this paper is to show the use of the mutual entropy in quantum Markov
chain (QMC for short) for a study of the-irreversible process.

In section 2, a well known model in quantum optics is presented. This model is often
called "damping", and its dynamical change with a unitary evolution is popular not only
in quantum optics but also in statistical physics. In section 3, we review some concepts for
the mutual entropy and a generalized QMC, introduced in [01] and [AI, A2], respectively.
We here stand on a concept "lifting" [A3] to study the above concepts in a: unfied manner.
In section 4, we give a construction of QMC on the model of section 2. The Stinespring­
Kra~s expression of a completely positive map has mathematically been established, but
its concrete expression is missing. In section 5, we show its concrete expression for our
model. In section 6, we apply this expression to the computation of the mutual entropy
in QMC. In section 7, some computational results are presented.

2 Model for Open Systems with Harmonic Oscilla­
tors

In statistical mechanics, a state of interacting system is changed under some effects from
the outside of the system (reservoir), that is, the interaction between two systems is
considered and the reduced state after interaction is studied. Mathematical expression of
this process is given as follows.
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· Let a system Eo be described by a Hilbert space 1i0 , which interacts with an external
system E1 described by another Hilbert space 1i1 , and let the initial states of Eo, E1 be
p E 6 0 , w E 6 1 (6i is the set of all states on 1ii (i = 0,1)), respectively. Then the
combined state pE 6 0 ® 6 1 after the interaction between the two systems is given by

(2.1)

(2.2)

(2.3)

where Ut = exp (-itH) with ~. total Hamiltonian H on 1i0 ® 1i1 • Here we took h = 1.
The above total Hamiltonian H for two weakly coupled oscillators in quantum optics

is given by [Ll]:
H = Ho +HI +HOI

Ho = a*a, HI = ~bib;, HOI =~ (cjbja* +cibia)
j j

where Ho, HI, HOI are the Hamiltonians for the obeserved system Eo, the-external system
(reservoir) E1 and an interaction between Eo and Eb respectively. a, a* on 1i0 and bj , bj
on 1i1 are pairs of anihilation and creation operators, respectively, and Cj (j E N) are the
coupling constants.

In this paper we assume, for simplicity, that the reservoir has a single mode, that is,
the total hamiltonian H is given by

H - Ho +HI +HOI

- a*a + b*b +C (a*b +ab*) (2.4)

In the model, the evolution of the initial state p after the interaction is mathematically
expressed as

(2.5)

3 Mutual Entropy in Quantum Markov Chain

In this section the mutual entropy is discussed in quantum Markov chain (QMC) of our
model.

For the sake of the formulation of mutual entropy in QMC, we review some definitions
and fundamental results :

Definition 3.1 [Ol}: A completely positive map A* : 6 (1i) --+ 6 (K) is called a quantum
mechanical channel. Here 6 (1i) is the set of states on a Hilbert space 1i.

The quantum mechanical channel A* : 6 0 --+ 6 0 in our model can be written as :

A*p = tr1il Ut (p ® w) Ut

The concept of channel is related to that of "lifting" introduced in (A3].

(3.1)

Definition 3.2 [A3): Let 6 0 ,61 be the set of all states on 1i0 , 1i1 respectively. A lifting
from 6 0 to 6 0 ® 6 1 is a continuous map .

(3.2)
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For example, the correspondence p t-+ p in (2.1) is a lifting j £*p = Ut (p Q9 w) U; is a
continuous map from 6 0 to 6 0 Q9 6 1 , The correspondence between a quantum mechanical
channel A* and a lifting £* is explained in [A3].

Let the Schatten decomposition of p_E 6 (H) be

p = 'L, AkEk,Al ~ A2 ~ ... ~ An ~ ... , ,Ei.l..Ej (i =I j) (3.3)
k

where Ak is an eigenvalue of p and Ek is the associated onedimensional projection. The
decomposition is not unique unless every Ak is not degenerated.

The relation between an initial state p and the final state A*p is expressed by the
compound states introduced in [01, 02] such that

£EP ='L, AkEk Q9 A*Ek
k

The defnition of mutual entropy I (p j A*) is given as follows:

(3.4)

Definition 3.3 [Ol}: Using the above notations (3.3) and (3.4), the mutual entropy
I (p j A*) is defined by

I(pj A*) = sup {S (£E' £~) j E = {Ek }}
E

where £~ = p Q9 A*p and S (p, (1) is the relative entropy defined by

S (p, (1) ~ trp (log p - log (1)

(3.5)

(3.6)

In (3.5), we have to take "sup" over all Sahtten decompositions when some eigenvalues
are degenerated. We have the following fundamental inequality of Shannon's type.

Theorem 3.4 [Ol} : For an input state p and a channel A*, the following inequalities
hold.

o~ I (p j A*) ~ min {S (p), S (A*p)} (3.7)

This theorem means that the information correctly transmitted through a channel A* is
always less than the initial information. In other words, the mutual entropy is useful as·
an efficiency of communication processes. [Wi]. Other properties of the mutual entropy
are discussed in [03, 04].

Then, before reviewing QMC, we need the concept of a transition expectation:

Definition 3.5 [A4}: Let 8 0 , 8 1 be the algebras of all bounded operators on Hilbert spaces
H O,1-{1 respectively, and let 80 Q9 81 be a fixed tensor product- of 80 and 8 1 , A transition
expectation from 80 Q9 81 to 80 is a completely positive linear map £ : 80 Q9 8 1 -+ 8 0

satisfying
£ (1 Q91) = 1

When 8 = 80 = 81 we say that £ is a transition expectation on 8.
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By using the transition expectations, a generalized QMC is defined as follows:

Definition 3.6 {A4l : Let {En} n>O be a sequence of transition expectations on B. Then
there exists a unique completely positive identity preserving map Eo] : ®nB ---+ B such that
for each integer n and for each Ao,AI"" ,An E B, one has

Eo] (Ao 0 Al 0 ... 0 An 0 1 0 ...) = £0 (Ao 0 £1 (AI 0 ... 0 £n (An 0 1) ...)) (3.9)

Let <Po be a state on B and define a state <pon 0 N B by

<p = <Po 0 Eo]

Then <p satisfies

(3.10)

<p (Ao ® Al 0···0 An ® 1 ® ... ) = 'Po (£0 (Ao 0 £1 (AI ® ... 0 £n (An ® 1) ...))) {3.11)

The state <p, characterized by (3.lB) is called the generalized Markov chain associated to
the pair (<Po, {En}). If for each n

(3.12)

then the state <p is called homogeneous.

Clearly the dual of a "linear" lifting is a transition expectation, therefore to any linear
lifting one can associate a QMC in the standard way as explained in [A3]. If the lifting is
of convex product type, then we can take an advantage of the special structure to extend
the construction of QMC to the case of a not necessarily linear lifting.

4 A model of Quantum Markov Chain in Quantum
Optics

In order to construct a model in QMC, a model by Kiimmerer [K2] is useful and its
physical meanings· are discussed in this section. We start to review some technical terms
to define the QMC :

Definition 4.1 (Ul, Tll: Let A be a *-algebra and Ao ~ A a *-subalgebra. A condi­
tional expectation from A to Ao is a linear map E : A -. Ao such that

a ~ 0 => E(a) ~ 0 ; a E A
E(aoa) = aoE(a) ; ao E A o, a E A

E(l) = 1

E(a)* E(a) ~ E(a*a); a E A
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Definition 4.2 [A41 : Let B S; A be C* -algebras and let E : A ~ B be a conditional
expectation. An E-conditional density amplitude is an operator [{ E A such that

E([{*[() = 1 (4.5)

Definition 4.3 [A41: A conditional amplitude from Bo @ B1 to Bo is an operator [{ E
Bo @ B1 such that, for every density operator p E Bo,

K(p@ l)K* (4.6)

is a density operator in Bo@B1 • [f B = Bo = B1 , then K is called a conditional amplitude
on B.

A two parameter family
K = ([{(m,n)) (4.7)

m, n EN, (m < n) of operators in A == @NB is called a right multiplicative functional
(with respect to the localization A[m,n) =@i::mBi ) if :

K(m, n)K(n,p) = [{(m,p) m < n < p (4.8)

[{(m, n) E A[m,n) (4.9)

If each ([((m, n)) is a conditional amplitude on A[m,n) ~ @n-m+1B, then the multiplica­
tive functional [( = ([«(m, n)) is said to- be normalized. It is clear that a normalized

multiplicative functional [( = ([«(m, n)) has the form

K(O, n) = [{(O, 1) . [«(1,2) ..... [{(n - 1, n)

There is a conditional density amplitude J(n on B for each n such that

]{(n - 1, n) = (jn-1 @ jn)([(n-1)

where jn : B --+ @NB is the natural embedding onto the n-th factor:

jn:bEB~,l@l@" ... @l,@~@l@... E@NB
n-1 n

(4.10)

(4.11 )

Remark 4.4 : Let"po be a state on B and let <P be the product state on A = @NB. Let
Eo : B @ B ~ B denote the conditional expectation characterized by

a,b E B (4.12)

and let K E B @B be an Eo-conditional density amplitude and define ](n-l,n as in (3.11).
Then there exists a unique state <PK on A = @NB such that, for each kEN and a E A[O,k]J
one has

<PK = lim <P(]{~-l n ... ]{~ 1 . a . ]{Ol ... ](n-l n)
n~oo ' , ' ,
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According to the above remark, the model of QMC [K2] can be constructed and the
mutual entropy is computed for that model.

As in section 2, take 6 = 6 0 ® 6 1 and B = Bo ® B1• Let CPo and cpo be states
on Bo and 8 1 respectively and let Uo be the partial shift on ®N (80 ® B1) ~ ®NB ~

((8)NBo) (8) ((8)NBd =A, that is, Uo acts trivially on (8)NBo and does as the usual shift on
®N8. LetU E Bo® B1 be a unitary operator, and define

U (n - 1, n) = U~-1 (U) j n ~ 1 (4.14)

If cP = ®N (CPo ® cPt) is a product state on A, and if CPu is the quantum Markov chain
constructed as in the above Remark 3.4, then the restriction of CPu to the algebra Bo (8)

((8)NB1 ) (80 is the "time zero algebra") gives a quantum Markov chain in the sense of
Kiimmerer [K2].

5 A Concrete Example of Stinespring Expression in
. Our Model

In this section the Stinespring expression is concretely obtained in our model [A6].
The Stinespring theorem is well.known in the following form:

Theorem 5.1 [Sl}: Let A be. a C*-algebra with a unit and B(H) be a set of the bounded
operators on a Hilbert space H. For any completely positive map A : A ~ 8(H), there
exist a *-representation {K:, 1r} of A and a bounded linear map V : H ~ K: such that

A (A) = V*1r (A) V VAEA (5.1)

In particular, if A = 8(H) in the above Theorem 4.1, then we have the following lemma
due to Kraus.

Lemma 5.2 [Kl} : Let 1i be a Hilbert space. A linear map A : B(1i) ~ B(1i) zs a
completely positive if and only if it has the form

n

A (A) =I: ~*AVi
i=t

AEA (5.2)

where Vi : H ~ 1i are partial isometries and n ~ dim (H).

We shall give a concrete expression for partial isometries Vi in our model.
From the form (2.4) of the Hamiltonian H of the total system Ho ® H t , it is easy to

see that
[Ho +H t , Hot] = o. (5.3)

Hence the time evolution of the system comes from only the interaction Hamiltonian Hot:

Ut = exp (-itHot ) .
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Clearly the spectra of Ho+HI are natural numbers, so that let K,n be the eigenspace
of Ho + HI for an eigenvalue n EN, then K,n is a subspace of Ho ® HI spanned by
{Ii ® n - i) ; i = 0, ... , n} and HQ1K,n ~ K,n. Therefore we define H~~) by :

H~~) == HOI I!(n (i.e., the restriction of HOI to !(n ) (5.5)

where H~~) is a finite dimensional self-adjoint operator Cn+l ~ Cn+l and has (n +
1) eigenvalues >.&n), ... , >.~n) and the corresponding eigenvectors 1fJin) associated to >'1n)
(k = 0" .. ,n) ; namely,

(5.6)

(5.10) .

n

1fJ)n) = L: cin,;) 10: ® n - 0:) E K,n (5.7)
0'=0

where cin,;) is the coefficient determined by (1fJi, 1fJj) = 8i;8mn and the completeness of

{1fJjn)}. (5.6) implies
n

H~~) = L >.}n) l1fJjn») (1fJjn) I (5.8)
;=0

00 00 n

HOI = L H~~) = L L >.}n) l1fJjn») (1fJjn) I (5.9)
n=O n=O;=O

Using the above expressions, a unitary operator Ut = exp (-itH) on Ho ® HI can be
written as

Ut - exp (-itH) = exp (-it (Ho+HI)) exp (-itHod

- f: t t e-it(n+e>t») cin,j)c~n,j) 10:) (,81 ® In - 0:) (n - PI
n=O ;=00',/3=0

Therefore the channel A· p E 6 0 is written by

A·p = Tr2Ut{p ®w) ut
00 n m __

= L L L: d~~1d~~1, (n -131 w 1m - ,8') (,81 p 1,8') 8m - a ',n-a 10:) (0:'1(5.11)
m,n=O 0',/3=0 0",/3'=0

where
d(n) =~ e-ite>.~n) c(n';)C(n,j)

0',/3 - L..J a /3
;=0

After some calculations [A6], we get the following formula:
00

A•p = L Tv (p ® w) T:
v=O

where

(5.12)

(5.13)

00

Tv =E In - II) (cp~~vl,
n=v

n

(cp~~vl =E d~~V,/3 (,81 ® (n - PI E K,n
/3=0

(5.14)

Since {Icp~~v) ; n ~ II, n, II E N} is othogonal shown in [A6], the above Tv is a partial
isometry. Therefore (5.13) and (5.14) give a concrete expression for Stinespring's. These

formulations are useful for the computation of several entropies. In the foll~wing section,
we rigourously compute the mutual entropy.
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6 Computation of Mutual Entropy in Our Model

From (5.13) and (5.14), we have

A*p = L L (cp~~vl p ® w Icp~lv) In - v) (m - vi
v m,n2: v

Here, in the calculation below, we asuume the following Schatten decomposition:

p = L;\f Ii) (il,w = L'Jl~ I,) (,I·
1 'Y

Then (6.2) implies

(6.1)

(6.2)

A*p = ~ ( L ;\fJl(v-l)+i Id~:;+i)12) Ii) (il. ·(6.3)
1 l,v

(v-;l)+i2: 0

Clearly (6.3) is also a Schatten decomposition. Suppose that the decomposition (6.2) of
pIS umque.

From (6.3) we find the mutual entropy is

I(Pi A*) = LA~
k,t

(6.4)

The typical situations are shown in the followings :

(i) The state w E 6 1 is a vacuum state: w = 10) (01. Then

. Id(k) 1
2

I (p' A*) = "" ;\P Id(k) 1
2

log t,k
, L.J k t,k pi (1)1 2

k,t L:;\l dt 1
1 I

(ii) The state w E 6 1 is a Gibbs state:

-P}{l -pn
e "" e (_P) "" -pnwp = P}{ = L.J P}{ In) (nl = 1 - e L.J e In) (nltre- 1 n tre- 1 n

Then
nP

I (p' A*) = (1 - e:-P) "" ;\PnP log k,t
, L.J k k,t L: ;\PnP

k,t 1 1 l,t

(6.5)

(6.6)

where
n P = "" e-P«v-k)+t) Id(v+t) 1

2

k,t L.J t,k
v

(v-k)+t2: 0
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7 Computer Experiments

Under the above computations we show some numerical results the change of the mutual
entropy I(PiA*) w.r.t. T, the temperture of Gibbs state in the reservoir, and I(piA*n)
w.r.t. n, the times of the channel, respectively.

A"P= I,'H.U,(" ® OJ)U;

U, =exp(-itHol). HOI = e(aOb + abO)

P= 0.7510)(01+0.25110)(101
1= 10

~=0.06

o
~=0.07

.......
~£=0.08

.-.:=0.09
£=0.10

o "?n"T'""'T""'...,.....nrn"l"'"I"nyn......
o 0.5 1 1.5 2 2.5 3 3.5 4

T (temperture of Gibbs state)

0.1

0.2

>-g 0.4

53
~ 0.3

a

0.5

l(p; AO)
0.6

ml::""-~-----O_

0.5

~g 0.4

53
"iii 0.3
aa 0.2

0.1

o~1J""ir;tw;i~"""'ijnii'"..,.,I""l''''''
o 10 20 30 40 50 60 70 80 90100

l(p; AO.)
0.6

0.5

I 0.4

] 0.3

e 0.2

0.1

0",

10 20 30 40 50 60 70 80 90100

n n
Q) : vacuwne state ll) : Gibbs state

As expected, the mutual entropy decreases with respect to n, and the Gibbs state
plays as a noise and its effect is obviously larger than that of the vacuume state. These
numerical experiments show that our model of open system gives a dissipative change of
a state, although the interaction Hamiltonian is symmetric in two modes a and b.

8 Conclusion

In this paper we first established the Stinespring expression in an open system damping
model, and we rigorously compute the mutual entropy through a typical model of QMC.

Once we have the concrete expression of the mutual entropy, it will be useful to
investigate the dynamical change of the mutual entropy in analysis of communication

- 244-



processes and nonequilibrium behavior in statistical mechanics. The detail discussions for
the change of mutual entropy will be reported in the forthcoming paper [A7].
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