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I reported the ordering process ofnearly one-dimensional anisotropic spin system quenched
to the unstable phase. The model considered here is the Ginzburg-Landau(GL) system
"with anisotropy in nearly one-dimensional space, [1, 2]

~(x, t) = 1/1 -11/1121/1 + 'Y1/1' + ~:~
where 1/1 is the complex spin order parameter, and, is the stre~gth of anisotropy. Without
loss of generality, is chosen to be positive. The field and the space have been normalized
in an appropriate way.

For the isotropic case, - 0, the system has the rotational symmetry 'l/J ~ 'l/Jei8 , () being
a spatially constant phase. The introduction of anisotropy(, :j:. 0) breaks this symmetry
and produces a magnetic easy axis. As is well known the· above system gives two types· of
domain walls. The first is the Neel (Ising) wall, at the center of which the order parameter
vanishes. The second is the Bloch wall, at the center of which the order parameter does
not vanish and has chirality. The Neel wall "and the Bloch wall are stable respectively for
, > 1and 0 < , < 1. In this session we discuss the situation where the Bloch walls
are stable. In the Neel wall case the study has been done by Nagai and Kawasaki. Our
approach to this model is essentially same as Nagai and Kawasaki used for those studies.
[3]

In an early stage in ordering process unstable regions with 7/J ~ 0 grow toward 'l/J ~
±Xo(Xo = VI +,), which tends to form domain structures each of which approximately
has 'l/J ~ X o or -Xo. In this way after the amplitude relaxation in the early stage dynamics
the amplitude of order parameter I'l/JI takes the equilibrium value Xo over almost all the
space. After this relaxation process the evolution of the system is described by pair anni
hilation process of domain walls. In the case of Bloch wall it has two opposite geometrical
structures, so that it has two possible inner structures, twisted or not. In the Neel wall
case such structure is not present.

The evolution of the domain size and twistness is derived as,

Yi = A[Qi+l exp( -YHde) +Qi-l exp(-Yi-l/e) - 2Qi exp( -yi/e)] (2)

where A = 4y!21(1-3,)/(I-,/3), and Yi = Xi -Xi-l(> O),Xi being the position of the i-th
Bloch wall, is the distance between neighboring domain walls, and the variable Qi takes
two values, lor -1, according to the structure of domain. If the length of a domain becomes
of the order of the Bloch wall size·Yc, the annihilation of the domain takes place. Here the
annihilation is taken into account, adding the subsidiary condition that if Yj < Yc, then
the replacement Yj-l +Yj +Yj+l ~ Yj' and Qj-1QjQj+l ~- Qj' is made. For two Bloch
wall caSes schematic representation is show in FIG.!.

From the above description one can find out that if two walls have the different handed
rotation (Q = 1) its domain length shrinks logarithmically. If two walls have the same
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handed rotation (Q = -1) its domain length enlarges logarithmically. Consequently both
these processes contributes to the enlargement of mean domain size. We also investigated
the distribution of the domain sizes for each Q. In the small scale region the distribution
has Q-dependenc~, while in the large scale region it has no Q-dependence and has the ex
ponential form, which means the annihilation process makes no correlation. For the Ising
system the distribution function has been exactly calculated. [4, 5] We also discussed for
structure factor and other results. For details, see Ref.[6].

FIG.1 The interaction of 2 Bloch
wall: non twisted Q =1 (right) and
twisted Q = -1 (left)
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FIG.2 Temporal evolution of average domain
size (y) at time t. The diamond symbol is the
result obtained by numerically solving (1). Plus (y)
and box symbols stand for the evolution of do-
main sizes calculated with (2) for different two
initial conditions. Solid line is the slope 1. One
observes the average domain size grows loga
rithmically in time.
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