NUCLEATION OF WATER-SOLUBLE WHISKER CRYSTALS

Kiyoshi Kishi, Teruto Yoshida, Kenji Yoshioka,
Hisami Yumoto* and Takaki Shichiri**
Department of Applied Physics, Faculty of Science, Science University of Tokyo,
Kagurazaka, Tokyo 162, Japan
*Department of Materials Science and Technology, Faculty of Industrial Science
and Technology, Science University of Tokyo, Noda, Chiba 278, Japan
**Department of Physics, Faculty of Science, Osaka City University,
Sugimoto, Osaka 558, Japan

1. Introduction. Whisker crystals (whiskers) of water-soluble materials, such as
alkali halides, are grown out from a film of the solution by evaporation of
water[1]. Essentially, they contain no axial dislocations, which suggests no aids of
an axial screw dislocation are needed for the growth[2-6]. The growth process of
the whiskers is relatively simple, since the vaporization of the water is the only
one chemical reaction relating to the growth. The actual growth process, however,
is not so simple. Their growth point can be either their tips[7,8] or roots[5]
depending on the growth conditions. Regardless of the growth directions, the
growth of whiskers might start from a small crystal of nearly isotropic shape, and
then grow into whiskers. In the initial stage, the mechanism of morphological
change has not been clarified.

2. Growth Model. A thin
layer of saturated solution of the whisker-forming
material covers a smooth substrate. Then a microcrystal of simple cubic structure
with six {100} dislocation-free surfaces nucleates in the solution. The evaporation
of the solvent is accelerated on the top of the microcrystal by increasing the
effective supersaturation in the atmosphere due to Gibbs-Thomson's effect, since
the vapor-liquid (V-L) interface forms a localized convex region as shown in
Fig.1. In a circle of concave region, the supersaturation is decreased.

3. Computation. The sites of the evaporation and the condensation of solvent
molecules were chosen at random in the V-L interface with the weight of
vaporization probability related with the local curvature. Then a three-dimensional
random walk model simulated a diffusion process by which the increase and the
decrease in the supersaturation diffused from the interface within the liquid layer.
The direction of each walking step was chosen at random in the spherical
coordination. The degree of supersaturation in the liquid was set first just below
the critical value to form a two-dimensional nucleation on the perfect {100}
surfaces.

4. Results and Discussion. The crystal was able to elongate only when the surface
diffusion was considered. Fig.2 shows a successive process of the shape change

Present addresses:
2 Research Lab., Olympus Optical Co. Ltd., Kuboyama, Hachioji 192, Japan.
with single nucleation layer-by-layer growth conditions, where the starting microcrystal is a small cube with the height \(h = 0.1 W_L \), where \(W_L \) is the width of the liquid layer. As shown in the figure, the microcrystal tended to grow unidirectional, without any aid of dislocations. The present process relates to the earliest stage of the whisker growth. After that the microcrystal may grow into a whisker with any possible growth mechanism. As examples, both "root growth with the floating root in the liquid" [5] and "tip growth with a liquid layer" [7] mechanisms for whisker growth can follow the present nucleation process.

Acknowledgement. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas "Crystal Growth Mechanisms in Atomic Scale" No. 04227101, from the Ministry of Education, Science and Culture, Japan.

References

Fig. 1

Fig. 2