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The goal of the present paper is to call attention to some new aspects of two traditional questions

of the pattern formation problem in extended dissipative systems, namely creation and/or annihilation

of defects and the role of an additional continuous group of symmetry, respectively.

Interest to the process of creation and/or annihilation of defects in pattern dynamics is

related generally to the following reasons (i) it is one of the most common mechanism to

change the wavenumber jn unstable patterns, (ii) annihilation of defects is the only way for

an imperfect texture to evolve into a perfect defectless pattern, (iii) such a process is extremely

important for understanding of the so-called defect turbulence, where a chaotic state is achieved

due to spontaneous defect generation. Despite the abovementioned reasons the problem of

defect inte~tion and the dynamics caused by the interaction is still far from completion. In

particular, most of theoretical works are limited by the framework of different versions of the

perturbation theory, see, e.g., [1]. Such an approach in principle cannot describe the process

of creation (annihilation) at the stage when "cores" of defects are close to each other so that

their interaction may not be regarded as a small perturbation. We are "going to show that the

latter case often may be described by certain universal dynamics that weakly depends on

particular details of the initial and lateral boundary conditions. The dynamics is associated

with self-similar solutions of ~he underlying equations that is the only possibility to describe

the process when the distance between centers of interacting defects becomes I1lUch smaller

than all characteristic spatial scales of the corresponding patte~-forming system. Note, that

similar arguments in case of interaction of two point defects in two-dimensional roll-patterns

of electro-convection in nematic liquid crystals (EHC) were also mentioned by Aranson [2],

however he did not apply this idea to any concrete calculations. The first application of such

a kind was made in Refs. [3,4,5] for the case of Eckhaus instability arises in one-dimensional'

roll-patterns in EHC.

Let us consider here a two-dimensional roll pattern. In case of EH~· in a certain

approXimation the problem is governed by a two-dimensional version of the time-dependent
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Ginzburg-Landau eqliation [6]. The only locally stable point defect in this case is a dislocation

with topological charge ±l. A center of the dislocation may be related to the points where the

Ginzburg-Landau order parameter 1/J vanishes. In Fig. 1 the results of experimental study of

dynamics of annihilation of a pair of dislocations in EHC is presented. The experimental

technique and the data treatment were standard, see e.g. Refs. [7,8]. Detailed discussion of

these results will be a subject of a separate publication. Here we note only that the profiles of

the lines Re1/J =0 and Im1/J =0 shown in Fig. 1 cover all, topologically different possibilities

may be realized in this problem. In all cases close to the annihilation moment the spatial

form of the curves may be approximated by conic curves (ellipse, parabola or hyperbola).

The latter brings about the scaling !iX oc IAI1112 that connects the distance between centers of

two annihilating defects !iX with time AT downcounted from the annihilation moment. The

scaling is in good agreement with our experimental results. The important point is that the

scaling is exactly the same as that obtained in one-dimensional case [3,4,5], despite the

different meaning of !iX in one-dimensional systems.

_.~

Fig. 1. Annihilation ofa pair of dislocations in planar EHC. Nematic liquid crystal, MBBA; 8 =0.1. The real

image at a certain moment (upper panel) and the result of treatment of its temporal evolution at three

consecutive moments (lower panel). Re", =0 on the black solid line, while the gray one corresponds to

1m",= O. Three typical topologically-different annihilations of a pair of defects are shown. Time proceeds

from top to bottom. The bottom figures show the treatments just after annihilations for all cases.
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· Let us discuss now roll patte~s in case when the system, undergoing short-wave instability,

has an additional one-dimensional continuous group of spatial symmetry. The latter means

that beside the conventional invariance under translations and reflections in the plane of

pattern formation, the system remains invariant with respect to one extra spatial transformation

parametrized by one continuous quantity. Examples of such a kind may exhibit convection

.in a liquid layer with "stress-free" boundary conditions [9, 10,11], systems with Galilean

invariance [12], travelling front in phase transition phenomena or in reaction-diffusion systems

[13, 14] and others [1]. In EHC with a homeotropic alignment of the director by top and

bottom surfaces of a container an additional symmetry exists beyond the threshold of the

Fredericksz [15] transition. In this case the equilibrium orientation of the director in the

midlane is tilted, so that the director has a non-zero projection into this plane. The system is

degenerate with respect to rotation of the director through an arbitrary angle around an axis

perpendicular to the midplane, that provides desirable additional symmetry. Thus, the

corresponding pattern-formation problem has a new slowly varying (ield of long-wave modes

related to this symmetry. The field describes the director's angular orientation in the midlpane

and includes a neutrally-stable (Goldstone) mode with zero wavenumber generated by the

additional symmetry transformation. Coupling of the long-wave orientational modes with

short-wave EHC modes brings about dramatic changes in the pattern formation problem. In

particular for roll pattern the relevant pattern stability problem must possess two Goldstone

modes: one associated with the same orientational degeneracy and another generated by spatial

translation of the pattern along the rolrs wave vector k (translation in direction perpendicular

to k makes no influence into the roll pattern, and therefore does not generate a Goldstone

mode). Recent theoretical results [16] say that in such a case all spatially periodic patterns

may be unstable and a threshold of short-wave instability (EHC) corresponds to a bifurcation

from a spatially uniform state directly into spatiotemporal chaos.

An example of a weakly nonlinear pattern obtained experimentally in EHC under the

abovementioned conditions is displayed in Fig. 2a. Being quite irregular, the pattern,

nevertheless, has a certain characteristic spatial scale equal to that for the short-wave instability.

The pattern slowly evolves in time but the evolution does not yield any steady state. All these

Fig. 2. Patterns in homeotropic ERe. (a) without a magnetic field; (b) with a magnetic field directed along

the plane of pattern fonnation (H =1600 G).
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features are in good agreements. with theoretical predictions of Ref. [16].

The orientational degeneracy may be lifted by an external force directed along the plane

of pattern formation, that has to reduce the problem to the conventional case and to stabilize

the patterns. Indeed, action of a constant magnetic field (1600 G) transforms the irregular

pa~rn into a perfect steady zig-zag one, typical for EHC, see Fig. 2b. As soon as the magnetic

field is removed the regular pattern becomes unstable and the system returns to the state

shown in Fig. 2a. A limited length of the present paper does not allow us to pay more

attention to these results. In the nearest future their detailed discussion will be presented

elsewhere.
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