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A fact that discrete and continuum· percolation models belong to the
different universality class is proved by experiments and simulation
which are related to the electric conductivity, the permeability, the
elasticity and the normal vibrational mode energy.

§ 1. Introduction
In 1957, Broadbent and Hammerseley introduced so called percolation problem on the discrete

lattice, for the fll'St time. I) This is a very simple and basic model which shows a prominent change
in various physical quantities as well as Ising spin model. Most of physicists thought that a
continuum percolation system can be approximated by introducing an infinitely fine lattice. However,
some differences are noticed by observing materials -in nature, most of which can be described by
continuum percolation problems. Halperin et al. pointed out that critical exponents of the percolation
problems might be different between the discrete and the continuum percolation models.2

) The
main conclusion is listed in Table 1 for the electric conductivity, the elastic constant and the
penneability in the two- and three-dimensions.

We have some variations of the original percolation problem. In Fig.1a and Ib, two kinds of
continuum percolation models are shown. The model shown in Fig.la is called Swiss-cheese
model because of the structure which is similar to Swiss-cheese and the other one shown in Fig. Ib
is inverted Swiss-cheese model. The exponents of the electric conductivity for discrete, continuum
(Swiss-cheese) and inverted Swiss-cheese models are the same in the two-dimension. However,
the exponents for the three-dimensional models are different each other.

Table 1. The critical exponents for electric conductivity, elastic constant and permeability
of the discrete, the continuum Swiss-cheese and the continuum inverted Swiss
cheese percolation models in the two- and three-dimensions.2

)

model electric elastic penneability
conductivity constant

discrete 1.3 3.7 1.3
two Swiss 1.3 5.2 2.8

dimension
inverted Sw. 1.3 3.7 1.3

discrete 1.9 3.6 1.9
three Swiss 2.4 6.1 4.4

dimension
inverted Sw. 1.9 4.1 2.4
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Fig. la Swiss-cheese Model Fig. 1b Inverted Swiss-cheese Model

Although it is easy to punch off holes in the two-dimensional system such as the aluminum
sheet, it is difficult to make cavities inside the three-dimensional material and take it off to outside
without leaving any damage inside the object In 1991, we proposed a three-dimensional experiment
of Swiss-cheese percolation with a simple idea, which gets rid of the above mentioned difficulty.
At first, we set electrically conductive fluid such as mercury or pure water in a container. If we
push rubber balls into the fluid, the electrically conductive fluid spills over from the container by
the same volume as the rubber balls. The electric conductivity decreases as the number of balls
which are pushed into the fluid increases. The conductivity is reduced to zero at a threshold
volume ratio of fluid 'component

In the next section, we discuss the exponent of electrical conductivity and permeability of
three-dimensional Swiss-cheese model, and we can show the exponents are 2.4 and 4.2, respectively,
which are equivalent values to the theoretical prediction. In § 3, we discuss an inverted Swiss-cheese
model in which the elastic constant is an object of investigations. Furthermore, we discuss an
simulational approach to the Swiss-cheese model for the first time.

§ 2. Exponent of Swiss-cheese percolation model
The electric conductivity of lime stone was measured and gave a clue to understanding of differences
between the discrete and continuum percolation models. In 1991, we showed an experimental
evidence which revealed the difference between the discrete and the continuum percolation models,
avoiding the above mentioned difficulty by introducing electrically conductive fluid instead of
solid material.3

) Although it is very difficult to make cavities in the solid material and to take it off
from the material, we can simulate the situation by inserting rubber balls which play role of
cavities into fluid.

Our apparatus is shown in Fig.2, where a container is an acrylic tube of diameter IOcm and
contains 360 rubber balls (the diameter is I6mm). A piston at the right hand side is used to control
the space among the rubber balls filled by the electrically conductivy fluid, Le. if one presses the
piston, the gap becomes narrow and therefore the electric conductivity of fluid between both the
ends of acrylic tube decreases. Only one trial gave the exponent of electric conductivity 2.4+0.1
together with very good reproducibility.

By using similar apparatus shown in Fig.3 we can measure the permeability of fluid through the
porous object made by balls pressed by the piston. In this case we obtained the exponent of fluid
permeability 4.2 +0.3 4

), which should be compared with the predicted value 4.4 shown in Table 1.
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Fig.2. Apparatus for electric conductivity in the three-dimensional Swiss-cheese model.

§ 3. Exponent of inverted Swiss-cheese percolation modelS)
Here we consider an elastic system which consists of many rubber balls. When the rubber balls
form a zigzag chain from one side to aother of a container by adding one by one (see FigA), then
the chain shows an elastic property against pressing the piston at the one side of the container. One
of the difficulties for realization of this inverted Swiss-cheese model is that we have to lift up balls
in the container without any support. Here we introduce a randomly netted pile of very thin
copper wire (so called enamel wire). Many balls are hung up with the wire, which has a negligibly
small elastic constant. This is shown in Fig.4.

Fig.3. Apparatus for permeability in the
three-dimensional Swiss-cheese model.

Fig.4. Apparatus for elasticity in the three
dimensional inverted Swiss-cheese model.
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At frrst there is no sequence of balls from a side to another of the container. When we press the
one side by the piston into the container, the rubber balls get contact each other gradually and
form a sequence of rubber balls or zigzag chain. As soon as the sequence is formed, if we press
the side a little, stress can be measured at the other side with load transducer. Calculating the
elastic constant from the data and plotting them by a log-log plot, we obtain the exponent 4.15,
which is comparable with the predicted exponent 4.1 in Table 1.

The two-dimensional Swiss-cheese model is simulated by the computer. Here we discuss the
percolation probability and the connectivity. We obtain the threshold value Pc = 0.315 and V =

1.65 for the first time for the Swiss-cheese model. The detail will be given in a separate paper.

§ 4. Summary and discussion
Up ~o here we consider the electric conductivity and permeability in Swiss-cheese model and the
elasticity in inverted Swiss-cheese model. It is clearly shown in these experiments that there are
differences between the discrete and the continuum percolation models. However, if one looks at
Table 1, everyone easily notices that there are still many exponents which are not experimentally
checked.

Furthermore there are still inore physical quantities in solids such as vibration, specific heat,
and so on. These quantities also change when the porosity of solids changes. For example, the
lowest energy of a normal vibration modes of aluminum plate is measured as the porosity is
changed. Wean already noticed decrease of vibrational energy with porosity and it is also clear
that we have a threshold value that the mode energy becomes zero. In a similar way, every
physical quantities depend on the porosity and there should exist the threshold at somewhere of the
porosity.

Coupled with theoretical and experimental investigations, nowadays simulation is also another
very important method for research. Simulation study of the continuum percolation model is not
difficult in principle, but very difficult in practice even in two-dimensional space. Here we discuss
the connectivity of random circle holes of various radius. By using finite size scaling technique,
the threshold value and the exponent of correlation length are obtained as Pc = 0.315 'Bd v =1.65,
respectively. The exponent is different from 4/3 for the discrete percolation model' Thus we
have been able to show the difference between the discrete and the continuum percolation models
in its critical exponents of the electric conductivity, the permeability and the elasticity. In the
discrete and the continuum percolation ~odel, there are many interesting and stimulus points of
study and there remain a lot of subjects which are not clear.
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