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The theory of Brownian motion of a particle in a fluid at rest is one of the most brilliant

success of the statistical mechanics around the equilibrium state. While the theory around the

equilibrium state has been. well-established and is impeccable, extension of the theory to the

system far from equilibrium s~ems to remain at primitive level and to be rather rare. It is, in

part, due to its difficulty of analysis. Our purpose here is to give a theory of Brownian motion

in a nonequilibrium steady states equilibrium starting with as rigorous basis as possible.

We ,consider the spherical, rigid, and electro-magnetically neutral particle immersed in an

incompressble fluid subject to a shear flow given by

v(r)={3'r, (1)

where (3 is the constant traceless tensor. We start with constructing the Langevin equation

which describes the stochastic behavior of the sphere.

First we evaluate the friction force exerted on the sphere. In the absence of the shear flow,

the force is given by well-known Stokes low, F(w) = -e(w)u(w) = -67ra7](1 +V-ipw/7]a)u(w)

(for small w), where F(w) is the friction force, e(w) is the friction coefficie~t, p and 7] is the

density and shear viscosity of ambient fluid, respectively, a is the radius of the sphere, and

u(w) is the velocity of the sphere. We extended this result to the case in the presence of shear

flow using the induced force method[l]. The friction force is expressed as

F(w) = -e(w) . [u(w) - f3. R(w)], (2)

where R is the position of the sphere. The friction coefficient e(w) now becomes a tensor and

given by

(3)

where G(r - r', t) is the Green function of the (linearized) Navier-Stoke equation and r(t) ==

exp[f3t] . r. This formula is valid up to the first order in VJi; == V(3pa 2 /7] ~ 1 and vwpa2 /7],

where Re is the Reynolds number and (3 == 1f31.
Next, using the above expression for the friction coefficient and the theory of fluctuating

hydrodynamics, we derive a Langevin equation;

-iwmu(w) = -e(w) . [u(w) - f3. R(w)] +FR(w),
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(4)



where FR(w) is the random force. We show that the fluctuation-dissipation theorem is not valid

in the presence of the macroscopic shear flow. The autocorrelation function of the random force

is given by

(5)

where 8e(w) is a function which can not express in terms of the friction coefficient alone and

(H.C.) denotes the, Hermite conjugate. 8e(w) is the same order in magnitude as the modification

of e(w) due to the sh~ar flow and, therefore, can not be neglected.

Due to the strong coupling ~ith the convection term which appears in eq.(4), the diffusion

constant can not be derived from the mean square displacement. We also derive an alternative

expression equivalent to the Langevin equation, i.e., the diffusion equation. The diffusion

equation for the probability distribution function, P(r, t), is given by

{~ + v(r)·V} P(r, t) =Loodt' V(t - t') ·D(t - 1').V(t - t')P(r(t - t'), t'), (6)

where V(t) == {)/{)r(t). In this expression, D is the diffusioll coefficient tensor which depends

on both time(frequency) and'shear rate and is given in terms of the velocity autocorrelation

function' as

D(t) = exp[-,8t].(8u(t)8u(O)), (7)

where 8u(t) = u(t) - ,8, R(t). This is the generalized Green-Kubo formula for the diffusion

coefficient. Substituting the solution of eq.(4)-into this expression one obtains

D(t) = kBTexp[-,8t]'{JL(t) +bJL(t)} , (8)

where JL(t) == e-1(t) is the mobility tensor and 8JL(t) == JL(t).8e(t)'JLt(t). This is the generalized

Einstein-Stokes relation.

The diffusion coefficient features behavior common to transport coefficients for the fluidal

system in steady shear flow [2] ;

D(O,,8) rv Do - D'~, for small w, D(w,O) rv DC) - D"VW, for small,8, (9)

where Do == kBT/67raT] is the Einstein-Stokes diffusion coefficient.

Asides of the above argumen~, the relevance of the friction coefficient with the principle of

Material Frame Indifference(MFI) was also discussed[3].

References

[1] K. Miyazaki, D. Bedeaux and J. Bonet Avalos, J. Fluid Mech. 296 (1995) 373; K. Miyazaki

and D. Bedeaux, Physica A. 217(1995) 53; K. Miyazaki andD. Bedeaux, Physica A. (in press)

[2] K. Kawasaki, J. D. Gunton, Phys. Rev. A. 8 (1973), 204~

[3] K. Miyazaki, Physica A. (in press)

- 547-


