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The principal purpose of this work is to study the dynamics of nonequilibrium density
fluctuations in concentrated hard-sphere suspensions of interacting Brownian particles with both
hydrodynamic and direct interactions, and thus to explore the slow relaxation process in colloidal
glasses. A well-known example of this kind is the so-called mode-coupling theory (MCT), which
was proposed by Bengtzelius, Gotze, and SjOlander and, independently, by Leutheusser [1].
Although this theory was the origin of all later experimental, theoretical, and numerical studies of
colloidal glasses [2], we find two unsatisfactory points in their basic viewpoints. First, MCT is valid
only for equilibrium systems. In general, however, most experimental measurements on quenched
colloidal suspensions are done in a metastable fluid state prior to crystallization. Hence the
nonequilibriumeffects may change the behavior of relaxation processes. Secondly, MeT contains a
number of adjustable parameters. However, it has not been addressed yet to understand those
parameters physically from a microscopic point of view. Thus, it might be still one of fundamental
problems in statistical physics to formulate a new scheme for finding stochastic equations for
nonequilibrium density fluctuations in concentrated colloidal suspensions.

The first problem above suggests that one must derive a nonlinear diffusion equation for the
average number density n(x ,t) in order to discuss the diffusion process in nonequilibriu~ states.
This was recently done by the present author and Oppenheim [3]. The" alternative diffusion equation
for n(x ,t) was derived, from which the short- and long-time self-diffusion coefficients,

D;(t/J) and D~(t/J), are obtained self-consistently, where t/J denotes the volume fraction of the particles.

The second problem requires us to derive a stochastic equation for the fluctuations 6n(x,t) around the
average number density n(x ,t). Then, the coupled equations for n(x,t) and 6n(x,t) must be solved
self-consistently to study the diffusion process in metastable fluid state. Thus, the parameters
contained in the theory will be understood physically from a microscopic point of view. In this paper,
I first propose such coupled equations and then investigate the asymptotic behavior of the slow
relaxation processes of the nonequilibrium density fluctuations in cqncentrated colloidal suspensions.

We discuss a suspension-hydrodynamic stage of a colloidal suspension"which consists of N
identical spherical particles with radius ao and an incompressible fluid with viscosity 1]0' In this stage

the space-time cutoffs (xc,tc)' which are the minimum wavelength and time of the dynamic process

o( interest, are set as xc:> ~ and tD :> te :> ta , where Qdenotes the screening length given by

Q- (6:n:aono)-1/:1, in which the hydrodynamic interactions becomes important, ta ~ m/(6:n:1]oao) the

relaxation time of the sphere, and tD - Q:1 / D~ the structural-relaxation time, which is a time required

for a particle to diffuse over a distance Q. Here no is the equilibrium number density of the spheres.
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As was shown in the previous paper [4], the nonequilibrium density fluctuations obey a linear
stochastic equation

a 2at 6n(x,t) ""' V [Ds(etXx,t»6n(x,t)] +R(x,t) (1)

with the self-diffusion coefficient
s (1- uc'P1 tPo)

Ds(c'P)-Ds(tP) l+d
s
(tP)K(c'P) , (2)

whereR(x ,t) denotes a Gaussian, Markov random force and satisfies
(R(x,t»- (R(x,t)6n(x' ,0»- 0, (3)

(R(x,t)R(x' ,1')- - 26(t- 1')'((In(X,)2) V 2 [Ds(etXx,t))6(x - x')]. (4)

The brackets denote the average over the canonical ensemble. Here u-9tPo/32 and ds(tP)==

0;(4)) / Do, where 4>- 43'tao
3no /3 and Do are the volume fraction of particles and the single-particle

diffusion coefficient, respectively. The critical volume fraction 4>0 is given by

tPo" (4/3)3/(7103 - 8102+ 2). D~(tP) indicates the short-time self-diffusion coefficient (see Ref. [3]

for details).The term K(c'P) in Eq.(2) represents the correlation effect due to the nonlocallong-range
hydrodynamic interactions and is given by

c'P1 tPo
K(c'P'\.. (5)

) (1- (]J1tPo)" ,

where K - 2 here. This becomes singular at c'P""" tPo and describes a cage effect which causes a

structural arrest in the relaxation of density fluctuations. Finally, the function C1J(x,t) denotes the local
volume fraction given by C1J(x, t) ... tP n(x, t) 1no and obeys the nonlinear deterministic equation

aat C1J(x,t) - V' [Ds(~x,t» V etXx,t)1 (6)

This equation describes a causal motion of self-diffusion processes in nonequilibrium states of
concentrated hard-sphere suspensions.

For the short-time region where ta <t<tD and Ixl <Q, the coupled effect uC1J(x,t) and the cage

effectK(ep) are negligible. In this region, therefore, the self-diffusion coefficientDs(c'P) reduces to

the short-time self-diffusion coefficient D.~(tP). After this region, both effects become important. For

the long-time region where t> tD and Ix I>~, Ds( c'P) reduces to the long-time self-diffusion

coefficientD~-D s(4'), which vanishes quadratically as~ -O.84Do(l - 4'1 tPO)2 near tPo because of

the cage effectK( 4'). Thus, the coupled equations (1) and (6) describe crossover behaviors between
the short-time region and the long-time region.

In order to discuss the relaxation process of nonequilibrium density fluctuations around the
metastable state, one must solve the coupled alternative diffusion equations (1) and (6) self­
consistently. In the following, however, we discuss only the single-mode behavior of the number
density n(x ,t) with the length scale of order L, This leads to n(x,t) - noz(t/ty",L) , where

z(O;L) - Zo and z( 00;L) - 1. In fact, by putting IVI- (2nlL) and ty- (L12n)2 1D~, one can solve

Eq.(6) approximately as z(t)-(zo+ t)/(l+t). By taking a Fourier transformation of Eq.(1) and

introducing the dimensionless variables by q-kao, 't-Dot/a~ and T:y .. Doty/a~, we thus obtain the
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self-intermediate-scattering function given by Fs(k ,t) -< ~n(k,t)~n(- k,O) > I < l~n(k,0)12 >, where

fJn(k,t) denotes a Fourier component of the density fluctuations ~n(x,t). Figure 1 shows the time

dependence of the scattering function Fs(k ,t) for different volume fractions tP at Zo - 0.8, where

q - 2.8 and kL - 2.1f. For small volume fractions the scattering functions decay quickly to zero. As the

volume fraction increases, the shape of Fs(k,t) becomes very sensitive to volume fraction, leading

to a formation of a shoulder. In Fig.2 we also plot the dynamic susceptibility given by. .

X;(q,w) - 00 f cos (wr:)Fs(q, 'C)d'C for different volume fractions t/J at Zo - 0.8. In Fig.2 we clearly
o .'

see that there are two peaks and one minimum in X;; the first peak at 00- wa - q2D;1Do in the lower

frequency region, the second peak at 00- wy - q 2~ I Do in the higher frequency region, and the

minimumatw-wli in between the first and the second peaks, where W a < 00
11
< wy ' The characteristic

frequencies wa ' 00
11

, and wy are then shown to be scaled With the separation parameter a-,pl,po-l

as wa (a,q) oc lol2, wlI(C7,q)oclall', where ~-1.33(zo-0.8)fora~0. Thus, there are two

different slow relaxations, a and f3 relaxations,concemed with wa and w p in the fluid state (a< 0)

near tPo' Hence the relaxation proceeds in the following four time stages for ,p<,po (a< 0)

[E] early stage where 'C
B

< 'C< T:y (wy < 00 < wB ) ;

r.rS( ~ (2d ~ "s(:\ 2axI I( 2 4d 2)r s q, "} - exp - q s "" Xs q, W} - q s 00 + q s '

rtJ] fJ-relaxation stage where'Cy <T:<'Cp(wp< 00 <Wy);

I'.,e a "I' " aF s(q,-r)-Jq-A/'CIT:I') ' Xs (q,w)-Aq(wlwl') ,

[a] a-relaxation stage whereT:p<i"<'Ca (wa < 00 < 0011 );

a.,e b "a • -bFs(q,-r)-Jq-Bq(T:IT:a ) , Xs (q,w)-B/wlwa ) ,

[L] late stage where 'Ca< or (00 <: 00a) ;

~(q, -r) - exp[ - q2 dL T:], X~\q,w):::a q2 wdL/(w2+q4dL2),

(7)

(8)

(9)

(10)

whereT:i -2.1flwi , (i-a,~,y), and thepositiveconstantsA q ; A~, B q and B~ are weak functions

of ,pand zoo As predicted by MCT [1], for intermediate times, there are two types of power-law

decays; the first decay towards a plateau in stage [13] and the von Schweidler decay in stage [a].
However, the time exponents a and b depend on q,and ZOo We also mention that when the system is

in equilibrium, the two slow relaxations disappear and the late stage [L] only exists. These situations
are quite different from those of MCf.

In summary we have studied the dynamics of nonequilibrium'den"sity fluctuations in concentrated
hard-sphere suspensions. We have shown that the nonequilibrium effect changes the qualitative
behavior of relaxation processes. In fact, in nonequilibrium states the two different slow relaxations
are caused by the cage effectK(<1Xx,t» given by Eq.(5), while in equilibrium states they disappear.

This situation is quite different from MCT. The detailed properties of slow relaxations could be
obtained by solving the coupled equations (1) and (6) self-consistently, where the initial value c.P(x ,0)

is only the adjustable parameter. This will be discussed elsewhere.

- 514-



References
[1] U. Bengtzelius, W. Gotze, and A. Sjolander, 1. Phys. C17, 5915 (1984)~

E. Leutheusser, Phys. Rev. A 29, 2765 (1984).
[2] P. N. Pusey, in Liquids, Freezing and the Glass Transition, edited by D. Levesque,

J. P. Hansen, and J. Zinn-Justin (Elsevier, Amsterdam, 1991); P. N. Pusey and
W. van Megen, Nature (London) 320, 340 (l986)~ Phys. Rev. Lett. 57, 2083 (1987)~

W. van Megen and S. M. Underwood, Phys. Rev. E49, 4206 (1994).
[3] M. Tokuyama and I. Oppenheim, Phys. Rev. ES 0, Rl6 (1994); J. Korean Phys. Soc. Suppl.

28, S327 (1995); PhysicaA216, 85 (1995).
[4] M. Tokuyama, to be submitted to Phys. Rev. Letts.

1

0.8
-..
~ 0.6
0"

............
V)

0.4u..

0.2

6

....... 10- 1.......
8
a.........

10- 2en
=x

.........
C')
0 10- 3

Fig. I. Self-intermediate-scattering function Fs(k ,t) vs t atq - 2.8 and Zo - 0.8 for different volume

fractions (from left to right): 0.480,0.543,0.560,0.566,0.569,0.571. The dotted line indicates the
function Fs(k ,t) for 4>- 0.0.

Fig.2. Dynamic susceptibility X; (k, m) vs w at q = 2.8 and z0 = 0.8 for different volume fractions

(from right to left at lower frequency side): 0.543,0.560, 0.566, 0.569, 0.571.
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