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Introduction
When the voltage above a critical value is applied to a thin layer of nematic liquid crystals, the

electrohydrodynamic convection (EHC) occurs due to their anisotropies of viscosities, dielectric, and
elastic constants. This instability, especially in a planar alignment (PA) system, has been studied
extensively for the typical subject of the nonlinear-nonequilibrium phenomena [1,2]. On the other
hand, less studies in a homeotropic alignment (HA) system have been done so far, because EHC in
HA has been thought that it was nothing different from one in PA. But recently some new theoretical
predictions have been proposed and they have demonstrated important differences between EHCs in
PA and HA by use of computer simulations. Thus EHC study in the homeotropic structure also begins
to attract our interests [3-5t.'

We experimentally investigate the stability and formation processes of convective patterns in PA
and HA in this background and try to compare our experimental results with theoretical ones.

Fig. 1 : Stability diagram of nonnal rolls in
one-dimaosional planar system.
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Planar Alignment Case
Firstly in PA system, weakly nonlinear aspects can be modeled for example by the Swift-Hohenberg

equation and TOOL equation, and in one dimensional system the stability diag~ of convective rolls
is theoretically obtained from these equations. In the real system, however, it has been difficult to
realize the pure one-dimensional situation. Thus, the comparison between theoretical and experimental
results in one-dimensional system has not yet done so far..

Here, we tried experimentally to obtain the stability diagram of one-dimensional EHC in PA using
a transparent electrode prepared specially by following manners. We used the nematic liquid crystal,
MBBA with its parallel conductivity 3.30x1o-9 Q-1cm-1and perpendicular one 2.34 x 10-9 Q-1cm-1by
doping of TBAB 0.012 wt%. Then it is filled between two glass plates both of which were coated with
transparent electrodes. One of them was lithographically etched as a form of stripe in 30 ± 2 pm width
and in 1cm length. The layer thickness was
chosen as 50pm so as to be one-dimensional
systems.

In order to investigate the stability of normal
rolls with a given wave number q. the
characteristics in EHO was used such that the
wave number of normal rolls depend on the
applied frequency. First, we prepare normal
rolls with a given wave number q by setting the
frequency f1" Then the frequency are changed
to the standard frequency fo with maintaining
the deviation s from threshold. We call this the
frequency-jump meth~. In this manner we can
compulsively prepare the normal rolls with the
desired deviation of wave number Q(=(q-q)/q).
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and test its stability. Where qo is a critical wave number at/a, and in our experiment,jo has been
chosen as 800Hz. Repeating this procedure for many different values of q,jand voltage V, we can
determine the stability range of normal rolls as a function of q and V, i.e. the Busse balloon.

We clarified that the normal rolls state exhibits three kinds of behavior by using this experimental
procedure. The first situation is that after a convective pattern entirely disappears new convective
pattern with a different wave number appears. The second is that the wave number changes through
the annihilation or the nucleation of rolls after the frequency of the applied field was jumped. Thirdly,
essentially no change of initial patterns happens for the jump of the frequency of the applied field.
These behavior is classified clearly as three areas on the stability diagram as shown in Fig. 1. Open,
closed circles and crosses show the first, second and third situation respectively. The two boundaries,
such as Neutral and Eckhaus boundary, well agree with the theoretical prediction.

Fig. 2 : Phase diagram ofEHe in homeotropic system.
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Homeotropic Alignment Case
In a homeotropic alignment system, a very different scenario can be observed for the onset of EHC

from the planar configuration. To begin with, the homeotropic alignment becomes unstable at a
critical voltage VI where the director starts to reorient and acquires a planar component. It's called as
the Freedericksz tr,ansition. With further increase of voltage V, a secondary instability leading EHC
takes place. The EHC mode with finite wavenumber is superimposed on the Freedericksz mode with
zero-wavenumber (the so-called Goldstone
mode). Therefore, more richness of phenomena
will expected than "in 9Je planer case.

First of all, we shall classify the patterns in
homeotropic case. We experimentally investigate
the phase diagram of a two-dimensional
homeotropic system for the applied voltage and
frequency. In order to achieve the ideal >-
Freedericksz deformation we used the magnetic .'Z' 25

field. By applying magnetic field to the sample N
cell in the x-directiQn, the uniform tilting of ~ 20

director is set to the x-direction. Therefore,
patterns could be classified distinctly and easily
analyzed quantitatively.

Fig. 2 shows the phase diagram obtained by
the above procedure. Although each pattern in
the diagram shows very interesting behavior, the
detail will be given in the complete report
published in the near future because of limitation
of space. However we would like to stress here
that the phase diagram was quite different from
one of planar case.
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